
Kekoa Proudfoot
Stanford University

Collaborators:
Pat Hanrahan, Bill Mark, Phillip Slusallek,

Svetoslav Tzvetkov

Sponsors:
3dfx, NVIDIA, SGI, Sun

Web page:
http://graphics.stanford.edu/projects/shading/

Stanford
Real-Time Programmable Shading

Project

Motivation

Quake 3 Arena
id Software

Toy Story
Disney

Binary Neutron Star Collision
David Bock

Bump and Shadow Mapping
NVIDIA

Hardware trends

Increasing hardware functionality
■ Multiple textures
■ Advanced texture combining operations

Increasing fill rate
■ Multiple rendering passes

But…
■ Programming graphics hardware is like

writing microcode
■ Decomposing computations into multiple

passes is time-consuming
■ Functionality varies between chipsets

Higher-level hardware abstractions

Problem:
Current hardware abstractions (e.g. OpenGL)
use a configurable pipeline model that is too
low-level

Solution:
Use a shading language as a higher-level
hardware abstraction

Hardware abstractions

Hardware abstractions:
■ Provide a standard interface
■ Simplify underlying complexities
■ Hide differences in implementations
■ Help to define hardware behavior
■ Drive new architectures

Hardware abstractions make hardware easier or
harder to use

Project goals

■ Provide a shading language as an abstraction
layer between programmer and graphics
hardware

■ Explore how current hardware may be used to
implement shading language abstractions

■ Investigate new hardware architectures
optimized for programmable shading

■ Create new interactive applications based on
shading languages

// pool ball shader

// material properties (to configure lighting model)
material Diffuse { diffuse .5 .5 .5; specular 0 0 0; … }
material Specular { diffuse 0 0 0; specular 1 1 1; … }

// texture declaration (to configure a texture object)
texture POOLONE { image “one.ppm”; transform { … }; … }

// shader definition
shader poolball { Diffuse * POOLONE + Specular; }

Our first system

Arbitrary expressions of:
■ Constant colors, lit materials, and textures
■ Operators: +, *, and over

Expressions compiled to multiple rendering passes

Limitations of pure multipass

Problem:
■ Pure multipass rendering only allows

fragment programmability
■ Today’s fragment operations are limited:

fixed point, simple set of operators
■ Fragment lighting and texture coordinate

generation can be very expensive
■ No support for future programmable vertex

hardware (e.g. DirectX 8)
Solution:

■ Add vertex and primitive-group
programmability

Multiple computation frequencies

Constant

Per Primitive Group

Per Vertex

Per Fragment

Evaluated less often
More complex operations
Floating point

Evaluated more often
Simpler operations
Fixed point

System overview

Compiled Shader
“Object Code”

Shader
Parameters

Framebuffer

Shader
Execution

Engine

Compiler Front End

Compiler Back End

Intermediate Representation
+

Programmable Pipeline

Shading Language

Anisotropic ball example
surface shader floatv
anisotropic_ball (texref anisotex, texref star)
{
 // generate texture coordinates
 perlight floatv uv = { center(dot(B, E)),
 center(dot(B, L)),
 0, 1 };

 // compute reflection coefficient
 perlight floatv fd = max(dot(N, L), 0);
 perlight floatv fr = fd * texture(anisotex, uv);

 // compute amount of reflected light
 floatv lightcolor = 0.2 * Ca + integrate(Cl * fr);

 // modulate reflected light color
 floatv uv_base = { center(Pobj[2]), center(Pobj[0]),
 0, 1 };
 return lightcolor * texture(star, uv_base);
}

Managing computation frequencies

Given: a system with multiple computation
frequencies

How to specify how often to compute something?

Two methods:
■ Explicit specification with type modifiers
■ Automatic propagation

Computation frequency modifiers

Four type modifiers allow explicit specification:
constant
perbegin
vertex
fragment

Specification by assignment:
fragment float y = x;

Specification by type cast:
float y = (fragment float)x;

Automatic propagation

Computation frequencies propagate from operation
inputs to operation outputs

op

vertex vertex

vertex

op

vertex fragment

fragment

All shader inputs have default frequencies

Surfaces and lights

Separate surfaces and lights by defining two kinds
of shaders

LightEye

Surface

From RenderMan:

A linear integrate operator

RenderMan combines surfaces and lights using
illuminance

■ Implicit loop over lights
■ Unrestricted combining of computed light

values
We define a linear integrate() operator

integrate(a + b) = integrate(a) +
 integrate(b)

If k is the same for every light:
integrate(k * a) = k * integrate(a)

Restricted to combining light values using addition

Perlight expressions

The integrate() operator evaluates a perlight
expression once for every light, summing the
results

Three builtin perlight globals
L light vector
H halfangle vector
Cl light color

Expressions of perlight values are themselves
perlight

op

perlight non-perlight

perlight

Integrate example

Anisotropic ball example:

 perlight floatv fd = max(dot(N,L),0);
 perlight floatv fr = fd * texture(…);

 floatv lightcolor = … + integrate(Cl*fr);

With two lights, expands to:

 floatv fd0 = max(dot(N,L0),0);
 floatv fr0 = fd0 * texture(…);

 floatv fd1 = max(dot(N,L1),0);
 floatv fr1 = fd1 * texture(…);

 floatv lightcolor = … + Cl0*fr0 + Cl1*fr1;

light 0

light 1

perlight

Integrate optimization

A linear integrate allows an optimized light sum:
floatv Kd = texture(…); // non-perlight
floatv NdotL = dot(N,L); // perlight
floatv color = integrate(Kd * dot(N,L));

