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(What is the wealth ...)
Which cannot be stolen by a thief,
Nor be taken away by a king,
Nor be partitioned amongst brothers,
Nor be a burden on the body,
Which on expending grows truly ...
(It) The wealth of knowledge
Is the greatest of all wealths.

-Sanskrit couplet from Bhamini’s Sabhatarangini.
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Abstract

Synthetic aperture imaging is a technique that projects images of a scene from dif-

ferent views on to a virtual focal surface, enabling us to “see through” occlusions

in the scene. Using a 100-camera array we have used synthetic aperture imaging to

view objects concealed behind dense foliage and to track a person moving through

a crowd. The ability to see through occlusions makes synthetic aperture imaging a

potentially powerful tool for surveillance.

This work makes two contributions. First, we characterize the image warps required

for synthetic aperture imaging using projective geometry. This analysis leads to a

robust camera calibration procedure for synthetic aperture imaging. Our analysis

also shows the relation between the geometric complexity of the image warps and

camera/focal plane configurations. In particular, we show that we can vary the

focus through families of frontoparallel and tilted focal planes by simply shifting

and adding the camera images. As image shifts are relatively simple to realize in

hardware, this leads to a real-time system, which we demonstrate for tracking a

person moving through a crowd.

Second, we explore methods to achieve sharp focus at every pixel in the synthetic

aperture image by reconstructing the 3D surfaces of the occluded objects we wish

to see. We compare classical shape from stereo with shape from synthetic aperture

focus, and describe variants of stereo that improves image contrast by deleting some

of the light rays that are incident on the occluder.
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Chapter 1

Introduction

The decreasing of cost digital image sensors has made is feasible to build large

multi-camera arrays. Camera arrays are useful for several applications in computer

vision, graphics and cinematography. The bullet-time scene in the The Matrix was

created using an array of still cameras triggered at different times [27]. At Super

Bowl 2001, an array of 30 synchronized video cameras was used to display views

of the action from different viewpoints giving viewers a sense of flying through the

scene [18]. Researchers in computer vision and graphics have built camera arrays

for virtualized reality [19, 55], image-based rendering [50, 53], high performance

imaging [48] and synthetic aperture imaging [43, 41]. This dissertation describes

the use of large camera arrays for the latter application.

1.1 Synthetic aperture imaging

Synthetic aperture imaging is a technique that uses an array of cameras to simulate

a giant virtual lens, enabling us to synthesize images which would be impossible to

acquire with an ordinary camera lens. An example of synthetic aperture imaging

is shown in Fig. (1.2). Some of the effects we can achieve with synthetic aperture

imaging are:

1. Seeing through occlusions: A camera array simulates a lens with an aper-

ture as large as the camera baseline (we have experimented with apertures

1
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(a) Stanford Multi−camera array (b) Mirror array (c) Hand−held plenoptic camera

Figure 1.1: Some synthetic aperture imaging systems. (a) An array of 100 video
cameras, also used for high-performance imaging [48]. (b) An array of planar mir-
rors. By aiming a high resolution camera at these mirrors, we obtain a virtual array
of cameras which can be used for synthetic aperture imaging. This has also been
used for synthetic aperture confocal imaging [25], dual photography [35] and sym-
metric photography [9]. (c) A hand-held camera modified by placing a microlens
array on the camera sensor [30]. With such a camera, one can vary the focus af-
ter acquisition using the same procedure as in synthetic aperture imaging using a
camera array.

(a) Cameras aimed at bushes (b) View from one camera (c) Synthetic aperture image

Figure 1.2: Example of synthetic aperture imaging. (a) An array of 45 cameras was
aimed at dense bushes. (b) Image from one camera with students standing behind
the bushes. It is almost impossible to make out the students from any single camera
image. (c) We can combine images from all 45 cameras to automatically construct a
synthetic aperture image in which the students behind the bushes are clearly visible.
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up to 3m wide). Such a huge aperture leads to a proportionately shallow

depth of field. This can be used to “see through” occlusions like dense foliage.

When we synthetically “focus” this virtual lens on objects behind occlusions,

the defocus blur of the foreground occluders is so large that they effectively

disappear, enabling us to see the objects behind. This is illustrated in Fig.

(1.2). The ability to see through dense occlusions make synthetic aperture

imaging a potentially powerful tool for surveillance.

2. Improving Signal-to-noise Ratio: Each pixel of a synthetic aperture im-

age is computed by averaging pixels from some or all of the cameras in the

array. This improves the signal-to-noise ratio by a factor of
√

N where N is

the number of pixels averaged to compute a pixel in the synthetic aperture

view. In our experiments, N varies from 30 to 100. The reduction noise helps

preserve detail and contrast even in low-light conditions. The synthetic aper-

ture image of Fig. (1.2c) was acquired close to sunset; since 45 images were

averaged to produce it we can see enough detail.

3. Per-pixel focus control: Using a conventional camera lens, a photographer

has to choose a single focal depth and depth of field (determined by the lens

aperture) for the entire image. In a synthetic aperture image, we can choose

the focal depth and aperture for each pixel independently of the others. This

can be used to compute images where every pixel is in sharp focus, instead of

having to trade-off the amount of light captured by stopping down the aper-

ture to increase the depth of field. Note that synthetic aperture imaging allows

us to select the focus for each pixel after capturing the images.

4. Improving depth from focus/defocus: Reconstructing the 3D shape of a

scene using focus/defocus cues is limited in accuracy by the size of the lens

aperture [32]. This limitation can be overcome using depth from “synthetic



4 CHAPTER 1. INTRODUCTION

aperture focus” since the latter uses aperture much larger than that of con-

ventional camera lenses.

To understand how synthetic aperture imaging works, it is helpful to consider an

analogy. A convex lens in a digital camera focuses a plane in the scene on to the

sensor plane points not in the plane of focus are blurred. This process is illustrated

in Fig. (1.3). Rays starting from a point on the plane in focus after refraction con-

verge to a point on the sensor plane. Rays starting from a point which is not on the

plane of focus converge to a point in front of or behind the sensor plane. These rays

intersect the sensor plane over an area known as the circle of confusion, resulting in

a blurred or out of focus image [22]. The greater the size of the lens aperture, the

larger the circle of confusion and amount of misfocus.

We can use a camera array to simulate the defocus blur of a convex lens. To “focus”

on a plane, we backproject the images from each camera on to the chosen plane and

compute their average. This projection of images is accomplished via image warps

called homographies, described in Chapter 3. In the resulting image, objects close

to the chosen plane of focus will appear sharp, whereas objects away from this plane

will appear blurry being smeared out due to parallax (Fig. 1.4) The camera array

functions as a synthetic lens aperture, hence the term synthetic aperture imaging.

The size of the synthetic aperture spanned by the cameras (typically 1-3m) is much

larger than a normal lens aperture. Thus, the defocus blur in synthetic aperture

images will be far more pronounced. When the synthetic aperture is much wider

than the occluding objects in front of the plane of focus, these occluders become

so blurred that they effectively disappear, enabling us to see the objects concealed

behind them. To see the students behind the bushes in Fig. (1.2), a 2m wide

synthetic aperture was used.
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Lens Sensor PlanePlane in Focus

Σ

Plane in Focus

Camera Array, spanning a
"synthetic lens" aperture

Figure 1.3: Explanation of synthetic aperture imaging via geometric optics. Top:
In a convex lens, rays from the green point on the plane of focus after refraction
converge to a single point on the imaging plane, forming a sharp image. Rays from
the red point, which is not in the plane of focus form a circle of confusion on the
image plane, resulting in a blurred image. Bottom: A camera array is analogous to
a “synthetic” lens aperture, each camera being a sample point on a virtual lens. We
synthetically focus the camera array by choosing a plane of focus, and adding up all
the rays corresponding to each point on the chosen plane to get a pixel in “synthetic
aperture” image. This is the method used to create the right image in Fig. 1.2.
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Π0

Q

P

Plane of Focus

Figure 1.4: Focusing with homographies. To construct a synthetic aperture image
focused on a plane Π0, we need to backproject the images from each camera on to Π0

and compute their average. The backprojection is done by applying image warps
known as homographies. Pixels from different cameras that correspond to a point
P on Π0 will project to the same location, resulting in a sharp image of P . Pixels
corresponding to a point Q not on Π0 will project to different locations on Π0 (this
is called parallax or disparity) resulting in a blurred image of Q.

1.2 Differences with Geometric Optics

A convex lens forms a focused image at the speed of light. However, synthetic

aperture focusing is a computational process. To focus on a given plane, we need

to compute and apply the suitable warps (2D spatial transforms) to the camera

images. These warps will depend on the camera arrangement and choice of focal

plane. To compute these warps, we would need to measure the camera arrangement

via a calibration procedure. This raises the question: what camera parameters do

we need to calibrate to compute the required image warps for focusing on a given

plane ? Moreover, what is the minimal amount of additional computation required

to move the focus to a different plane ?
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Secondly, the focal surface of a lens is determined by geometric optics. An ideal

convex lens has planar focal surfaces; points not on the focal plane appear misfo-

cused in the image it creates. The amount of misfocus depends on the size of the

lens aperture and distance from the focal plane, this is known as depth of field [22].

However, there is no such constraint on synthetic aperture imaging: we can focus on

a surface of arbitrary shape. We simply need be able to project the camera images

on to the desired surface to compute a synthetic aperture image. Ideally, we would

like the focal surface to match the surface of the object we wish to view, so that

every pixel is in good focus. To do so, we need to estimate the surfaces of objects

behind dense occlusion as accurately as possible.

Thirdly, a lens integrates all the rays across its aperture to produce a focused image.

In synthetic aperture focusing, this is not a constraint. If we were to ignore the rays

incident on occluding objects in the computation of a synthetic aperture image, we

would eliminate the blurred image of the occluders superimposed on the objects in

focus. This would yield a clearer, higher-contrast image of the objects we wish to

focus on. This raises the question: how well can we separate the rays incident on

the objects in focus from the rays incident on the occluders in front ?

Finally, synthetic aperture images are created from a discretely sampled light field.

A synthetic aperture is a sum of finitely many rays, whereas a focused image created

by a convex lens is an integral of a continuous set of rays. If the light field is not

bandlimited (and it typically is not), the synthetic aperture image will contain

aliasing (which it typically does). A detailed signal-theoretic analysis of synthetic

aperture imagery may be found in [29].

1.3 Contributions

In addressing the questions raised above, this thesis makes the following contribu-

tions:
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1. Geometric analysis for focusing on planes: We characterize the space of image

warps required to focus on arbitrary planes using projective geometry. Our

analysis leads to:

• A robust calibration procedure for synthetic aperture imaging [43]. We

show that synthetic aperture focusing does not require a full metric cali-

bration of the cameras; it is sufficient to match images of four points on

a plane and two points not on the plane across all cameras.

• A classification of camera arrangements and focal planes corresponding

to different families of image warps [41]. We describe all configuration

where focusing can be achieved by affine (or simpler) image warps. We

show there are families of frontoparallel planes, as well families of tilted

planes through which we can vary the focus by simply shifting the images.

Since image shifts are relatively easy to realize in hardware, this leads to

a real-time focusing system. We demonstrate the use of this to track a

person moving through a crowd.

2. Reconstruction of occluded surfaces for focusing [42]: We explore different

methods to reconstruct occluded surfaces using synthetic apertures. We present

a comparison of shape from stereo with shape from synthetic aperture focus.

We show that while shape from stereo can reconstruct surfaces with weaker

texture than shape from synthetic aperture focus, the latter is more tolerant

of occlusions. We also describe novel variants of stereo that improve image

contrast by eliminating rays incident on foreground occluders.

Although synthetic aperture imaging is the primary motivation for our research,

some of our work is is applicable to other applications of camera and projector

arrays. Our camera calibration procedure based on plane + parallax has also been

used to calibrate projector arrays [25]. Based on our calibration, Wilburn et al [48]

have developed an optic flow based approach to view interpolation in space and

time. Our method for focusing on tilted planes using shifts can be used extend the

Fourier refocusing technique of [29] to tilted focal planes with view cameras. We

will describe these connections in more detail in the subsequent chapters.



