
An Integrated Global GIS and Visual Simulation System

Peter Lindstrom David Koller William Ribarsky
Larry F. Hodges Augusto Op den Bosch Nick Faust

Graphics, Visualization, & Usability Center
Georgia Institute of Technology

Abstract

This paper reports on an integrated visual simulation system sup-
porting visualization of global multiresolution terrain elevation and
imagery data, static and dynamic 3D objects with multiple levels of
detail, non-protrusive features such as roads and rivers, distributed
simulation and real-time sensor input, and an embedded geographic
information system. The requirements of real-time rendering, very
large datasets, and heterogeneous detail management strongly af-
fect the structure of this system. Use of hierarchical spatial data
structures and multiple coordinate systems allow for visualization
and manipulation of huge terrain datasets spanning the entire sur-
face of the Earth at resolutions well below one meter. The multi-
threaded nature of the system supports multiple windows with in-
dependent, stereoscopic views. The system is portable, built on
OpenGL, POSIX threads, and X11/Motif windowed interface. It
has been tested and evaluated in the field with a variety of ter-
rain data, updates due to real-time sensor input, and display of net-
worked DIS simulations.

1 INTRODUCTION

This paper reports on significant progress in our efforts to design
and construct a real-time visual simulation and geographic informa-
tion visualization system, named VGIS (Virtual Geographic Infor-
mation System) [17, 30]. VGIS supports the accurate depiction of
terrain elevation and imagery, in addition to features such as ground
cover and trees, moving vehicles, buildings and other static objects,
roads, and atmospheric effects. Thus an entire environment com-
posed of heterogeneous parts must be simulated and integrated at
rendering time. The system must be set up to efficiently manage this
integration and, ultimately, to managedynamically the complexity
of each part with respect to the others in order to both conform to
a strict time budget and to present the most telling details. Inte-
gration of all this with a GIS database is important because many
applications require access to geographically located information
(e.g. building names, contents, and even floor plans). The GIS
data can also be handled by the VGIS data managers and threaded
through the real-time renderer for visualization in the 3D display
environment.

The visual simulation system described above implies very large,
even huge amounts of data. Automatic paging and caching tech-
niques handling heterogeneous data from the different parts of the
system must be in place. If, for example, the system is to visualize
urban scenes, it must manage hundreds to thousands of buildings,
plus their textures, and also street layouts. For flexibility the terrain
visualization sub-system should handle terrain from any part of the
world and integrate these terrains into a common coordinate sys-
tem without seams or gaps (e.g. between levels of detail or due to
multiple coordinate systems). All this should be in a hierarchical
organization structure so that the terrain detail can be continuously

adapted based on user viewpoint and scene content. Yet the hierar-
chy must be flexible so that detail can be added or deleted as needed.
Such flexibility is quite important due to database size as the global
datasets used with VGIS often require ten or more gigabytes.

In this paper we describe a visual simulation system that pro-
vides a structure supporting all the parts described above. We also
discuss in detail our implementations for some of these parts, con-
centrating especially on global terrain visualization. The structure
is in a multithreaded form to facilitate balanced and separable man-
agement of the system parts. It is also quite portable, due to stan-
dard libraries such asPthreadsandOpenGL, and has been ported
to multiple workstation environments, including SGI and Sun plat-
forms. We are now working on a PC version using Windows NT.
The system has wide applicability, having been used for battlefield
visualizations, tactical planning, and complex urban visualizations.

2 RELATED WORK

VGIS takes advantage of advances in a number of areas to create
an integrated global geographic information visualization system.
A large body of previous work has addressed issues in modeling,
representing, and manipulating spatial data for geographic infor-
mation systems. Applying 3D visualization techniques to global
and spatial data has recently enjoyed increasing attention [12, 22].

VGIS manages its huge, complex terrain and GIS datasets in an
efficient manner by using hierarchical spatial data structures. A
number of such data structures have been adopted in GIS systems
and other spatial databases. Samet [25] describes the quadtree, a
fundamental data structure in the VGIS system. Representing spa-
tial datasets that span the entire globe requires special data struc-
tures which take into account the curvature of the Earth and al-
low for efficient searching and rendering operations on the large
amounts of data. Fekete [8] describes sphere quadtrees, a spa-
tial data structure applicable to global representations of the Earth.
Other researchers have proposed similar hierarchical spatial data
structures which have been demonstrated to be useful for global
geographic information systems [13].