No optimization:
Kd * dot(N,L0) + Kd * dot(N,L1)

2 fragment multiplies
1 fragment add

Factor out non-perlight term:
Kd * (dot(N,L0) + dot(N,L1))

1 fragment multiply
1 vertex add

Vertex and fragment lights

Vertex lights
■ Return a per-vertex light color

Fragment lights
■ Return a per-fragment light color
■ Usually involves a projective texture

Automatic propagation of computation frequencies
allows vertex and/or fragment integrate() as
appropriate

Sort lights by computation frequency to optimize

Operators and types

add, subtract,
multiply, blend

Fragment only:
texture lookups

divide, compare
ops, clamp, dot,
length, min, max,
normalize, pow,
reflect, select,

sqrt, vector index,
scalar join

+ fragment ops

cross product,
matrix generation,

matrix multiply,
sin, cos

+ vertex ops
+ fragment ops

Fragment opsVertex opsPrimitive group ops

Seven basic types:
float, floatv, clampf, clampfv, matrix, bool, texref

See our web page for details

Builtin global variables

For surfaces:
P surface position
Pobj surface position (object space)
N, T, B normal, tangent, binormal vectors
E eye vector
Ca global ambient light color
L light vector
H halfangle vector
Cl light color

For lights:
S surface vector (light space)
Sdist distance to surface

Inspired by RenderMan

Language constraints

Language is constrained to promote SIMD
parallelism across vertices and fragments

No conditional or loop statements
■ A select operator enables conditional

expressions
■ A repeat(n) construct could be added to

enable limited forms of looping
No explicit communication between data elements

Demo

Programmable pipeline abstraction

Primitive
Group

Processing

Vertex
Processing

Fragment
Processing

Shader
Parameters

e.g. lighting
e.g. transforms

e.g. matrix setup e.g. texturing

Three programmable pipeline stages
Intermediate level abstraction between language and

OpenGL
Hardware independent:

■ No operation count limits
■ No temporary storage limits
■ Abstract types: float, clampf

Intermediate representation

A compiler intermediate representation is used to
specify programmable pipeline programs
■ Same operators and types as language
■ Surfaces and lights are combined
■ Builtin globals are expanded
■ Function calls are inlined
■ Constants are fully simplified

Front end compilation

Three steps:
■ Parse shader input file, inlining globals and

functions, simplifying constants
■ Join surface/light shaders together to make a

single pipeline program
■ Determine computation frequencies and split

pipeline program accordingly
Result:

■ Three-part pipeline program, one part for
each programmable pipeline stage

Back end compilation

Goal: Produce an executable version of a pipeline
program

Hardware mappings by computation frequency:
Primitive group !!!! Host processor
Vertex !!!! Host processor
Fragment !!!! Multiple rendering passes

When hardware becomes available: move host-side
computations to graphics processor

Host-side computations

Two techniques for generating code:
■ External C compiler
■ Internal x86 code generator

Primitive
Group
Code

Vertex
Code

Vertex parameter
arrays

Processed
primitive group

data

Processed
vertex arrays

Primitive group
parameters

Pass
Renderer

Fragment computations

Fragment computations are mapped to multiple
rendering passes using lburg
■ Define rules corresponding to particular

configurations of portions of the fragment
pipeline

■ Dynamic programming optimally covers trees
given rules

■ Additional rules are enabled if necessary GL
extensions are present

■ Despite optimal cover, lburg isn’t perfect
lburg is from Fraser and Hanson, A Retargetable C

Compiler: Design and Implementation

OpenGL pipeline operations

We abstract the OpenGL pipeline as implementing
two kinds of operations:

T = fb

fb = framebuffer color
C = triangle color
T = texture

(save)

(render)fb = op fb
C
T

C op T
op T

op is one of: +, –, ×, blend

All of our lburg rules are derived from this abstraction

fb = fb + Cs
fb = fb × Marks × Cd
fb = Circle over fb
fb = Bruns over fb
fb = Base

ov

×

×

+

ov

BaseBrunswick

Circle

Marks

Cd

Cs

Pass generation example
Unextended
OpenGL requires
five passes to
cover this tree

API

Primary differences compared to current APIs:
■ Support for compiling pipeline programs
■ Support for arbitrary per-primitive-group and

per-vertex parameters
■ Hidden multipass rendering

Our system provides immediate mode and vertex
array interfaces
■ Both result in buffers filled with primitive

group and vertex data to be processed and
rendered

Review

Multiple computation frequencies
■ Support for computing values at different

rates allows for a much broader set of
operations and types with reasonable cost

Shading language abstraction
■ User-level abstraction layer
■ Type system for multiple computation

frequencies
■ Linear integrate operator

Hardware-independent programmable pipeline
■ Intermediate abstraction layer to separate

language from hardware

Take-home message

Real-time programmable shading
■ Can be implemented today
■ Makes complicated hardware easy to use
■ Simplifies multipass rendering
■ Hides hardware dependencies
■ Will drive future generations of graphics

hardware

Real-time programmable shading
is the next big thing!!!

Try it

http://graphics.stanford.edu/projects/shading/