Chapter 2

Related Work

Implementing a synthetic aperture imaging system draws upon work in several dif-

ferent areas such as design of the imaging systems (camera hardware), analysis of

image warps required for focusing (multiple view geometry), determining general

focal surfaces (3D reconstruction from images in computer vision). This chapter

reviews relevant work in these areas.

2.1 Camera Arrays

The decreasing cost of digital image sensors has made it feasible to build large arrays

of cameras. In recent years, a number of camera arrays have been built for different

applications including high performance imaging, image and video-based rendering,

shape and motion capture and virtual cinematography. We believe that the con-

tinuing reduction in cost and the wide range of applications will lead to increased

availability of large camera arrays. Camera arrays can be classified into two threads

based on the arrangement of cameras.

Single Center of Projection: For high performance imaging, the cameras are

tightly packed together to approximate a single center of projection. The goal is to

acquire improved imagery by combining images from different cameras (which are

aligned to a common perspective). Baker et al have developed a system of up to 24

9
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cameras with abutting fields of view whose images are mosaiced yielding video with

higher pixel resolution than the individual cameras [2]; their array is now available

commercially [14]. A larger scale implementation of this was developed by Wilburn

et al using 96 cameras to acquire 7 megapixel video; they also increase the dynamic

range by trading off field the field of view and using different exposures across their

cameras [48]. In separate work, they used 52 cameras with overlapping fields of view

with temporally staggered frames to achieve high speed video [47].

Multiple Centers of Projection: When the cameras are spread over a wide

baseline to capture the scene from many different points of view, they sample the

light field, the set of all light rays intersecting the scene [26]. Images from these

viewpoints can be used to synthesize views of the scene from novel viewpoints by re-

sampling the acquired images [26, 11] or by reconstructing the scene geometry and

reprojecting it into the desired viewpoint [55]. Wilburn et al have demonstrated

view interpolation in across viewpoints in space and time using their camera array

[48]. Cycling through the images - without doing any view interpolation at all -

is a powerful visual effect which can give the viewer a sense of flying through the

scene. Examples of this include the bullet-time scenes in The Matrix, created using

an array of 120 still cameras [27] and the Eye Vision technology used during the

broadcast of Super Bowl 2001 [18].

For seeing through occlusions using synthetic aperture imaging we would like to

have an acquisition system which has:

1. A large number of cameras to get as dense a sampling as possible of rays

passing between the occluders.

2. A flexible aperture that can be expanded till it is larger than the size of

occluders in the scene.

3. The ability to compute image warps required for synthetic aperture focusing

at video rates for dynamic scenes.
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We were fortunate to have access to the Stanford Multi-Camera array built by

Wilburn [48], which is unique amongst available camera arrays in having all these

properties. The array offers up to 100 low-cost video cameras of imaging, flexi-

ble apertures from 0.5m to 3m, narrow and wide angle lenses for long and short

range imaging. Per-camera FPGAs enable the computation required for real-time

synthetic aperture video.

2.2 Finite Aperture Imaging

Cameras are often modeled as pinhole devices in computer vision and graphics, ne-

glecting the size of the lens aperture. In practice, the effect of a finite lens aperture

is to capture more light than a pinhole device at the cost of reducing the depth of

field i.e. causing a depth-dependent defocus blur. This results in a depth cue that

is used for reconstructing 3D shape by depth from defocus [7] and depth from focus

algorithms [23]. One can also reconstruct shape by observing changes in the images

on varying the lens aperture (which controls the amount of defocus), this approach

is known as confocal stereo [13]. The finite aperture of a lens can be used to see

beyond occlusions, however the limited aperture of the lens greatly restricts the size

of occluders one can see around [8].

There are two major differences between focused images from a lens and synthetic

aperture imaging. First, the synthetic apertures spanned by a camera array are

much larger than those of an ordinary lens. This means that all the aperture effects

described above are more pronounced with synthetic apertures. A larger aperture

leads to a shallower depth of field which increases the depth resolution of shape from

focus algorithms. To effectively see beyond occluders, we require an aperture larger

than the size of the occluders. This is much easier to accomplish with synthetic

apertures.

Secondly, a camera array acquires more information about a scene than a lens. A

camera array captures a 4D light field (a 2D array of 2D images) whereas a lens is
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constrained to acquire a 3D focal stack (set of 2D images focused over a range of

depths). This makes it possible, for example, to ignore rays incident on occluders

in the construction of a synthetic aperture image which is not possible with single

lens apertures.

The idea of averaging images from adjacent cameras in an array to simulate a

synthetic aperture was observed by Levoy and Hanrahan [26]. This was used to

dynamically control the focus and aperture of images synthesized from light fields

by Isaksen et al [17]. Schechner and Kiryati independently observed the analogy

between lens apertures and camera baselines in their comparison of depth from de-

focus with depth from stereo [32].

A technique similar to synthetic aperture imaging is synthetic aperture radar [28].

The idea is to combine measurements from a moving radar antenna (such as on

an aeroplane) to effectively synthesize a much larger antenna. The distance the

aeroplane travels to synthesize the larger antenna is called the synthetic aperture.

A larger antenna can greatly improve the azimuthal resolution of the radar imagery.

One difference between synthetic aperture imaging and synthetic aperture radar is

that the latter uses the phase and frequencies of the reflected signal (it is based on

the Doppler effect) while the former requires only the amplitude (recorded as pixel

intensities).

2.3 Multiple View Geometry

The goal of multiple view geometry in computer vision is to study the relations

between images of a scene from different viewpoints, this is based on projective

geometry [12]. These relations are used in structure from motion, self-calibration,

matching image features across viewpoints and reconstructing 3D shape. One rep-

resentation that greatly simplifies multi-view geometric relations is plane + parallax

developed by Irani and Anandan [16, 15]. In this approach, images from all view-

points are projected on to a common plane as shown in Fig. 1.4. The location
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of a point in the scene is described in terms of the parallax between its images in

different views as measured on the reference plane.

Our geometric analysis of synthetic aperture imaging is based entirely on plane +

parallax. The parallax caused by a point not on the reference plane is the analog

of the circle of confusion in photography. By characterizing the parallax caused by

a points on a given plane, we can compute the image warps required to move the

plane of focus from the reference plane to the given plane (Chapter 3). We also use

parallax measurements for calibrating the camera positions (Chapter 4).

Most of the work in computer vision on plane + parallax is directed towards images

acquired from a single moving camera (whose motion may be unknown). For syn-

thetic aperture imaging, we have an array of cameras with fixed positions which can

be calibrated a priori, which leads to further simplification. For example, Zelnik-

Manor and Irani have shown that planar homologies (the image warps required to

change the plane of focus) are constrained to lie in a 4D space, which requires cal-

ibration of 4 basis vectors [52, 51]. In Chapter 3, we show that for fixed camera

positions the homology parameters actually lie in a 1D space which simplifies the

calibration and makes it possible to change the focus by simply scaling the basis

vector (we call this basis vector the µ-vector).

2.4 3D Shape Reconstruction

Constructing a synthetic aperture image where each pixel is in sharp focus requires

finding the correct focal depth for every pixel. This amounts to reconstructing the

3D surface of the object(s) we desire to focus on. The reconstruction of 3D surfaces

from their 2D images is a challenging problem in computer vision which has inspired

decades of research; a recent survey of multi-view reconstruction algorithms may be

found in [33]. Here we are interested in the use of 3D reconstruction to improve the

performance of synthetic aperture imaging.
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One approach is to reconstruct 3D shape is to use focus cues from the imaging lens.

Shape from focus methods take as input a stack of images focused over a range of

depths, and determine for each pixel the depth at which it is in best focus. The

criterion for determining when a pixel is in good focus is some form of a high-pass

filter, a comparison of several focusing criteria may be found in [23]. We can use

the same approach for synthetic aperture images; in this case the focus cue comes

from a virtual lens simulated by an array of cameras.

Shape from stereo methods work by matching pixels across different views using

some measure of photo-consistency and finding depth via triangulation [31]. In

their comparison of shape from stereo versus focus, Schechner and Kiryati observed

that shape from focus (using a single camera lens) ought to be more tolerant of oc-

clusions than stereo while stereo ought to have finer depth resolution due to larger

baselines. Using a synthetic aperture baseline has the potential of giving the best

of both worlds: robustness to occlusion and finer depth resolution.

There are three differences between our work on reconstructing focal surfaces for

synthetic aperture imagery and prior work on 3D reconstruction. First, we use

many more views (typically 80 to 100) spanning a wider wider synthetic aperture

than most previous methods. Second, since we use synthetic aperture imaging to see

through occlusions, we are interested in reconstructing surfaces that are occluded in

a significant fraction of the input images. Thus, we expect several outliers amongst

pixels amongst the pixels to be matched across views. This is a harder problem

than classical multi-baseline stereo [31] which assumes no outliers. Finally, we do

not reconstruct the occluders explicitly, but rely on the large number of views and

robust matching functions to obtain a good reconstruction. We defer a more detailed

discussion of the differences between our approach and existing methods to Chapter

5, where we define the problem in terms of reconstructing general focal surface and

shaped apertures.



Chapter 3

Geometric Foundations

This chapter describes the geometry underlying the computation of synthetic aper-

ture images which are focused on a plane. There are three important reasons for

doing this analysis. First, it will let us characterize the image warps or homogra-

phies required to focus on to any plane in terms of the camera layout and chosen

focal plane. This tells us precisely the minimal set of camera parameters we need to

estimate, and also leads to a robust calibration procedure. Secondly, it shows that

there are combinations of camera arrangements and focal planes on which one can

focus using image warps geometrically simpler and computationally less expensive

than homographies. These combinations are desirable for real-time focusing where

image warps need to be implemented in per-camera hardware, and simpler warps

like image shifts are easier to map to the hardware. Thirdly, given the ability to

focus on any plane, we can sweep the plane of focus through the scene being imaged

to try and determine the best focal depth for each pixel.

We begin by describing how to focus on an arbitrary plane using image warps called

homographies. Next, we will show how to vary the focus from one plane to another

using image warps called planar homologies, which are special cases of homographies.

We will describe all camera/focal plane configurations for which the homologies are

affine transforms or simpler, and outline some of their applications. Based on this

analysis, we will describe our method for camera calibration and real-time focusing

15
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in the following chapter.

3.1 Focusing on a Plane

The process of focusing on a plane is depicted in Fig. (1.4). We need to back project

the image from each camera (as if it were a projector) on to the desired plane. For

perspective cameras, the mapping from the camera’s imaging plane to another plane

in the world is given by an image warp called homography (also known as collineation

or perspective warp) [12]. When points are expressed in homogeneous coordinates,

a homography is an invertible linear transform described by a 3 × 3 matrix.

Suppose we have N + 1 cameras with centers C0, . . . , CN . Let Ii denote the image

from camera Ci and Hi the homography required to project Ii on the desired focal

plane. Mathematically, the synthetic aperture image is given by:

ISA =
1

N + 1

N
∑

i=0

Hi ◦ Ii (3.1)

where ISA is the synthetic aperture image and Hi ◦ Ii is the projection of image

Ii on to the focal plane. Fig. (3.1) shows the construction of a synthetic aperture

image using two cameras. Pixels that correspond to points on the focal plane -

such as point P in Fig. (1.4), or points on the calibration grid in Fig. (3.1) - are

mapped to the same location by the homographies, reinforcing each other in the

synthetic aperture image. Pixels that correspond to points not on the focal plane -

such as point Q in Fig. (1.4), or the computer monitors in Fig. (3.1) - project to

different locations on the focal plane, causing them to be smeared out or blurry in

the synthetic aperture image.