VGIS also relies on multiresolution techniques to allow truly in-
teractive visualization with its geometrically complex terrains. A
large number of researchers have developed multiresolution rep-
resentations and rendering techniques for large, complex terrains
and height fields using polygonal meshes, as VGIS does. These
algorithms attempt to represent surfaces within a given number of
vertices, or within a given geometric error metric, or in a manner
that preserves application specific critical features of the surface.
Uniform grid methods or irregular triangulations are employed to
represent the surfaces, and techniques including hierarchical subdi-
visions and decimations of the mesh are used for simplification and
creation of multiresolution representations.

Much of the previous work on polygonalization of terrain-
like surfaces has concentrated on triangulated irregular networks



(TINs). A number of different approaches have been developed to
create TINs from height fields using Delaunay and other triangu-
lations [10, 11, 27], and hierarchical triangulation representations
have been proposed that lend themselves to usage in multiresolution
level of detail algorithms [4, 5, 26]. Regular grid surface polygonal-
izations have also been implemented as terrain and general surface
approximations [3]. Such a gridded terrain surface representation is
used in VGIS and is described in [20]. Other surface approximation
representations include techniques such as wavelet transforms [14]
and methods that meet application specific criteria, such as preserv-
ing important terrain features [6, 10, 28].

VGIS uses an approach which treats the terrain as a single con-
nected surface for rendering, using “continuous” level of detail rep-
resentations for the terrain geometry. Similar methods for such
“continuous” or “view-dependent” level of detail rendering for ter-
rains and other surfaces are described in [3, 9, 20, 31, 32].

A number of visualization systems have been implemented
which integrate 3D visualization techniques with large spatial geo-
graphic information and terrain data. Some systems stress accurate
rendering of global images, or accurate modeling of environmen-
tal processes, often sacrificing interactivity of the system [21, 24].
Other systems emphasize tight integration of the 3D visualization
with the powerful spatial analysis capabilities of GIS [7].

Systems such as VGIS place a high priority on real-time, highly
interactive 3D visualizations of the spatial data. Maintaining truly
real-time update rates in the face of large, complex datasets re-
quires special techniques and time-critical visualization system de-
signs. Bryson and Johan [1] discuss some issues particular to such
time-critical computations in visualization environments. Software
toolkits such as IRIS Performer [23] provide an architectural frame-
work similar to that of VGIS which provides support for efficient
rendering and simulation operations on high-end computer graphics
workstations.

Interactive 3D visualization systems for visual simulation and
training address many of the same technical problems as VGIS, in-
cluding real-time rendering of large terrain databases. Flight sim-
ulator systems first implemented sophisticated image generation
techniques to allow efficient rendering and visualization of complex
spatial databases [33]. Recent developments have made interac-
tive 3D graphics rendering of such databases possible using off-the-
shelf graphics workstations. NASA's Virtual Planetary Exploration
project [16] supported virtual exploration of planetary terrains such
as Mars at interactive frame rates. SRI's TerraVision system also
allows interactive viewing of 3D landscapes, using similar terrain
level of detail and paging techniques as VGIS to allow very large,
high-resolution geo-specific terrain datasets to be visualized. The
T Vision research project [15] provides a distributed virtual globe
as a multimedia interface for visualizing geographic data. Other
3D terrain visualization systems use parallel architectures to render
complex datasets while maintaining interactive performance for vi-
sual simulation and planetary visualization applications [2, 19].

3 SYSTEM DESIGN AND
REQUIREMENTS

The rationale behind many of the design decisions made in the de-
velopment of VGIS was driven by both hardware constraints and
user requirements. Typical hardware constraints include available
main memory, available texture memory, available precision in geo-
metric calculations, rendering speed, disk transfer speed, etc., while
the user requirements include interactivity, off-line processing time,
display accuracy, data registration, as well as flexibility, extensibil-
ity, and portability from both the end user's and developer's per-
spectives.

Due to the large datasets that VGIS typically works with, most

of the data must be put in secondary storage, and a paging scheme
is used to bring in and cache the appropriate data for display. Level
of detail techniques are applied to both geometry and imagery to
further limit the amount of data stored in main memory and tex-
ture memory. These techniques are based on image quality metrics
whose parameters can be manipulated interactively by the user to
obtain a desirable balance between rendering speed and scene fi-
delity.