The homography required for each image depends on the camera parameters and

the focal plane. If we wish to change the focal plane, we need to apply different

homographies. This requires substantial computation and may be difficult to achieve

in real-time. In the next section, we describe an alternative to approach to changing
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Figure 3.1: Focusing on the plane of a calibration grid with homographies. Top
row: images from two cameras of a planar calibration grid. Middle: The result of
back projecting the images on to the plane of the calibration grid via homographies.
Bottom left: The average of the two images from the middle row. The calibration
grid is in good focus but the monitors and cameras on the wall above exhibit ghosting
due to parallax. Bottom right: When we add the backprojected images from 88
cameras, the grid remains in focus and everything else is completely blurred out.
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the focal plane which, in some cases, avoids the need for full homographies.

3.2 Refocusing with Homologies

Consider an array of cameras with centers C0, . . . , CN whose images have been

backprojected on to some initial focal plane Π0. We call this initial focal plane

the reference plane. If we compute the average of these projected images, we get

an image focused on the reference plane. Suppose we wish to focus on a different

plane, Π. One could do so by applying different homographies to the original cam-

era images, as described in the previous section. Another way would be to reproject

each of these projected images from the reference plane on to Π through center of

projection Ci (Fig. 3.2). This reprojection is called a planar homology and can be

described by a 3×3 matrix. Homologies are geometrically simpler to analyze and in

many cases, facilitate faster computation of synthetic aperture images than would

be possible using homographies. This section describes the homology matrices for

varying the focal plane in terms of the camera geometry and focal planes.

We begin our study of homologies by defining the coordinate systems we will use.

Assume that there is a given 2D coordinate system on the reference plane. The

pixels of the projected images I ′

i are specified in this reference coordinate system.

We also need to pick a coordinate system on the new focal plane Π. To do so, we

pick a reference camera - say C0. A point P on Π will be assigned the coordinates

of its projection p0 on the reference plane through C0 (Fig. 3.2). Thus, we are

projecting the coordinate system of the reference plane on to the new focal plane Π

through center of projection C0.

Let Gi be the homology required to reproject I ′

i on to Π, 1 ≤ i ≤ N (G0 = I, the

identity matrix). Gi maps point pi on the reference plane to the point P on Π (Fig.

3.2). Since P has the same coordinates as p0, we may write Gipi
∼= p0 where Gi

denotes the homology matrix, points and lines on the reference plane are represented

in homogeneous coordinates and ∼= denotes equality up to a scale. For the ensuing
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C0

Ci

ei

p0

pi

Π0

l

Reference
Plane

Focal
Plane Π

P

Figure 3.2: Refocusing with homologies. C0 is the center of the reference camera,
and Ci is the center of another camera in the array. The line joining the camera
centers C0, Ci intersects the reference plane at a point called the epipole, which
we denote by ei. Images from all the cameras have been backprojected on the
reference plane Π0. If we compute the average of these backprojected images, we
get a synthetic aperture image focused on the reference plane. To change the focus
from reference plane Π0 to plane Π, we need to reproject the image of camera Ci

from the reference plane Π0 on to the focal plane Π. This projection is called a
planar homology. It can be describe in terms of the l, the line of intersection of Π0

and Π and ei, the epipole.
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analysis, it will be simpler to work with the inverse homologies Ki = G−1
i , i.e. Ki

projects points on Π on to the reference plane through center Ci and Kip0
∼= pi.

We now proceed to characterize the 3× 3 homology matrices for changing the focal

plane. From projective geometry [12, 38] the homology Ki can be written as

Ki = I + µieil
T (3.2)

Here I is the identity, ei the epipole associated with cameras C0, Ci and the ref-

erence plane, l the line of intersection of the reference plane and Π, and µi is a

scalar. Geometrically, varying µi while keeping ei, l fixed corresponds to rotating

the focal plane about axis l and moving pi along the epipolar line through ei and p0.

Choosing a value for µi amounts to choosing a focal plane (through l) for camera Ci.

Suppose we are given the epipoles ei, 1 ≤ i ≤ N . We wish to characterize µ1, . . . , µN

which correspond to the same choice of focal plane Π. Let us call [µ1 . . . µN ] the

µ-vector for homologies induced by a focal plane Π. The following result helps us

characterize which vectors of R
N are µ-vectors for some focal plane.

µ-vector theorem. Given epipoles e1, . . . , eN on a reference plane as defined above,

the µ-vectors for all focal planes lie in a 1-D space, i.e. µ-vectors for any two planes

are equal up to scale.

We defer the proof to the end of the chapter. An important point to note is that in

homogeneous coordinates, points and lines can be scaled arbitrarily. The µ-vector

for a focal plane will change if we change the scale of any of the epipoles or the line

l. It is assumed in the theorem that we have chosen a fixed scale for each epipole

ei, this scale could be arbitrarily chosen but must be the same for all homologies

we compute. If we change the scale for any of the epipoles, we will change the 1D

space the µ-vectors lie in. However, as long as the scales are fixed they will still lie

in a 1D space.
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Plane

Reference

Plane
Focal

Humvee

(a) (b)

(d)(c)

Plane
Camera

Figure 3.3: Rotating the plane of focus using homologies. (a) An image from a 16×16
image light field of a humvee at an angle to the plane of cameras. (b) Scene layout.
(c) Synthetic aperture image focused on the reference plane. (d) Using homologies,
we can rotate the focal plane about the vertical white line until it coincides with
the humvee surface.

At this point, we have a complete description of the homologies required to change

the focus from the reference plane to any other plane. To vary the focus, we will

need to calibrate homographies for projecting the camera images on to some chosen

reference plane, the epipoles ei and the space of µ-vectors. With this information a

user can focus on any plane by starting from the reference plane, specifying a line of

intersection l on the reference plane and rotating the focal plane about l by scaling

the µ-vector. An example of this process is shown in Fig. (3.3).



22 CHAPTER 3. GEOMETRIC FOUNDATIONS

3.3 Simpler Configurations

We now enumerate the camera/focal plane configurations in which the homologies

are not projective warps, but affine transforms or simpler. These configurations are

interesting for two reasons. First, we save computation by not having to perform a

full homography per image to change the focal plane. Second, it can be easier to

calibrate the required parameters. For each of these configurations, the homologies

lie in a proper subgroup of the group of planar homologies. We will assume we have

established an affine coordinate system on the reference plane (one way to do so is

to choose the plane of a calibration grid as the reference plane).

Affine transforms: When the camera centers lie on a plane, and the reference

plane is parallel to this plane, the epipoles ei = [e
(x)
i e

(y)
i 0]T are points at infinity.

The bottom row of the homology matrix I + µeil
T becomes [0 0 1]. Hence, homolo-

gies for any focal plane are affine transforms. Note that this holds for arbitrary focal

planes. Fig. (3.3) shows an instance of this configuration.

Scale and translation: When the focal plane and reference plane are parallel,

their intersection is the line at infinity l = [0 0 1]T on the reference plane. Writing

the epipoles as ei = [e
(x)
i e

(y)
i e

(z)
i ]T , the homologies are of the form:

Ki = I + µeil
T =









1 0 µe
(x)
i

0 1 µe
(y)
i

0 0 1 + µe
(z)
i









This is just a scale followed by a shift. Thus, if we wish to vary the focus through a

family of planes parallel to the reference plane, we need to just scale and shift the

images before computing their average. Note that this holds for arbitrary camera

positions. This configuration is illustrated in Fig. (3.4b)

Translation: When both the preceding conditions hold - the cameras are on a

plane and the reference plane and focal planes are parallel to the camera plane, the
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(a) Affine Transform (b) Scale + shift

(c) Shift

Reference Plane

Reference Plane

Reference Plane

Reference Plane

Focal Planes
Focal Planes

Focal Planes

(d) Shift + post warp of final image

Focal Planes

Figure 3.4: Taxonomy of homologies and the corresponding camera/focal plane
configurations.
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epipoles ei and the line of intersection l are at infinity. The homologies reduce to

translations:

Ki = I + µ









e
(x)
i

e
(y)
i

0









[

0 0 1
]

=









1 0 µe
(x)
i

0 1 µe
(y)
i

0 0 1









and we can vary the focus by simply translating the images. This configuration is

illustrated in Fig. (3.4c)

Translation + warp of final image (Scheimpflug): There is one additional

configuration in which the homologies can be reduced to translations. Consider the

case when the cameras lie on a plane, and the camera plane, reference plane and

desired focal plane intersect in the same line l (Fig. 3.4d). Thus, the epipoles lie on

the line of intersection l. Such a homology is considered degenerate and is called an

elation.

To reduce the elations to image translations, we can redefine the coordinate system

on the reference plane so that l is the line at infinity, i.e. l ∼= [0 0 1]T . This becomes

identical to the previous case, and the homologies are again reduced to shifts. This

is not surprising since from a projective geometer’s viewpoint, Fig. (3.4c) and Fig.

(3.4d) are equivalent configurations.

There are two consequences of changing the coordinate system on the reference

plane. First, this changes the homographies required to project the original camera

images on to the reference plane. This is not a significant change in terms of the

computation: we would need to apply homographies to project camera images on

to the reference anyway. However, it does mean that we need to calibrate the ho-

mographies for the new coordinate system (or estimate them in some other way).

Second, when we shift and add the images to change the focal plane, the resulting

synthetic aperture image will be computed in the new coordinate system. This re-

sults in an image that looks skewed to a human observer since it corresponds to an
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Cameras Reference
Plane

Focal Planes Homologies

Lie on plane Parallel to
camera plane

Arbitrary Affine transforms

Arbitrary Arbitrary Parallel to reference
plane

Scale + translation

Lie on plane Parallel to
camera plane

Parallel to camera
plane

Translation

Lie on plane Arbitrary Intersect reference
plane and camera
plane in same line

Translation + homog-
raphy to final image

Table 3.1: Summary of the configurations in which the homologies are affine trans-
forms or simpler, in terms of the conditions on the camera layout, reference plane
and focal planes. These are illustrated in Fig (3.4).

unusual off-axis projection. We can correct this by applying a homography to the

synthetic aperture image that restores it to the original coordinate system. Note

that this homography needs to be applied only to the synthetic aperture image, the

per-camera computational cost does not change.

This configuration (Fig 3.4d) is analogous to the Scheimpflug condition in photog-

raphy for focusing with a view camera on tilted planes: that the lens plane, sensor

plane and focal plane must intersect in a common line [46]. Thus, we refer to it as

the Scheimpflug configuration.

It is easy to show that these are the only configurations in which the homologies for

refocusing are affine transforms or simpler. Moreover, any configuration in which the

homologies reduce to translations can be shown to be a Scheimpflug configuration.

The cases discussed above are summarized in Table (3.1) and illustrated in Fig.

(3.4).
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3.3.1 Applications

The configurations above are useful in a variety of applications. A common feature

amongst these is the requirement to first project the camera images on to a reference

plane to take advantage to the resulting geometric simplicity. The images projected

on to a reference plane form what is called a keystone corrected light field [26], in

computer vision this is also called rectification [12]. Many applications (calibration,

computing synthetic aperture images, reconstructing focal surfaces) require these

rectified images as input.

Reconstructing 3D surfaces from images (which could then be used as focal sur-

faces) is implemented by sweeping the focus over a family of parallel planes and

determining the most likely depth for each pixel [4]. This corresponds to the scale

+ translation configuration (Fig. 3.4b), which means the plane sweep requires only

similarity transforms if we use the rectified images. This configuration was first

observed by Szeliski and Golland [37].

The frontoparallel configuration (Fig. 3.4c) is the simplest and most extensively

studied. We show how it leads to a simple and robust algorithm for camera cali-

bration in the next chapter. The key advantage of this configuration for calibration

is that we do not need to calibrate the µ-vectors which makes it possible to solve

for the calibration parameters using linear optimization. Building on this, Wilburn

et al have developed an optical flow procedure for view interpolation in space and

time [48]. The image shifts required for changing the focus are relatively simple

to realize in per-camera hardware which leads to the development of a real-time

synthetic aperture focusing system we describe in the next chapter.