The user is given the ability to visualize the scene through multi-
ple viewswhich map onto separate windows. Each such view may
display the scene from a different viewpoint, e.g. as a 3D immer-
sive view or a 2D overview map, or may display different aspects
of the same scene, e.g. as phototextured terrain or as a contour map
with surface features such as roads and rivers turned on. In order
to conserve memory, view-independent data is shared among the
views and is accessed from a single primary cache.

To further obtain a high degree of interactivity, the system is bro-
ken down into a number of asynchronousthreads that are prioritized
according to their relevance to the final display update rate, which
is one of the most important constraints in the system. For exam-
ple, a dedicated render thread is used whose single task it is to up-
date one or more views at the highest possible rate; level of detail
(LOD) management is distributed over several threads according to
the data they operate on, which generally update the scenes at a
rate lower than the rendering rate; while a number of server threads
execute only when data requests are made. This fine-grained subdi-
vision of tasks ensures a high degree of CPU utilization and elim-
inates the bottlenecks often associated with blocking system calls
(e.g. disk I/O, input device polling) in the real-time components of
the system.

To accommodate data paging, level of detail management, and
view culling, a quadtree data structure [25] is used to spatially sub-
divide and organize the terrain raster data. The globe is subdivided
into a small number of pre-determined areas, each corresponding to
a separate quadtree. The tiles associated with the quadtreenodes,
or quadnodes, are stored in a file format that closely matches the
internal representation, which allows for good paging performance.
Rather than using a single global coordinate system, a large num-
ber of local coordinate systems is used. This is necessary as the
precision afforded by current graphics hardware is insufficient for
representing detailed geometry distributed over a large volume in a
single coordinate system. Different branches within the quadtrees
are assigned to different local coordinate systems, which are cen-
tered such that precision is maximized, and oriented to locally pre-
serve natural directions such as “up”, which can be exploited by the
terrain geometry level of detail algorithm.

VGIS has been designed to be portable across a spectrum of dif-
ferent platforms, but is primarily targeted towards high end graph-
ics architectures such as Silicon Graphics workstations. Certain
platform specific extensions are optionally incorporated at compile
time to maximize the system performance. The system is layered on
top of portable standardized libraries such as OpenGL and POSIX
threads, and provides a level of indirection for interfacing with the
windowing subsystem, e.g. X11/Motif for Unix platforms.

4 SYSTEM OVERVIEW

The VGIS system consists of a dataset pre-processing component,
as well as the actual run-time visualization display system. Option-
ally, external processes may provide real-time or remote data input.
Due to the vast volumes of data that make up the global terrain
database, the data is prepared off-line and structured in a form that
closely matches the internal representation so that it can be paged
into main memory efficiently. This form of pre-processing includes
data format conversion, reprojection, resampling, data analysis, and
data synthesis. In order to maximize the run-time performance,

2



non-interactive processessuch as simulation, real-time data acquisi-
tion, and remote queries can be separated from the run-time system
and be executed as remote processes. A number of server threads
run in the back end of the run-time system that communicate with
the external processes and fetch data from local disk. In addition,
these threads perform intermediate tasks such as data transforma-
tions (e.g. conversion of height field data to Cartesian coordinates),
data synthesis and initialization (e.g. generation of LOD param-
eters, synthesis of different image types), and repackaging of the
data into the internal representation whenever necessary (e.g. pars-
ing of DIS packets and GIS queries). Such processing is sometimes
necessary to limit the amount of data stored on disk, and also allows
VGIS to interface with external modules such as ARC/INFO GIS
servers and ModSAF DIS simulators.

The servers are broken down by data type (e.g. terrain, symbol-
ogy, GIS) and are run as independent threads. Each server handles
requests from a number of clients that manage the corresponding
data type. As mentioned in the previous section, VGIS supports
the concept of multiple, independent views,each corresponding to
a window on the screen. For example, one view could display the
user riding a moving vehicle in three dimensions, another may be
a “God's eye view” looking down upon the vehicle, while a third
view could be a 2D overview map of a larger area. For each view,
there is aview modulethat contains data managers for each data
type. For example, there is a terrain manager that makes data re-
quests to the terrain server and handles level of detail management,
surface queries, terrain rendering, etc. Similarly, there is an ob-
ject manager that manages animation and display of 3D symbology
and protrusive features. The actual on-screen rendering is done by
a single dedicated render thread. This thread runs asynchronously
from all other threads to provide maximum rendering performance
and interactivity. Within each view module, the scenes that are to
be rendered are prepared and buffered in data structures similar to
OpenGL display lists. These display lists are then sent to the ren-
der thread for display. The display lists are typically updated less
frequently than the scenes are rendered, thus allowing the renderer
to reuse a display list over several frames.