We can also vary the focus using just image shifts for tilted planes in the Scheimpflug

configuration (Fig. 3.4d) by redefining the coordinate system on the reference plane.

This lets us use our real-time focusing system to focus on tilted planes without any

modification other than a final homography of the synthetic aperture image. Since

this homography is applied to only one image (rather than every camera image),
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there is no problem in doing this in real-time.

It has been shown by Ng that focusing by shifting and adding the images corresponds

to a 4D shear of the light field, which corresponds to slicing in the Fourier domain

[29]. This leads to insights on the signal-theoretic limits on refocusing as well as

computational speed-ups. They restricted their analysis to the frontoparallel focal

planes. The Scheimpflug configuration shows how their work could be extended to

view cameras with tilted focal planes.

3.4 Proof of µ-vector theorem

µ-vector theorem. Given epipoles e1, . . . , eN on a reference plane as defined above,

the µ-vectors for all focal planes lie in a 1-D space, i.e. µ-vectors for any two planes

are equal up to scale.

To show the µ-vectors live in a 1D space, it suffices to show that the ratio µi/µj, 1 ≤
i < j ≤ N is independent of the plane Π.

Without loss of generality, we may take i = 1, j = 2. Let P be a point on Π, and

p0, p1, p2 be its projections on to the reference plane through centers of projection

C0, C1, C2 (Fig. 3.5). Let e12 be the epipole associated with camera centers C1, C2

lying on the reference plane. The epipoles e1, e2, e12 lie on the line of intersection

of the reference plane and the plane of camera centers C0, C1, C2 by Desargues’

theorem [5]. By epipolar geometry, e12, p1, p2 are collinear. We will use |a b c| to

denote the determinant of the matrix whose columns are the 3-vectors a, b, c. Note

that |a b c| = 0 if a, b, c are collinear. We have

p1
∼= K1p0 = p0 + µ1e1(l

T p0) (3.3)

p2
∼= K2p0 = p0 + µ2e2(l

T p0) (3.4)

|e12 e1 e2| = 0 (3.5)

|e12 p1 p2| = 0 (3.6)
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p1

p0
p2

e1

e2

e12

e
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l

Figure 3.5: Proof of the µ-vector theorem. p0, p1, p2 are images of a point P on the
focal plane Π in cameras C0, C1, C2 (see Fig 1b). e1, e2, e12 are the epipoles. The
plane through camera centers C0, C1, C2 intersects the reference plane in a line e
containing these epipoles. l is the intersection of the focal plane with the reference
plane.

where the first two equations follow from the formula for homologies (3.2) and the

last two from collinearity. If we substitute (3.3) and (3.4) in (3.6), expand using

properties of determinants and use (3.5), we get

0 = |e12 p1 p2|
= |e12 p0 + µ1e1(l

T p0) p0 + µ2e2(l
T p0)|

= |e12 µ1e1(l
T p0) p0| + |e12 p0 µ2e2(l

T p0)|
= µ1|e12 e1 p0| + µ2|e12 p0 e2|
= µ1|e12 e1 p0| − µ2|e12 e2 p0|

This yields

µ1/µ2 = |e12 e2 p0|/|e12 e1 p0|
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The right hand side does not depend on the plane Π (we can also show it does not

depend on p0). This completes the proof.
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Chapter 4

Synthetic Aperture Focusing

System

Having understood the geometry underlying the computation of synthetic aperture

images, we can now describe the implementation of a synthetic aperture focusing

system. This chapter describes our method of camera calibration and real-time

focusing system. Both of these rely on varying the focus by shifting the camera

images (Fig. 3.4c,d). The key advantage of the calibration method is that it does

not require a full metric calibration of the cameras; the homographies for projec-

tion on a reference plane and relative camera positions suffice. We show these can

be computed using straightforward linear optimization, which avoids local minima

that can occur in a metric calibration. The key strength of the real-time focusing

system is the ability to map the computation to relatively inexpensive per-camera

hardware. One limitation common to both the calibration and the real-time system

is that the cameras are constrained to lie on a plane.

We will first describe our calibration procedure and compare it with metric cali-

bration. We will show how we can compute the image shifts required to focus on

frontoparallel focal planes. Finally, we will describe how the image warps can be

mapped to per-camera hardware leading to real-time focusing with synthetic aper-

ture video. The calibration procedure was first described in [43] and the real-time

31
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system in [41].

4.1 Camera Calibration

The calibration procedure consists of two steps: estimating the homographies for

backprojection on to the reference plane, then estimating the relative camera posi-

tions (epipoles) from parallax measurements. Once we have the camera positions

we will use them to focus on different focal planes.

4.1.1 Finding Homographies

To compute homographies for projection on to the reference plane, we place a pla-

nar calibration grid (such as the one in Fig. 3.1) in the scene. The plane of the

calibration grid is chosen to be the reference plane. The calibration grid defines a

2D Euclidean coordinate system on the reference plane. We locate the positions of

the corners in the grid using an automatic feature detector [40]. By matching the

positions of the grid corners in the camera images to their known coordinates on the

calibration grid, we can compute the homographies to project the camera images on

the reference plane. A minimum of four points on the grid are required, in practice

we use about 100-140 points and solve for the homography using linear least squares

[12].

4.1.2 Camera Positions from Parallax

Having projected the images, let us see what is required to vary the focal plane.

We will restrict ourselves to the frontoparallel configuration (Fig. 3.4c). Consider

a set of cameras whose centers C0, . . . , CN lie on a plane and whose images have

been projected on to a plane parallel to the reference plane. A point P not on the

reference plane will have images p0, pi in cameras C0, Ci (Fig. 4.1). The parallax

of P between the two cameras is given by ∆pi = pi − p0. To focus on the plane

Π through P , we need to shift the image from camera Ci by an amount −∆pi to

eliminate the parallax. Our goal is to:
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Reference
Plane

pi p0

∆zp

Z0

∆xi
Ci C0

∆pi

PΠ

Figure 4.1: Calibration with frontoparallel planes. A point P not on the reference
plane has distinct image p0, pi in cameras C0, Ci. The parallax between these two
depends on the relative camera displacement ∆xi and the relative depth of P

1. Estimate the relative camera positions using parallax measurements.

2. Use the estimated camera positions to compute the parallax for frontoparallel

focal planes at arbitrary depths.

Note that the parallax is constant for all points on the plane Π. Thus, to focus on

a frontoparallel plane we need to know the parallax induced by it across every pair

of cameras. From similar triangles, we can show the parallax is given by

∆pi = ∆xi

∆zp

∆zp + Z0

(4.1)

The parallax is product of the relative camera displacement ∆xi and the relative

depth of P , dP = ∆zp

∆zp+Z0

. The first factor depends only on the camera geometry,

the second only on the depth of P . To estimate the camera positions, we need to
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factorize the parallax measurements. If we measured the parallax of P with respect

to C0 in all the cameras, we would get the camera positions relative to C0 up to an

unknown scale (given by the relative depth of P ).

Let us extend this to all cameras and multiple scene points. We designate camera

C0 as the reference view with respect to which we will measure parallax. Suppose

we observe m points P1, . . . , Pm with relative depths d1, . . . , dm. In practice, these

are obtained by moving the calibration grid to different (unknown) positions and

detecting the corners in its images. We will denote by ∆pij the parallax of point Pj

in camera Ci. We can factorize the matrix of parallax measurements:









∆p11 . . . ∆p1m

...
. . .

...

∆pN1 . . . ∆pNm









=









∆x1

...

∆xN









[

d1 . . . dm

]

or

∆P = ∆X D (4.2)

Here ∆P,∆X,D denote the matrix of parallax measurements, (column) vector

of camera displacements with respect to the reference camera and (row) vector of

relative depths respectively. Thus, parallax measurements form a rank-1 matrix.

We can find the nearest rank-1 approximation to the observed parallax matrix ∆P

using singular value decomposition. This yields ∆X the camera positions relative

to C0 up to an unknown scale. These are sufficient to compute the shifts required

to focus on any frontoparallel plane, as described below.

4.1.3 Focusing on Frontoparallel Planes

Suppose we wish to focus on a frontoparallel plane that causes parallax ∆p between

cameras C0 and C1. We can compute the relative depth d of the desired focal plane

from the relation (4.1):

∆p = d∆x1
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Having obtained d, we can compute the parallax caused by the focal plane in camera

Ci with respect to camera C0 using Eq. (4.1).

Crucially, this approach works correctly even if the relative camera positions ∆xi

are known only up to scale. A scale change in camera positions ∆X causes a corre-

sponding scale change in the relative depths D, but there is no change in parallax.

The key idea is to specify the depth of a frontoparallel focal plane by specifying the

parallax it causes between two cameras (which we chose to be C0, C1).

4.1.4 Focusing on Tilted Planes

We can also use the relative camera positions ∆xi to compute the homologies re-

quired to focus on arbitrary planes. As described in the previous chapter, we need

to know the epipoles ei and scalars µi for each camera. If we take C0 to be the

reference camera, these parameters for the camera Ci with position ∆xi are given

by

ei =

[

∆xi

0

]

µi = 1

These can be used to compute the homology to focus on any focal plane. The

synthetic aperture image on a tilted focal plane in Fig. (3.3d) was computed by this

method.

4.1.5 Minimal Calibration Requirements

We have described a calibration procedure for computing synthetic aperture images

when the camera centers lie on a plane and the reference plane is chosen to be

parallel to the plane of camera centers. This requires that we observe

1. At least four points on the reference plane, of which no three are collinear.
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This is to estimate the homographies for projecting the camera images on to

the reference plane.

2. At least one point not on the reference plane. This is to estimate the relative

camera positions using Eq. (4.2).

With this calibration, we can focus on both frontoparallel and tilted planes as de-

scribed above. If the camera centers do not lie on a plane, we would need to observe

at least two points not on the reference plane to estimate the epipoles and µ-vector

required for synthetic aperture focusing. These can be estimated using standard

projective calibration techniques [12].

4.2 Experiments

We used our method for calibration and focusing to see through dense foliage out-

doors using an array of 45 cameras arranged in a 3×15 grid (Fig. 4.2). The cameras

were within 5cm of being perfectly planar. We used narrow angle lenses whose field

of view was approximately 4.5o. The image resolution was 640x480.

To calibrate the array, we used an 85cm × 85cm calibration grid. The reference

plane was set by placing the grid 28m in front of the array, kept approximately

parallel to the plane of cameras. To measure parallax of points not on the refer-

ence plane, we moved the calibration grid to six different positions ranging from

28m to 33m from the array. These gave us parallax measurements for 864 points.

We measured parallax with respect to the central camera, and computed relative

camera positions using rank-1 factorization (Eq. 4.2). The RMS error between the

rank-1 factorization and the observed parallax measurements was 0.3 pixels (per

parallax observation), which suggests our approximation of a planar camera array

and parallel reference plane were fairly accurate.
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Parallax Calibration Metric Calibration
Camera Layout Planar Arbitrary
Optimization Linear Non-linear, initial esti-

mate required
Parameters cali-
brated

Reference plane homographies
and relative camera positions up
to scale

All (intrinsics and pose)

Table 4.1: Comparison of parallax-based and metric calibration.

One challenge for calibration in this experiment is that we can take calibration mea-

surements (specifically, measurements of parallax between points descried in Eq.

(4.2)) only in front of the bushes (Fig. 4.2). However, we seek to focus behind the

bushes - i.e. at depths where the cameras cannot observe the calibration grid. Any

error in the calibration of relative camera positions ∆X will get magnified as we

focus further and further behind the calibration volume.

We have computed synthetic aperture images focused at depths from 28m to 45m

from the camera array (Fig. 4.3, 4.4). We found we could get sharp focus on objects

more than 10m behind the depths to which me moved the calibration grid. This sug-

gests that the error in our calibration is small enough that it can be “extrapolated”

beyond the calibration volume. For the setup of Fig. 4.2, we can focus at depths

for which the parallax is about 2.5 times greater than the parallax measurements

used for calibration.