To minimize the response time, the renderer fetches copies of
the most recent view parameters (i.e. position, orientation, field of
view, etc.) for each view at the beginning of each frame. The view
parameters are updated by a single user interface (UI) thread, which
also acts as an overall manager of the system. Whenever a UI event
is generated, e.g. from an input device or from remote commands,
the corresponding view parameters are updated for that view.

An overview of the VGIS architecture is given by Figure 1. The
following sections describe each of the system components in more
detail.

4.1 Pre-Processing

Data processing in the VGIS system comes in three forms: off-line
pre-processing, which is done once per dataset; intermediate, on-
line processing, which is performed during the data paging stage;
and real-time, on-line processing, which is typically done once per
frame. The purpose of the pre-processor, ordataset builder, is to
gather the different types of data and transform them into a format
that is readable by and quickly accessible to the run-time system.
These tasks are inherently compute intensive and cannot be per-
formed by the run-time system at high enough rates. Additionally,
the pre-processing only has to be done once for a given dataset, so
it makes sense to pay the penalty of assembling a dataset up front.

While the pre-processor may handle a large variety of different
data types, we will limit this discussion to the processing of static
terrain data. Some of the basic data types within this domain in-
clude terrain geometry (e.g. “raw” elevation, elevation corrected
for non-protrusive surface features such as roads and rivers, as well

Shared
Cache

Remote
Control

Dataset
Builder

Display Lists Display Lists

Private
Cache

Private
Cache

Terrain
Server

GIS
Server

Object
Server

View #1

Terrain
Client

Terrain
LOD

Terrain Manager

Object
Client

Object
LOD

Object Manager

View #2

Terrain
Client

Terrain
LOD

Terrain Manager

Object
Client

Object
LOD

Object Manager

Disk
Cache

Real−
Time

UI,
Master

Render
Thread

Window #1 Window #2

Figure 1: Overview of the VGIS system architecture. This figure
illustrates two independent views but can be generalized to an ar-
bitrary number. Modules are represented by rounded boxes, pro-
cesses and threads by circles, data structures by rectangular boxes,
and data flow and communication by arrows.

as the surface features themselves), imagery (e.g. phototexture,
Arc Digitized Raster Graphics—or ADRG, pre-shaded relief maps,
contour maps, etc.), and surface properties (e.g. surface rough-
ness parameters, bounding volumes). The source data may come
in a variety of file formats, which the pre-processor must translate
to a single common format. In addition, for each data type, the
source data may consist of multiple, variable resolution, possibly
overlapping/nested datasets. The pre-processor has the ability to
layer these and composite them into a single dataset if so desired.

As mentioned above, VGIS utilizes a quadtree structure for orga-
nizing multi-resolution terrain data in a hierarchical manner. Each
node in a quadtree identifies a fixed, square area (in geodetic lat/lon
coordinates) at a given discrete resolution. Additional constraints
force the dimensions of the raster tiles associated with thenodes
to be powers of two,1 and the post spacing is successively doubled
on each consecutive level up the tree. To facilitate the use of this
data structure, each terrain dataset must be resampled to one of the
discrete pre-determined resolutions. To accommodate fast paging,
the data is also resampled and generated for all the internal nodes
of each quadtree, resulting in what is commonly referred to as a
pyramid structure.

The pre-processing of the data is done entirely in geodetic co-
ordinates, assuming a pre-determined geodetic datum.2 This en-
sures good registration between different source datasets and avoids
the discontinuity problems often associated with flat-projected data.
Both the height field and imagery are represented as regular grids.
Hence, we do not require additional compute time to triangulate the
height field—the different discrete levels of detail of the geometry
are rather represented by the pyramidal regular grid structure, and
further refinement is employed on-the-fly by the run-time system.
See [20] for a detailed discussion of the height field level of de-
tail algorithm. To further improve dataset registration,alpha chan-

1The elevation height field nodes have raster dimensions 2n
+1 as their

boundary rows and columns overlap.
2In the current implementation, the WGS-84 datum is used.