4.2.1 Comparison with Metric Calibration

An alternative approach to is perform a metric calibration of the cameras. A metric

calibration gives the mapping from camera pixels to the equation of the ray it cor-

responds to, and requires estimating about 10 parameters per camera (such as its

focal length, principal point, pose). Our first approach to calibration was to imple-

ment a metric calibration system. Our implementation is based on a multi-camera
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Occluded
Students

0 28 33

Reference
Cameras Plane Bushes

37 45

Calibration
Volume

Figure 4.2: Outdoor synthetic aperture imaging setup. (a) Experimental setup
showing scene layout and distances in meters from camera array. The calibration
volume is the region over which the calibration grid was moved. (b) Our 45 camera
array on a mobile cart. The array was controlled by a standalone 933 MHz Linux
PC. (c) The view from behind the camera array showing our calibration target in
front of the bushes. Our goal was to try and see people behind the bushes.

extension of Zhang’s method [54]; details of this can be found in [39]. The metric

calibration yields accurate results for lenses with a reasonably large field of view (for

lenses with field of view 38o, it is accurate to within 0.35 pixels) and we have used

it successfully for synthetic aperture focusing in our laboratory.

However, for longer range outdoor imaging where it is desirable to use narrow angle

lenses (such as the scenario of Fig. (4.2)) the metric calibration yields poor results.

If we use metric calibration to compute synthetic aperture images, we get reason-

able results when focusing in front of the bushes (which is the region where we took

calibration measurements). We are unable to get a good focus on objects behind
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(a) Images from two of the 45 cameras aimed at students behind bushes.

(b) Synthetic aperture images focused at the depth of the students behind bushes.
The left image was computed using parallax based calibration, the right using metric calibration.

(c) Left: image from one of the cameras of a cyclist behind the bushes. Right: synthetic aperture
image focused on the cyclist. The cyclist is closer to the bushes than the students in the above
example, which results in reduced visibility.

Figure 4.3: Results from the outdoor synthetic aperture imaging setup of Fig. (4.2)
for students behind bushes and a cyclist behind the bushes. Note that the parallax
based calibration yields much clearer results.
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Parallax calibration

On the bushes

Behind the bushes

On the building

In front of bushes

On the students

Metric CalibrationDepth of Focal Plane

Figure 4.4: Comparison of the synthetic aperture images computed using parallax
based calibration and metric calibration for focal planes at different depths. The
metric calibration gives reasonable focus in front of the bushes but does not yield a
good focus behind the bushes.
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the bushes (Fig. 4.3b, 4.4), which defeats our goal of seeing through the bushes.

The failure of metric calibration forced us to study alternatives and led us to the

parallax based calibration procedure described above.

Computing a metric calibration requires a nonlinear optimization about 450 param-

eters (assuming 45 cameras and 10 parameters per camera). This is initialized using

Zhang’s method [54] where parameters of each camera are estimated separately.

Zhang’s method cannot incorporate constraints like the camera centers lying on a

plane. Estimating the camera pose and intrinsics becomes poorly conditioned as

the field of view decreases. This leads to inaccurate initial estimates causing the

nonlinear minimization to get stuck in a local minimum. In contrast, the parallax

based calibration makes full use of the knowledge that the cameras lie on a plane.

It requires only a linear optimization (a rank-1 factorization using SVD) so there is

no danger of local minima.

There are three trade-offs made in the parallax-based method. First, we require the

calibration grid be placed parallel to camera array to specify the reference plane.

For narrow-angle lenses, an approximation by eyeballing is good enough. Second, we

do not compute the intrinsics and orientation of each camera, these are left implicit

in the homographies required for projection on to the reference plane. However, for

computing synthetic aperture images, the homographies are adequate. Third, we

have to give up the ability to specify the depth of the focal plane in metric units -

we can only specify the depth implicitly in terms of parallax.

4.3 Real-time Focusing

We now discuss how to map the computation of synthetic aperture images to camera

hardware to obtain real-time synthetic aperture video with interactive focus control.

The challenge is to perform the necessary computation while keeping the per-camera

cost hardware low. We can reduce the computation required for image warps by

restricting the camera geometry or focal planes to the configurations of Fig. (3.4).
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Figure 4.5: Real-time focusing pipeline. Frames from the camera are sent to a per-
camera capture board where the homography for projection on to the reference plane
is applied using a look-up table. The projected frames are shifted for the desired
focal plane, MPEG encoded and transmitted over a firewire bus to a host PC. A
host PC decodes streams from 15 cameras, computes their average and transmits
the stream to the master PC. The master PC adds streams from two host PCs and
displays synthetic aperture video.

This may be useful when the image warps are implemented in per-camera hardware

since lesser computation required per camera could lead to simpler (and potentially

less expensive) camera hardware.

If there are no restrictions on the cameras or focal planes, focusing on a plane re-

quires applying one homography per camera. This requires three additions and two

divisions per pixel of input. However, if we restrict ourselves to having the cameras

on a plane parallel to the reference plane (Fig. 3.4a), we need to perform affine

transforms to vary the focus. These require only two additions per pixel. A sum-

mary of the computation required for all configurations is presented in Table (4.2).

In our implementation we restrict ourselves to the frontoparallel and Scheimpflug

configurations (Fig. 3.4c,d) where we simply need to shift the images to change the

focus.
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Configuration Image transforms
for refocusing

Computation

Arbitrary camera positions
and focal planes

Homographies 3 additions and 2
divisions per pixel

Cameras on plane parallel to
reference plane (Fig. 3.4a)

Affine transforms 2 additions per
pixel

Parallel focal planes (Fig.
3.4b)

Scale + translation 2 additions per
pixel

Scheimpflug configurations
(Fig. 3.4c,d)

Translation 2 additions per
camera

Table 4.2: A comparison of the amount of computation required per camera per
pixel for different configurations.

4.3.1 Experimental Setup

Our prototype consists 30 cameras from our array [48]. Each video stream is

grayscale, runs at 30 frames/sec and has resolution 320 × 240. The processing

pipeline is shown in Fig. (4.5). The video stream from each camera is sent to its

capture board. The FPGA applies the initial homography required for projection

onto the reference plane using a precomputed lookup table stored in RAM. For ev-

ery pixel (x, y) in the warped image, the lookup table stores the corresponding pixel

(truncated to integer coordinates) (x′, y′) in the incoming camera frame.

The warped frames are shifted, MPEG compressed and transmitted to the host PC.

Each host PC receives streams from 15 cameras, which are decoded, added and sent

over the network to a master PC. The master PC adds the streams from the hosts

and displays the final synthetic aperture video. It can also perform a homography

on the final image, as required for the Scheimpflug configuration. The user can

move the focal plane back and forth with a slider which changes the shifts being

performed in the FPGAs.

Since the homographies for projection on the reference plane do not change with

the focal plane, we can precompute and cache them in a lookup table. This saves



44 CHAPTER 4. SYNTHETIC APERTURE FOCUSING SYSTEM

us the effort of having to compute homographies in the FPGAs which would require

additions and divisions for every pixel, and may not be possible to fit in modest

per-camera hardware. A lookup table is relatively easy to realize in memory and

frees room in the FPGAs for the frame buffers. It can also let us apply arbitrary

warps, such as lens distortion correction in conjunction with a homography. The

trade-off is that this approach restricts the family of planes we can focus on.

4.3.2 Results

We show two examples of our system in action. The first scene consists of a person

moving forward towards the cameras, with people walking in front of him (Fig. 4.6).

By adjusting the focal plane with a slider as the subject moves, the user is able to

keep him in focus while the people occluding him are blurred out.

The second scene consists of a suitcase placed at an angle to the camera array (Fig.

4.7). It is not possible to bring the entire suitcase into good focus using frontoparallel

planes. Using tilted focal planes from a Scheimpflug configuration we can bring the

entire suitcase into focus, while people in front of it are blurred out. (We urge the

reader to view a video demonstrating the capabilities of our system in action at

http://graphics.stanford.edu/papers/shear-warp/a3diss.avi).
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(a) Our array of 30 cameras with a 1m aperture.

(d) Corresponding frames from the synthetic aperture video, keeping the subject in focus.

(b) Screenshot showing person to be tracked.

(c) Frames from one camera, showing the subject being tracked as people move in front of him.

Capture boards
Cameras

slider

video
aperture
synthetic

subject
subject

subject

Figure 4.6: Real-time synthetic aperture video being used to track a person moving
through a crowd.
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passes through the person in front. In the remaining two images, the focus is on the suitcase.

(d) Left: frontoparallel planes used in (c). Right: tilted planes in Scheimpflug configuration used in (b).

Reference Plane

Focal Planes

(a) Frames from one camera showing a person moving in front of a tilted suitcase.

Focal Planes

Reference Plane

l

(b) Corresponding frames from synthetic aperture video using tilted focal planes. Left: the focal plane

(c) Using frontoparallel focal planes, we cannot get the complete suitcase in good focus.

suitcase
suitcase

Figure 4.7: Focusing on tilted planes.



Chapter 5

Reconstructing Focal Surfaces

This chapter explores computation of synthetic aperture images where the focal

depth and aperture for each pixel can be chosen independently of the remaining

pixels. We have thus far restricted ourselves to synthetic aperture images that are

focused on a plane, using all the cameras of the array. In these images points off

the focal plane are blurred out. The large synthetic apertures we use result in an

extremely shallow depth of field; this can be much smaller than the depth variation

of the object (or objects) we wish to focus on. To view objects away from the focal

plane - or parts of an extended object that extrude the focal plane - we must move

the focal plane back and forth. If we used a focal surface that coincided with the

surface of the object we wish to focus on, we would be able obtain a clearer view

of the entire object in a single synthetic aperture image. An example of focusing

on a curved surface that coincides with the object surface is shown in Fig. (5.1).

In general, we would like to estimate the correct focal depth for each pixel in the

synthetic aperture image and use the estimated depth map as our focal surface.

In addition to reconstructing per-pixel focal depths, we can also use per-pixel aper-

tures to improve the contrast and clarity of synthetic aperture images. Suppose we

wish to focus on an object which is concealed behind some occluders in the fore-

ground. The resulting synthetic aperture image has a highly blurred (or defocused)

image of the foreground occluders superimposed on the focused image of the desired

47
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(a) Images of a toy sheriff concealed behind a crowd of toy soldiers.

Focal Surfaces

(b) (c) (d) (e)

Figure 5.1: Focusing on a cylindrical surface. (a) 3 images from a scene consisting of
a toy sheriff behind toy soldiers. A total of 60 camera positions in a ring around the
scene were used. (b) Synthetic aperture image focused on a plane passing through
the sheriff. (c) Synthetic aperture on a cylindrical focal surface circumscribing the
sheriff. The face is in better focus than (b). (d) Cross section of the sheriff (in
black) showing the focal surfaces used. The red focal plane was used to compute
(b), the blue cylindrical focal surface for (c). (e) Unoccluded view of sheriff.

object. This reduces the contrast of the object in focus. Instead of integrating the

all the rays from all the cameras (which is what we have done to compute all the

synthetic aperture images so far), we could ignore the rays which are incident on

the occluders and integrate only those rays which are incident on the object. Specif-

ically, for each point on the focal surface, we integrate rays only from cameras in

which that point is not occluded by a foreground object. By choosing a subset of

camera rays for each point, we are effectively shaping the aperture for each pixel in

the synthetic aperture so as to mask out the occluder. This greatly improves the

contrast, as illustrated in Fig. (5.2). To achieve this, we need to be able to estimate
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(a) (b)

(c) (d)

P
Focal Surface

Occluder

Figure 5.2: Using per-pixel shaped apertures to mask out occluders. (a) Image from
one of 90 cameras of two students behind dense foliage. (b) Illustration of shaped
apertures. For a point P on the focal surface we use rays only from those cameras
in which it is visible. Using a subset of cameras amounts to shaping the aperture for
each point. (c) Synthetic aperture image focused on the students. (d) The synthetic
aperture image in which rays incident on the foliage were excluded. This was done
by computing per-camera mattes for the foliage using blue screening and using per-
pixel shaped apertures as shown in (b). Images (c) and (d) were computed using a
frontoparallel focal plane at the depth of the students.
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the desired aperture for every pixel.

5.1 Differences with Prior Work

To synthesize the clearest possible synthetic aperture view of an occluded object,

we need to

1. Reconstruct the 3D surface of the object from the camera images.

2. Distinguish between the pixels corresponding to the foreground occluders and

the occluded object.

This requires a 3D reconstruction and a foreground-background segmentation. These

are two challenging inverse problems in computer vision for which accurate solutions

are difficult to obtain, especially for scenes with dense occlusion.

Fortunately, to improve the clarity of synthetic aperture images we do not always

require a perfect reconstruction and segmentation. For example, textureless surfaces

are an ambiguous case for 3D reconstruction: there can be different surfaces which

yield the same images. However, for this very reason the different surface hypotheses

yield the same synthetic aperture images: we do not have to do any disambiguation.

Thus, textureless surfaces are less of problem for synthetic aperture imaging than

for a complete 3D reconstruction. Likewise, a complete foreground-background seg-

mentation is not necessary as we do not need to identify all the rays incident on the

object we wish to focus on, a non-empty subset suffices.

In this chapter, we compare two approaches for reconstructing 3D surfaces: shape

from synthetic aperture focus and shape from stereo. We show that shape from fo-

cus requires a stronger surface texture for accurate reconstruction than shape from

stereo; but for sufficiently textured surfaces focus performs better than stereo. We

also describe two variants of stereo which increase its robustness to occlusions based
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on color medians and histogram entropy.

A crucial difference between our work and prior approaches is that we desire to

reconstruct surfaces that are occluded in many of the camera images. This is a

harder problem than classical multi-view stereo in which occlusions are ignored [31].

One approach to handling occlusions is to use shiftable windows and view selection

developed by Kang et al [21]. However, this method reconstructs the depths of only

those points which are visible in a reference view. Our method of reconstruction

using color medians generalizes this so visibility in a reference view is not required.

Several algorithms for 3D reconstruction work by partitioning the scene into layers

at different depths [44, 3, 55]. Translucent layers were considered in [37]. These

approaches begin by first estimating the foreground layer and using residuals to

estimate the rest. For complex foreground occluders whose reconstruction may be

error-prone, errors in foreground estimation can severely degrade the reconstruction

of the background. Since we seek to develop cost functions robust to occluders

(which are considered outliers), we do not require an initial reconstruction of the

foreground layer. In our experiments, we restrict the search for the occluded objects

to depths behind the foreground.

Algorithms based on voxel coloring [34] attempt a complete scene reconstruction

using a front-to-back sweep. Since a threshold is typically used to commit to fore-

ground occluders, erroneous assignments result in background pixels marked as fore-

ground or foreground pixels not deleted in background reconstruction. Both cases

degrade the reconstruction of the background. Thresholding effects can be ame-

liorated to an extent using iterative probabilistic variants [6], but these are not

guaranteed to converge. In Section 5.4, we compare our approach with voxel color-

ing.
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Figure 5.3: Stereo vs. focus for a surface at depth d0 with a constant intensity
gradient. (a) Camera layout, and rays considered for depth hypotheses d = d0 and
d = d1. (b) The intensity profiles of the mean of camera images, projected on to
depth planes d = d0 (top) and d = d1 (bottom). (c) Comparing the response of
stereo (variance) and focus. The variance has a parabolic profile, with the minimum
at the correct depth d0. The mean image does not vary with depth, so shape from
focus is not able to reconstruct depth accurately.

5.2 Stereo versus Focus

We begin by analytically comparing shape from synthetic aperture focus and shape

from stereo. A common framework to describe the two is the space-sweep approach

of Collins [4]. This involves sweeping a plane over a range of depths in the scene.

At each depth (more precisely, disparity) d we compute a cost value for every pixel

(x, y) on the plane, creating a disparity space image (DSI) D(x, y, d) [37]. The main

difference between stereo and focus methods is that they use different cost functions

in constructing the DSI. A depth map d(x, y) is computed by finding the minimum

cost surface from the DSI:

d(x, y) = arg min
d

D(x, y, d)

Let us now define the cost functions used by stereo and focus. For simplicity, we
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work in flatland: the cameras are rectified line cameras and the depth of a pixel

determines its horizontal disparity with respect to a reference view [31]. Let Ii,d(x)

denote the image from camera i projected on the plane corresponding to disparity

d. The mean and variance of the warped images from the N cameras are given by

Id(x) =
1

N

∑

i

Ii,d(x) (5.1)

vd(x) =
1

N

∑

i

(Ii,d(x) − Id(x))2 (5.2)

Shape from stereo uses the variance of rays vd(x, y) through the 3D point (x, y, d) as

the cost function. Shape from focus uses the sharpness of the synthetically focused

image Id(x) as the cost function. The measure of sharpness we use is the gradient

of the focused image:

fd(x) = −
[

∂Id(x)

∂x

]2

(5.3)

Which method is better? One straightforward observation we can make is that

focus is less sensitive to sensor noise (due to averaging) and varying bias across

cameras (since it computes a spatial derivative) than stereo. While both would fail

for textureless surfaces, we can show that there are textured surfaces which can be

reconstructed accurately by stereo but not by focus (Fig 5.3).

Theorem. Shape from stereo can reconstruct the depth of diffuse surfaces whose

2nd and higher order spatial derivatives of radiance vanish, whereas shape from fo-

cus requires the radiance to have non-zero 3rd-order spatial derivatives.

Proof. Consider a frontoparallel surface at disparity d0 with intensity given by

I(x). We compute the response of stereo and focus at a point x0 for disparity d1.

Let δ = d1 − d0 and xi the displacement of camera i from the central view. Given
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rectified images, we can compute Ii,d1
(x) using a Taylor series expansion:

Ii,d1
(x0) = I(x0 + xiδ)

= I(x0) + (xiδ)Ix(x0) +
(xiδ)

2

2
Ixx(x0) + . . .

Using Eqs. 5.1,5.2,5.3 and
∑

i xi = 0, we can compute the mean image, variance

and focus to be

Id1
(x0) = I(x0) + Ixx(x0)δ

2
∑

i

x2
i /N + O(δ3),

vd(x0) = δ2I2
x(x0)

∑

i

x2
i /N + O(δ4), and

fd(x0) = −[Ix(x0) + δ2Ixxx(x0)
∑

i

x2
i /N + O(δ4)]2

We see that for a non-zero gradient Ix(x0), stereo has a minimum at δ = 0, enabling

accurate reconstruction. However, if the 3rd order derivative Ixxx(x0) is zero, the

focus response will be approximately constant as δ varies. This completes the proof.

The behavior of stereo and focus for a the special case of a constant gradient texture

I(x) is shown in Fig. (5.3). A weaker result for single lens apertures was proved in

[7], where they showed that shape from focus requires textures with nonzero 2nd-

order gradients.

In the analysis above, we have ignored occlusions. How would the response of

stereo and focus change if the surface we are trying to reconstruct is occluded in

some views? In general, the response would depend on the nature of the occluder.

For shape from focus, the mean image will have a blurred image of the occluder

superimposed on it at the correct depth hypothesis. If the aperture is wide, the

blurred image should be approximately constant and should not contribute to the

spatial derivatives. However, the focus response will be attenuated by the cameras

that do not observe the surface being reconstructed. For shape from stereo, the
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variance will not approach zero at the correct depth and may not attain a minimum

there unless the occluder is of a fairly uniform color. In Section 5.4 we will show

experimental comparisons of stereo and focus for reconstructing occluded surfaces.

5.3 Median and Entropy

One problem with stereo and focus is that both methods assign equal weightage

to all rays through the 3D point (x, y, d) in constructing the DSI; this corresponds

to using the full aperture for every pixel. When reconstructing occluded surfaces,

many of these rays will actually hit occluders and should therefore be rejected as

outliers (which amounts to shaping the aperture). In this section, we introduce two

variants of stereo that try to mitigate the effects of outliers due to occlusions on

depth and color reconstruction.

5.3.1 Shape from median

This approach is inspired by the observation that amongst measures of central ten-

dency, the median is more robust to outliers than the mean. Consider the case

of grayscale images. Suppose that a surface point (x, y, d) corresponds to pixels

S = {Ii,d(x, y) : 1 ≤ i ≤ N} in the N input images. If the point is occluded in

some images, the median IM = median S will be a better estimator for the sur-

face intensity than the mean. This is precisely why median colors have been used

in matte extraction [45]. However, in addition to estimating the surface intensity

we need a cost function to quantify the accuracy of the depth estimate. The cost

function we use for constructing the DSI is the median distance of all the rays from

IM , i.e.,

D(x, y, d) = median{|Ii,d(x, y) − IM | : 1 ≤ i ≤ N}

When a surface point is visible in more than half the cameras, the median color at the

correct depth should correspond to the color of the occluded surface. As the number

of occluded cameras increases over 50%, the estimate of the median begins to break
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down. An interesting question is how to extend shape from median to color images.

There are many ways to generalize the notion of median to higher dimensions [1].

We have experimented with the component-wise median and the L1 median, and

observed they yield similar results. We prefer to use the component-wise median,

since it can be computed in O(N) time.

5.3.2 Shape from entropy

Let us consider the distribution of intensities of the rays through the point (x, y, d),

which may be visualized by plotting a histogram. If the depth hypothesis d is incor-

rect, these rays will hit different points on the foreground occluders and background

surface. Given textured surfaces, we would expect the histogram to be spread over

a wide range of intensities. If the depth hypothesis d is correct, rays hitting the

background surface will be clustered over a small range of intensities, while those

hitting the occluder will still be spread out resulting in a more peaked histogram.

This suggests that we can use the Shannon entropy of the intensity histogram as

a cost function for constructing the DSI. The entropy is maximized for a uniform

distribution and decreases as the intensities are clustered together.

For 8-bit grayscale images, we divide the intensity range into K = 16 bins. If the

number of rays in bin i is bi, the entropy estimate is given by

H = −
K

∑

i=1

bi

N
log

bi

N
.

(For color images, we use entropy of a color histogram where bins correspond to

cubes in RGB space). The entropy cost function penalizes rays that fall into dif-

ferent bins. Unlike stereo, the penalty does not increase with the distance between

different ray colors. This helps mitigate the influence of outliers on depth recon-

struction.



5.4. EXPERIMENTAL RESULTS 57

There are two interesting properties of shape from entropy we would like to men-

tion. First, given N rays, the entropy can vary in increments of 1
N

from 0 to log N .

Thus, the precision of entropy is O( 1
N

), making it more precise as the number of

views increases. Secondly, since we are binning the rays, entropy does not use the

lower bits of the intensity values (for K = 16 bins, we use only 4 bits per channel

to compute the bin index for a pixel). This could be exploited for saving storage or

bandwidth, and also makes entropy less sensitive to color miscalibration.

Both entropy and shape from median retain the desirable property of shape from

stereo of being sensitive to first-order texture derivatives. Both of these start to fail

when the occluder is of a fairly uniform color and the amount of occlusion exceeds

50% — in this case, the reconstructed color is the color of the occluder rather than

the background surface.

5.4 Experimental Results

We have compared the performance of the four cost functions—stereo (variance),

focus, median, and entropy on reconstructing occluded objects in two acquired light

fields of complicated scenes and one synthetic scene. As we are avoiding explicit

reconstruction of the occluders, we limit our search to a range of depths behind the

occluders. The accuracy of the depth maps computed by each method is compared

with ground truth. To visualize the reconstructed appearance of the occluded sur-

faces, we construct synthetic aperture images focused on the reconstructed surfaces.