3



nelscan be added to the source data (both imagery and elevation)
to allow blending/smoothing across dataset boundaries as well as
masking of the data, e.g. for irregularly (non-rectangular) shaped
datasets or for regions where data is missing.

The dataset builder has been designed to be very flexible and ex-
tensible in terms of incorporating many different data types, and is
structured in a modularized manner to allow for fine-grained par-
allel execution. The different data types are declared by the user
using a class hierarchy language. For each class, a number of meth-
ods/modules are defined that are used for reading, writing, and pro-
cessing the data, with bindings to implementations of the methods.
Class inheritance can be exploited to avoid redundant methods and
class members. The modules are then connected in a data flow
network similar to the structure provided by visualization systems
such asAVSandData Explorer, that is the output of one module
is piped to the input of another set of modules. A set of operators
are provided for expressing which modules are allowed to run in
parallel, and which parts must execute in series. The output data
must be classified into a few number of meta-types, such as geome-
try and imagery, that the run-time system understands how to man-
age and display. A repository of generic and specialized modules
is maintained which can be supplemented to handle near arbitrary
data types, both by the pre-processor and the run-time system. The
dataset building process is entirely automated, making it very easy
to insert and remove data. This is important for facilitating real-
time acquisition and integration of data such as up-to-date satellite
imagery.

4.2 Run-Time System

The run-time part of VGIS has been designed to support highly in-
teractive frame rates. As such, it relies heavily on a multithreaded,
fine-grained task distribution. Since the display update rate is of-
ten of higher importance than the scene update rate, including level
of detail selection and animation, more resources are allocated to-
wards satisfying a minimum frame rate. In [20], we propose a ter-
rain geometry level of detail algorithm that generates “continuous”
levels of detail on-the-fly. While being highly efficient in select-
ing the vertices and triangles that make up the terrain surface for
a given view, the recursive traversal of the terrain data structures
for triangle stripping is a bottleneck that limits the rendering rate to
approximately 10 frames per second for pixel-accurate full-screen
views. As a lot of frame-to-frame coherence is evident in the re-
sulting triangle strips, it is often satisfactory to perform the LOD
management less frequently, say 1–5 times per second, and trade
the scene update rate for higher display rates. We accomplish this
by decoupling the two tasks and separate them into two different,
asynchronous threads. This scheme allows the scene to be redis-
played (with potential changes to the view between frames) un-
til new parts of the scene have been generated and submitted by
a scene manager. In addition, we further segregate different data
types, recognizing that different data products may require differ-
ent display update rates. For example, animated vehicles may be
updated at a higher rate than the terrain geometry.

By and large, our approach has been to identify the major bot-
tlenecks, such as blocking system calls, and isolate them from the
time-critical components. This means offloading the I/O intensive,
high latency data paging from the scene managers, and feeding the
render thread with “ready to render” display lists. The resulting
architecture forms a hierarchy of successively lower priority tasks.
Each of these tasks is discussed in the following sections.

4.2.1 Paging and Intermediate Processing

The server layer in VGIS provides an interface to accessing exter-
nal data and transforming it into the internal data structures em-

ployed by the display subsystem. Since the latencies involved in
disk transfers and inter-thread communication are significant com-
pared to display update times, the servers are decoupled and run
asynchronously from the more time-critical pieces of VGIS. How-
ever, since the requirements on bandwidth between servers and
clients are quite high, we chose to integrate the servers with the
back end of VGIS and have them communicate with the clients via
shared memory. In fact, the servers have direct access to the internal
caches of VGIS, limiting the communication to small request mes-
sages and acknowledgements (see Figure 1). For less time-critical
services (e.g. GIS queries), another (external) layer of servers can
be built on top of VGIS. An example of such an external server
is the ModSAF battlefield simulator which sends DIS packets over
a Unix socket (possibly from another machine) to the internal ob-
ject server, which in turn interprets the packets and reformats them
for internal storage. Thus, the VGIS servers have two tasks: “data
paging” and “intermediate processing,” or preparation and initial-
ization of the paged data. In this section, we will focus on the most
bandwidth-consuming service; terrain paging. Other servers op-
erate in a similar manner but under different conditions, and are
typically not limited by bandwidth.

For each view, there is a terrain manager thread, part of which is
a client module. The client module is responsible for making data
requests to the terrain server whenever data of some type and res-
olution is needed for a particular area, and taking the appropriate
actions upon notification by the terrain server that the request has
been serviced. When data is needed for a node in a quadtree, the
client allocates space for the data within a shared cache and sends
a message via a shared memory priority queue to the server. Mes-
sage priorities in this queue are changeddynamically according to
the importance of the associated request as determined by the level
of detail manager. Thus, requests that gradually become less im-
portant, or even obsolete, sift towards the end of the queue and get
serviced only when no higher priority requests remain in the queue.
This is important as the paging rate, during short bursts of requests,
is typically much lower than the request rate. The server dequeues
the highest priority request and either reads the data from disk if
it exists, or synthesizes the data from other sources (or possibly a
combination of both). After transferring the data from disk, the
server may have to do additional processing. In the case of eleva-
tion data, the server reads a height field raster from disk, and then
proceeds to transform the height field lat/lon/height coordinates into
an array of Cartesian vertices. LOD state and other parameters are
also generated and initialized before the request is completed, and
the terrain client making the request is notified by returning an ac-
knowledgement message.

Modules can be attached to the servers to handle paging of “ar-
bitrary” data types. A “read module” for each data subtype must be
registered with its corresponding server, and the core of the server is
merely a dispatcher of jobs to be executed by these modules. These
independent modules can be made to run in parallel to further in-
crease the throughput. In this fashion, a number of data types can be
synthesized from existing data and be easily integrated with VGIS
without having to restructure the server. For example, a module can
be added that synthesizes contour map images on-the-fly from ex-
isting elevation data. In this particular case, the elevation data may
not even have to be read in if it already resides in memory since the
servers have access to the shared memory cache.

4.2.2 Internal Representation and Caching

In the previous sections, we briefly mentioned the quadtree and
shared cache data structures. These two structures constitute the
basic components of the internal terrain representation. Rather than
having a single quadtree represent the globe, we chose to subdivide

4



the globe into a small number of quadrants.3 Each such quadrant is
further subdivided and organized by a hierarchical quadtree struc-
ture. A node in a quadtree corresponds to a rastertile of fixed di-
mensions and lat/lon resolutionaccording to the level on which it
appears in the quadtree. Quadnodes are identified by “quadcodes,”
which are constructed in a manner similar to the indices of array
representations of binary trees, that is the children of a node with
quadcodeq are identified by 4q+1 through 4q+4. In addition, the
quadcode contains a quadtree identifier which allows each quad-
code to uniquely identify an area on the globe.

In order to conserve memory, the static, view-independent data
associated with a node is stored in a shared cache. This allows
multiple terrain managers toaccess the same data without having
to replicate it. The shared cache itself is implemented as a set of
hash tables, one for each data type (e.g. elevation, phototexture,
ADRG), which have enough slots to hold all the quadnodes that ex-
ist in the dataset. These slots are initially empty, and are filled with
terrain data whenever a request is processed by the terrain server.
If a node is no longer needed by any of the terrain managers, the
space for it is deallocated. The quadcodes are used as hash keys
for accessing nodes in the hash table. Since the hash table slots are
initialized at startup, the terrain managers know whatnodes exist
externally such that no invalid data requests are made to the server.
To avoid race conditions on the hash tables, each table is supple-
mented with a lock or a semaphore. Note that the hash tables need
to be locked only on transitions such as when space for a node needs
to be allocated or freed (ensuring that multiple terrain managers do
not allocate or free a node's data simultaneously), or whenever a
manager begins or ceases to reference a node. Reference counts are
maintained so that the managers know when to allocate and free
nodes.

The actual quadtree structure and any view-dependent
parameters—such as vertex LOD state information—are stored
in a view-private cache (Figure 1). The quadtree data structure is
mostly a skeleton that indicates the presence of nodes, while the
shared cache holds most of the actual terrain data. This scheme
can be extended to data other than terrain, e.g. for moving vehicles
and stationary objects, where pointers are used to reference the
appropriate level of detail model within the shared cache.