In shape from focus and stereo, the mean color of all the rays through a point on the

estimated surface is used as its color. This corresponds to using the entire synthetic

aperture. In shape from median, we use the median color rather than the mean.

For entropy, we use the modal color from the color histogram. This corresponds to

a per-pixel aperture consisting of the cameras whose rays fall in the tallest bin of

the color histogram for that pixel.
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(a) Background layer (c) 49% occlusion,(b) 31% occlusion, (d) 64% occlusion,
uniform occluder white noise occluder pink noise occluder

Stereo Median Entropy Focus

(e) Reconstruction of background obtained for the scene of (b)

(f) Reconstruction of background obtained for the scene of (c)

(g) Reconstruction of background obtained for the scene of (d)

Figure 5.4: Experiment 1: Reconstructions obtained with synthetic scene. (a) A
textured plane which we seek to reconstruct. (b)-(d) Some of the occluders used.
The amount of occlusion was varied from 19% to 75% by changing the spacing
between the bars. (e)-(g) The reconstructions of the background plane obtained for
the scenes in (b)-(d) using stereo, median, entropy and focus.



5.4. EXPERIMENTAL RESULTS 59

Figure 5.5: Experiment 1: Reconstruction accuracy for the synthetic scene of Fig.
(5.4). The plots show the percentage of pixels on the background reconstructed
within one disparity level of ground truth versus the amount of occlusion for uni-
formly colored occluders (top), white noise occluders (middle) and pink noise oc-
cluders (bottom).
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5.4.1 Experiment 1: Synthetic scene

To measure the performance of our cost functions (stereo, focus, median, entropy)

under varying amounts of occlusion, we experimented with a synthetic scene with

precisely controlled amounts of occlusion. The scene consists of two planes. The

background plane (Fig. 5.4a) has the CVPR logo composited with white noise to

ensure there is sufficient texture at each point. The foreground occluder is composed

of horizontal and vertical bars. We control the amount of occlusion (between 19%

and 75%) by varying the spacing between the bars. We have experimented with

three different textures on the foreground bars: white noise (strong texture), pink

noise (weak texture, obtained by convolving white noise with a 5× 5 box filter) and

uniformly colored bars (Fig. 5.4 b-d).

For reconstruction, we used 81 views of this scene. The camera positions were on a

9 × 9 planar grid perturbed by random offsets. This is to avoid producing a strong

correlation between visibility and camera positions, which rarely arises in practice

and would introduce addition errors in reconstruction, contaminating our simula-

tion. The two planes were separated by a disparity of 40 pixels across the synthetic

aperture. We measured how accurately each of the four cost functions reconstructed

the background plane.

Over the range of occlusion densities and foreground textures in our experiments, en-

tropy does best, with near-perfect reconstructions up to 65% occlusion. Shape from

median starts to fail as the occlusion density crosses 50%. For all three foreground

textures, the fraction of background points correctly reconstructed by focus is about

15% higher than that for regular stereo. This suggests that given an adequately tex-

tured surface, focus does better than variance in the presence of occlusions. Note

that real scenes could have surface textures that stereo can reconstruct but not fo-

cus; in which case stereo would obviously do better. Plots of reconstruction accuracy

versus amount of occlusion for the three occluder textures are shown in Fig. (5.5)
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5.4.2 Experiment 2: CD case behind plants

This light field was acquired using a single camera on a computer controlled gantry.

The camera positions span a 21 × 5 grid (synthetic aperture size 60cm by 10cm).

Our goal was to reconstruct a picture of the Strauss CD case behind the plants (Fig.

5.6 a). For ground truth, the depth of the CD case was estimated manually. To

estimate the amount of occlusion for the CD case, we captured an identical light

field of the same scene without the occluding plants and used image differencing

to determine which pixels were occluded. We can thus compute an occlusion map

image, where each pixel in the occlusion map stores the number of views in which

the corresponding pixel on the CD is occluded (Fig. 5.6 b). Given ground truth and

an occlusion value, we determine for each of the four cost functions the percentage

of pixels reconstructed correctly (within one disparity level) for different amounts

of occlusion (Fig. 5.6 c). The histogram indicates that stereo, median, and entropy

start to perform poorly as the amount of occlusion increases, with entropy perform-

ing best. The median-based cost function starts to fail once the amount of occlusion

exceeds 50%. Depth from focus does not do well on the whole, but it overtakes the

stereo-based approaches as occlusion increases beyond 60%.

The synthetic aperture images from each cost function are shown in the top row

of Fig. (5.7). The text on the CD case is most legible for entropy and median.

The bottom row shows the reconstruction of the CD obtained by voxel coloring

after reconstructing and deleting the occluding plants. Voxel coloring uses a thresh-

old to commit to foreground occluders so that pixels corresponding to the occluder

are deleted prior to reconstructing the background. Note that there is no single

threshold for which the CD is reconstructed properly. At low thresholds, all fore-

ground pixels are not deleted; at higher thresholds, many background pixels are

reconstructed as foreground and deleted.
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100%

50%

0%

(b) Occlusion map on the CD case, showing the
percentage of views each point is occluded in

the Strauss CD case behind the plants (inset)
(a) Two images from the light field. We wish to reconstruct (c) Performance of the four cost functions on the

the Strauss CD case.

Figure 5.6: Experiment 2: Comparison of cost functions for reconstruction of the
CD case behind the plants using a 105 image light field.

5.4.3 Experiment 3: Dense Foliage

This light field (Fig. 5.8a) was captured using an array of 88 cameras. The scene

consists of a person and a statue behind a dense ivy wall. We computed a per-

camera matte for the occluder using standard blue screen techniques. While we do

not have ground truth for this scene, we can estimate visibility near the true depths

using the occluder mattes. The objects behind the ivy are occluded in about 70%

of the cameras. Entropy, median and voxel coloring all failed to reconstruct any

part of the occluded objects accurately. This is due to the high degree of occlusion,

the relatively uniform color of the occluder and differences amongst that cameras’

colorimetric response which persisted after color calibration. Focus does somewhat

better than stereo — it is able to reconstruct the statue’s torch and the person’s
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MedianEntropy Focus Stereo

Voxel coloring (threshold increases left to right)

Figure 5.7: Experiment 2: Reconstructing the Strauss CD case behind plants (Fig.
5.6). The top row shows the reconstructed surface and color using entropy, median,
focus and stereo. The bottom row shows the reconstruction using voxel coloring:
these images are obtained by deleting all voxels up to the depth of the foreground
occluders, projecting the rest into the central camera and computing the mean color
of the projected voxels. For low thresholds, some points on the CD surface are not
reconstructed at all. At high thresholds, the computed depth for points on the
CD case can be much closer to the cameras than the true depth, causing them
to be deleted with the occluders. These two effects cause the holes visible in the
reconstruction.

face where stereo failed (Fig. 5.8 b,c).

5.5 Discussion

We have studied four cost functions for reconstructing occluded surfaces using syn-

thetic apertures. Most existing algorithms use cost functions developed for recon-

structing the (unoccluded) foreground. We have studied an alternative approach:

designing cost functions that leverage a large synthetic aperture and large number

of views to be robust to occlusions. This is useful when the foreground is difficult to
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(a) Image from one camera (b) Stereo reconstruction (c) Focus reconstruction (d) Unoccluded objects

Figure 5.8: Experiment 3: Reconstruction of a person and statue behind a dense
wall of artificial ivy. The high occlusion (about 70%) and uniform color of the
occluder makes this a failure case for median and entropy. Focus does somewhat
better than stereo on the right part of the statue and the person’s face (shown in
blue circles). Image (d) was created by manually compositing layers after deleting
the occluded pixels using blue screening.

reconstruct accurately (see, for example, Fig. (5.8) and in applications like surveil-

lance of crowded areas where reconstructing the appearance of occluded objects may

be of primary interest.

While the cost functions we have developed show encouraging results, we believe

we have merely scratched the surface of this design space. We would like to explore

ways to combine information from different cost functions to gain better results. Our

approach could also be combined with existing multi-layer estimation algorithms to

improve reconstruction of all layers. One limitation of our work is that we have

not enforced any spatial regularization. We would like to find ways of extending

algorithms based on graph cuts or belief propagation to handle outliers due to

dense occlusion. While our focus in this work has been on diffuse surfaces, we

believe robust cost functions like median and entropy may also be useful for the

reconstruction of non-Lambertian surfaces since specular highlights, like occlusions,

may be regarded as outliers.



Chapter 6

Conclusion

In this thesis, we have studied the geometry underlying synthetic aperture image

formation. We have demonstrated the use of our geometric analysis for calibration

of camera arrays, real-time synthetic aperture focusing and 3D reconstruction of

partially occluded surfaces. This chapter reviews these contributions, discusses some

limitations and potential strategies for overcoming them, and some directions for

future work.

6.1 Calibration

We have characterized the minimum calibration required to compute a synthetic

aperture image focused on an arbitrary plane:

1. Homographies for projecting camera images on to a reference plane.

2. The location of epipoles (in a reference camera).

3. The µ-vector.

This requires observation of at least of four points on a reference plane, and at least

two points not on the reference plane in all cameras [12]. When the camera centers

are known to lie in a plane (which is often the case), it suffices to observe a single

point not on the reference plane. This configuration is useful since we can solve

65
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for the calibration parameters (specifically, the epipoles) using linear optimization,

which does not require any initial guess.

A key assumption we have made is that the cameras are stationary and synchronized.

One can think of situations where this may not be true: for example, the cameras

may be mounted on different vehicles moving independently or even on human

soldiers. In such cases, calibration becomes significantly more challenging. Some

simplification may be achieved by having GPS or inertial sensors attached to the

cameras to obtain their relative poses. However it is not possible to achieve pixel

accurate alignment in this way which means one would have to resort to general

structure-from-motion methods. A promising approach for this would be the system

developed by Snavely et al [36] which performs incremental structure from motion

using robustly matched SIFT features.

6.2 Real-time Focusing

We have derived a classification of camera arrangements and focal planes corre-

sponding to different families of image warps required for focusing. The key idea

to project the camera images on to a fixed reference plane: this computationally

demanding step needs to be done only once. We have characterized the configura-

tions where we can move the focus from the reference plane to other focal planes

via affine or simpler warps (Table 4.2). Of particular interest are the configurations

where changing the focal plane requires simply shifting the images (Fig. 3.4c,d).

Since shifts are relatively easy to implement in per-camera hardware, this facilitates

a real-time focusing system for frontoparallel focal planes and focal planes in the

Scheimpflug configuration.

While our camera array hardware may not be able support focusing on arbitrary

planes and surfaces in real-time, one can conceive of other camera array architectures

that can. One approach would be to leverage the rendering capabilities of modern

GPUs, which have speeds of several gigaflops and can hold entire light fields in their
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texture memory. Computing synthetic aperture images on GPUs is straightforward:

one simply needs to texture map the camera frames on to the desired focal surface

and accumulate the rendered images in the A-buffer. Since synthetic aperture imag-

ing benefits from large numbers of cameras, it is important to maintain scalability

and minimize the cost per camera. The key challenges in using a GPU-based ar-

chitecture would include maximizing the bandwidth between the cameras and GPU

texture memory and supporting as many cameras per GPU as possible.

6.3 3D Reconstruction

We have shown how to improve the 3D reconstruction of partially occluded surfaces

given a large, densely sampled synthetic aperture. Instead of using classical shape

from stereo or shape from synthetic aperture focus, we have show we can achieve

better reconstruction using color medians and modal colors. Unlike focus and stereo,

which are based on the mean and variance respectively, the median and mode are

more tolerant of outliers, such as those caused due to occlusion. Experiments in-

dicate these robust approaches can achieve accurate 3D reconstruction of surfaces

occluded in over 50% of the cameras. This is facilitated by a synthetic aperture

wider than the occluders in the scene which enables seeing around the occluders,

and a large number of cameras to sample enough rays that are incident on the par-

tially occluded surface to be reconstructed.