In addition to spatially organizing the data, the quadtrees also de-
fine the boundaries of the aforementioned local coordinate systems.
If a single, geocentric coordinate system were used, and assuming
32-bit single precision floating point is used to describe geometri-
cal objects,4 the highest attainable accuracy on the surface of the
Earth is half a meter. Clearly, this is not sufficient to distinguish
features with details as small as a few centimeters, e.g. the treads
on a tank. As a matter of fact, many of the terrain datasets that
have been used in VGIS have 10 centimeter resolution. This lack in
precision results in “wobbling” as the vertices of the geometry are
snapped to discrete positions. To overcome this problem, we define
a number of local coordinate systems over the globe, which have
their origins displaced to the (oblate) spheroid surface that defines
the Earth sea-level. The origins of the top-level coordinate systems
are placed at the geographic centers (i.e. the mean of the boundary
longitudes and latitudes) of the quadtree roots. While the centroid
of the terrain surface within a given quadrant would result in a bet-
ter choice of origin in terms of average precision, we decided for
simplicity to opt for the geographic center, noting that the two are
very close in most cases. Thez axis of each coordinate system is
defined as the outward normal of the surface at the origin, while
they axis is parallel to the intersection of the tangent plane at the
origin and the plane described by the North and South poles and the
origin, that is they axis is orthogonal to thez axis and points due

3In the current implementation, thirty-two 45�

�45� quadrants are used.
4This is typically the highest precision available in current graphics hard-

ware.

North. Thex axis is simply the cross product of they andz axes,
i.e. x̂= ŷ� ẑ, and the three axes form an orthonormal basis. This
choice of orientation is very natural as it allows us to approximate
the “up” vector by the localz axis, which further lets us treat the
height field as a flat-projected surface with little error. Hence, the
height field LOD algorithm, which is based on vertical error in the
triangulation, does not have to be modified significantly to take the
curvature of the Earth into account. The delta values (see [20]) are
however computed in Cartesian rather than geodetic coordinates to
avoid over-simplification of “flat” areas such as oceans. Figure 2
illustrates the local coordinate systems for a few quadrants.

x

y

z

Figure 2: Local coordinate systems for the quadtree roots. The
labeled axes correspond to the conventional Earth Centered, Earth
Fixed Cartesian XYZ global coordinate system.

Using the above scheme, the resulting worst case precision for
a 45�� 45� quadrant is 25 cm—not significantly better than the
geocentric case. We could optionally use a finer subdivision with a
larger number of quadrants to obtain the required precision. How-
ever, this would result in a larger number of quadtrees, which is
undesirable since the lowest resolution data that can be displayed is
defined by the areal extent of the quadtree roots. Hence, too much
data would be needed to display the lowest resolution version of the
globe. Instead, we define additional coordinate systems within each
quadtree. In the current implementation, we have added 256�256
coordinate systems within each quadtree, resulting in a 1 mm worst
case precision.

4.2.3 Terrain Level of Detail

VGIS applies level of detail techniques to simplify both geometry
and texture detail. This is necessary to maintain interactive frame
rates as the global views typically contain millions, or even billions,
of surface polygons, with gigabytes worth of imagery. Both of these
techniques guarantee to meet an upper bound on the screen space
simplification error, and the error bounds can be manipulated inter-
actively by the user until sufficiently high frame rates are obtained.

The terrain geometry LOD algorithm is presented in [20], but
we will give a brief overview of it here. The algorithm proceeds in
two stages; a coarse-grained simplification in which quadnodes are
selected at the appropriate resolution, followed by a fine-grained
simplification in which individual vertices within each node are
decimated. The decision as to whether a vertex can be removed
is based on the screen space distance a vertex travels from its orig-
inal position to the resulting surface if it were to be removed. The
corresponding world space distance is referred to as the vertex's
“delta value”. If this distance is smaller than a screen space thresh-
old, the vertex is decimated and further simplification of nearby
vertices is considered recursively. The first stage—coarse-grained

5



simplification—entails traversing the quadtrees, evaluating the res-
olution required for each area, and making requests for height field
data whenever necessary. The delta values are computed by the
terrain server on-the-fly, which is an example of an intermediate
processing task (see Section 4.2.1). After the final set of vertices
have been selected, the LOD manager produces a single triangle
strip for each quadnode, which is simply a list of alternating ver-
tices and texture coordinates enclosed by begin/end triangle strip
commands. These display lists emulate the OpenGL counterpart,
but are not the same. The scene managers cannot utilize OpenGL
display lists directly as only one thread at a time is allowed to issue
graphics commands within an OpenGL context. Thus, synchro-
nization is required, potentially forcing other threads that are ready
to render to stall. Color Plate 6 shows a terrain surface tessellation
resulting from application of the continuous level of detail algo-
rithm. The pixel threshold in this view is one pixel. Note that the
shading has been applied to the geometry before simplification. See
Section 4.2.5 for further discussion on rendering.