The performance of these robust methods suggests a different approach to matching

rays from different cameras for 3D reconstruction. Most existing methods seek to

either match rays across all views - assuming no occlusions or specularities [31],

or explicitly reconstructing occluders and deleting them [34, 24]. The former are

restricted to a limited class of scenes, the latter make hard decisions about recon-

struction of occluders, and are sensitive to errors in the initial reconstruction. Our

work suggests it that given rays from a large number of cameras (typically ≥ 100),

it suffices to match a subset of them while treating the remaining rays as outliers.

This yields accurate results, avoids making hard decisions (like deleting occluders)
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and does not require explicit modeling of view-dependent effects like occlusions and

non-Lambertian surfaces.

One limitation of our approach is the use of a single depth map to represent the

scene we wish to reconstruct. While a single depth map may be an adequate to

represent a focal surface for synthetic aperture focusing, there are many surfaces it

cannot represent completely. An alternative approach would be to compute a depth

map for every view (or a subset of views) in the manner of [20] while continuing

to use robust methods to tolerate occlusions. These depth maps could be merged

volumetrically to yield a complete 3D model [10]. In contrast to our approach which

leverages all available views to overcome occlusions, they construct a depth map for

every view using normalized cross-correlation across a small number (typically 5)

views. Confidence weighted volumetric merging of these depth maps yield accurate

and near-complete 3D models. These are far superior to our single-depth-map as a

representation of 3D shape, but are time-consuming to compute (computation time

varies from hours to days) and incur some loss of accuracy near depth edges due to

window-based correlation. An appealing approach would be to design a hybrid of

their approach and ours, using the robust cost functions to minimize errors due to

windowing and reduce computation time by pruning the search space.

One could also try to improve the quality of our reconstructions by applying spatial

regularization. In our implementation, we have reconstructed the depth of each pixel

independently of its neighbors. Barring surface discontinuities, the depths nearby

pixels are similar. One would also expect a strong correlation between the cameras

deemed outliers for two neighboring pixels: if surface point is occluded in one camera

it is likely that nearby points are also occluded in that camera. Exploiting this

spatial coherence in shape and outliers - perhaps using Markov random fields -

should improve the accuracy of reconstruction, especially in regions of low texture.
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SurfaceP

Occluders

Rays from P

Cameras

Figure 6.1: Visibility analysis for a surface point P behind occluders being observed
by a camera array. Larger occluders shadow out larger chunks of the synthetic
aperture. The visibility of P is the fraction of rays from P which avoid the occluders,
indicated in red. When the occluders are large, there is a strong correlation between
the visibility of adjacent rays.

6.4 Future Work

We would like to conclude by describing two important directions for future research:

analyzing the relation between camera layout, scene occluders and visibility, and

augmenting camera arrays with arrays of projectors.

6.4.1 Visibility Analysis and Camera Arrangements

Our ability to reconstruct an image of (or reconstruct the shape of) a partially oc-

cluded surface patch using synthetic aperture imaging depends on the fraction of

cameras in which it is visible. A large aperture enables seeing around large occlud-

ers. A large number of cameras enables sampling a larger number of rays which
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avoid the occluders and are incident on the surface we wish to see or reconstruct.

For the designer of a synthetic aperture imaging system who wishes to maximize the

visibility surfaces under a wide variety of occluders, understanding the the relation-

ship between surface visibility, aperture size, number of cameras and their layout

and distribution of occluder sizes is imperative.

An obvious constraint on the aperture size is that is must be larger than any of

the occluders in the scene. The size of the aperture also determines the minimum

distance between an occluder of a given size and the surface points which we seek to

observe. Fig. (6.1) shows the shadow cast by an occluder on the synthetic aperture.

If the distance between P and the occluders is reduced, the fraction of the cameras

in shadow will increase. Thus, the aperture size places an upper bound on the size

of occluders in the scene and a lower bound on the separation between the surface

to be seen and the occluders.

It would be useful to have bounds on the number to cameras required to observe a

surface point with some minimum probability. This turns out to be non-trivial for

most occluders. Consider the set of rays from a surface point P as shown in Fig.

(6.1). Suppose we know (from the average occlusion density) that the fraction of

rays starting from P which pass through the occluders is α. Can we compute the

minimum number of cameras N required so that the probability P will be visible

in at least one view is greater than a given threshold p ? It is tempting to assume

the visibility of a ray starting from p is independent of the other rays, in which

case the ray visibilities have a binomial distribution and we can obtain a bound on

the minimum number of samples (i.e. cameras) required as a function of p and α.

However, this assumption of independence is incorrect for most occluders; as shown

in Fig. (6.1), there is a strong correlation between nearby rays owing to the size

of the occluder. Analyzing the relation between number of cameras and visibility

for different classes of occluders as a function of occluder density and occluder size

distribution remains an open question for the design of synthetic aperture imaging

systems.
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(a) Single view (b) Synthetic aperture
image

(c) Confocal image (d) Synthetic aperture
confocal image

Figure 6.2: Synthetic aperture confocal imaging using an array of 16 (virtual) cam-
eras cameras and projectors [25]. (a) A toy soldier behind foliage. (b) A synthetic
aperture image focused on the toy soldier in which the foliage is blurred out. (c)
A confocal image in which illumination is synthetically focused on the toy soldier.
There is almost no light on the the foliage, leaving it dark. (d) A synthetic aperture
confocal image obtained by combining (b) and (c). The occluding foliage is both
dark (due to confocal illumination) and blurry (due to synthetic aperture focusing),
resulting in better contrast and clarity.

6.4.2 Synthetic Aperture Illumination

We can augment an array of cameras with an array of projectors. A projector is

a dual of a camera; just as we can use an array of cameras for synthetic aperture

imaging we can use an array of projectors for synthetic aperture illumination. A

suitably pre-warped image is displayed from each projector so that all the projected

images come into alignment on a chosen focal plane (analogous to the focal plane in

synthetic aperture imaging). The projectors effectively behave like a single projector

with a large synthetic aperture and consequently shallow depth of field.

Using this synthetic aperture projector, we can project any patterned illumination

- such as high frequency texture - into the scene such that the illumination is in

focus at the desired depth and blurred (low frequency) everywhere else. Just as a

large synthetic aperture of a camera array enables us to see objects behind dense
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occlusion, a large synthetic aperture spanned by a projector array enables us to

project patterned illumination on to objects behind dense occlusions. Levoy et al

have shown that by switching off projector pixels which correspond to rays that are

incident on the occluder (i.e. shaping the aperture per pixel), we can illuminate

partially occluded objects without lighting up the occluder [25]. This can greatly

increase the contrast of synthetic aperture images; we show one of their results in

Fig. (6.2). They also showed how synthetic aperture illumination may be used for

3D surface reconstruction where the large synthetic aperture makes the reconstruc-

tion more tolerant to occlusion than most structured light systems.

To compute shaped apertures, Levoy et al adapted techniques from confocal mi-

croscopy [49]. The resulting method is rather slow, in that it requires a large num-

ber of coded patterns to be projected on the scene and imaged. In particular, the

number of coded patterns required to get provably correct results is of the order of

the number of pixels in the projector. Since these codes were developed in confocal

microscopy for single lens aperture, they do not exploit the fact that we multiple

cameras imaging the scene. Designing coded patterns which can leverage images

from multiple views to help resolve decoding ambiguities should lead to greater ef-

ficiency and shorter acquisition times.

A second, more basic challenge is to build projector arrays that match the total reso-

lution and apertures achievable with camera arrays. Levoy et al used a single camera

and projector aimed at planar mirrors in their experiments, trading off spatial res-

olution (of the images) for angular resolution (number of cameras and projectors).

Projectors, like cameras, are decreasing in cost and size, while improving in their

energy efficiency, making it feasible to build large arrays of digital projectors. De-

signing and building large projector arrays to augment existing camera arrays will

provide a platform for exciting research in synthetic aperture imaging and synthetic

aperture illumination.



Appendix A

Error Analysis for Non-planar

Cameras

For many of our results, such as parallax-based calibration and real-time focusing

we have assumed the camera centers lie on a plane. The cameras are mounted on a

rigid, planar framework so that the camera centers do not deviate from a plane by

more than 5cm for the telephoto lenses used in outdoor imaging and more than 1cm

for the lenses used indoors in our real-time system. We will now quantify the error

incurred in synthetic aperture focusing assuming planar camera centers and verify

under what conditions this is a reasonable assumption.

Consider the scenario depicted in Fig. (A.1). This shows the reference camera C0,

a “camera plane” on which all camera centers are assumed to lie. C1 is a camera

which is actually some distance ∆Z from the camera plane. Suppose we wish to

focus at the depth of some point P . To do so, we will need to shift the image from

camera C1 by an amount equal to the parallax of P , which is ∆p1 + ∆p. If we

assume camera C1 is located on the camera plane, we will compute the parallax to

be ∆p1. This error in parallax will manifest itself as a misalignment of ∆p when

focusing on P . We will now compute p in terms of the camera layout and focal dis-

tances and show when it is small enough to justify the assumption of planar cameras.
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Figure A.1: Quantifying the error incurred by assuming the camera centers lie on
a plane. C0 is the reference camera, C1 is another camera which is at a distance
∆Z from the assumed plane of cameras shown in red. If we assume camera C1 is
actually located at position C ′

1, the parallax of P will be ∆p1. The error in parallax
will cause a misalignment of ∆p when focusing on P .



75

From similar triangles, we have

∆x

∆Z
=

X1 + ∆x − XP

ZP

and

∆p

∆x
=

ZP − Z0

ZP

Eliminating ∆x and solving for ∆p we obtain

∆p =
∆z(X1 − XP )

ZP − ∆Z
(1 − Z0

ZP

) (A.1)

In general, the misalignment ∆p can be arbitrarily large, such as when ZP ≈ 0 or

ZP ≈ ∆Z. In most experimental conditions, including ours, we can show that the

misalignment is smaller than a single pixel. We make two observations:

1. We focus on surfaces that are within the field of view of most cameras. In Fig.

(A.1), we require P to be within the field of view of camera C1. If the angular

field of view is 2θ, this yields:

|XP − X1| ≤ (ZP − ∆z) tan θ (A.2)

2. We focus at depths of the order of Z0 - at depths distant from Z0, there is

little or no overlap amongst the fields of view of different cameras. In our

experiments, we have

2Z0

3
≤ ZP ≤ 2Z0

which yields

|1 − Z0

ZP

| ≤ 1

2
(A.3)
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We are now ready to obtain a bound on ∆p.

|∆p| = |∆z(X1 − XP )

ZP − ∆Z
(1 − Z0

ZP

)| from Eq. (A.1)

≤ | ∆z

ZP − ∆Z
|.(ZP − ∆z) tan θ.

1

2
from Eq. (A.2) and (A.3)

=
∆z tan θ

2
(A.4)

To convert this bound from metric units to pixels, suppose that our cameras have

images R pixels wide. On the reference plane (i.e. at the depth ∆p is defined), these

R pixels are distributed over a length of 2Z0 tan θ so we have R
2Z0 tan θ

pixels per unit

length. Thus, we have

|∆p| ≤ |R∆z

4Z0

| (A.5)

For our outdoor imaging setup (Fig. 4.2), we have R = 640 pixels, Z0 = 28m,

∆z ≤ 5cm which yields

∆p ≤ 0.29 pixels

For our real-time system used in the laboratory, we have R = 320 pixels, Z0 = 2m,

∆z ≤ 1cm which yields

∆p ≤ 0.4 pixels

This amount of misalignment still permits us to obtain fairly sharp synthetic aper-

ture images, as we have seen in our experiments.

Note that Eq. (A.5) is only an upper bound on the misalignment. The misalignment

is greatest near the periphery of the field of view (where the bound from Eq. (A.2)

is tight) and becomes smaller towards the center. In Fig. (A.1), if P were directly

above C1 so that XP = X1, the misalignment ∆p would be zero. On the other hand,

the misalignment increases with the sensor resolution and with the distance of the

focal plane from the reference plane.
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