The texture level of detail management bears some similarities
to the coarse-grained geometry simplification. Rather than project-
ing the largest delta value to the screen, the largest (in screen space)
texel is projected and compared to a threshold. The largest texel
is found in a way similar to the determination of the largest delta
value projection, i.e. it involves minimizing the viewpoint-to-texel
distance while simultaneously minimizing the angle the texel nor-
mal makes with the viewpoint-to-texel vector. We here assume that
all texels lie in a horizontal plane, but may be distributed in ele-
vation within the bounding box of a node. As a result, low detail
is used when the surface is viewed from the side, while relatively
higher detail is required for top-down views of the terrain.

4.2.4 Object Management

The object manager handles the display of static and moving pro-
trusive objects. For the latter it also handles animation. Since hun-
dreds to thousands of objects may appear in certain scenarios, the
object manager must accept and handle multiple levels of detail.
Individual objects will have levels of detail, and there will also be
grouping strategies. We have reported previously on hierarchical
grouping for sets of moving units [30]. In general moving and static
objects should be managed differently since they will have different
grouping strategies and different ways to handle object detail (e.g.
building textures). This is our eventual goal for the object manager.
For the rest of this section, we will discuss how we handle moving
objects.

Moving units can be simulated with ModSAF and transmitted
to VGIS using a a DIS protocol. This is handled by a thread that
keeps up with the events generated by ModSAF and performs dead
reckoning when intermediate states need to be interpolated. VGIS
has also accepted real-time position information for vehicles via the
DIS interface. Color Plate 5illustrates a number of tanks that have
been instantiated in VGIS as a result of DIS packets received from
ModSAF.

Although ModSAF can provide hierarchical information, it is
often unavailable in other situations (e.g. in a battlefield scenario
involving enemy units). For these situations we have developed
dynamic clustering methods. Even though the clustering analysis
can be handled asynchronously with the render thread in the VGIS
framework, it still must be fast. To achieve this we use an algorithm
that clusters units that are located within a threshold distance from
an existing cluster. Units that satisfy this criterion are added to the
cluster. The ones that do not meet this requirement are used to
generate new clusters. At the end clusters that are too close to each
other are combined. In most cases this analysis can be completed
at interactive rates.

The cluster information is used to extract hierarchical informa-
tion from the moving units by treating the resulting clusters as enti-

ties and clustering them at a higher level. This information is used
by the LOD manager to replace groups of units with correspond-
ing symbols based on viewing distance and total number of moving
objects.

Since there will usually be semantic information such as object
type and behavior associated with the clustered objects, the clus-
ters can be evaluated for importance. Stytz et al. [29] have shown
this is possible using fuzzy logic methods. We are applying and
extending these methods to the dynamic clusters within VGIS. The
Stytz approach sets static watch areas and evaluates only units that
enter these areas whereas our approach handles dynamic clusters
wherever they occur. The fuzzy logic techniques can handle large
amounts of semantic information and transform it into relative im-
portance weightings. These weightings can be used for situation
awareness (highlighting those clusters that are especially important)
and for detail management (more important groupings would show
finer detail).

4.2.5 Rendering

Monoscopic and stereo rendering in VGIS is handled by a single
thread, which renders into one or more windows. The scene man-
agers communicate with the render thread via buffering of graph-
ics commands that are encapsulated in display lists. For each con-
nection with the render thread, there is a buffer of three dynami-
cally growing/shrinking display lists, called a “triple buffer”. One
of the three display lists corresponds to what the renderer is cur-
rently drawing, a second display list is used by the scene manager
to buffer graphics commands, while the third display list contains
data that is ready to be displayed. This scheme allows both the ren-
derer and the scene managers to run simultaneously without having
to be synchronized. Consider, for example, if only two display lists
per connection were used. In such a case, the scene manager, upon
submitting a display list, would have to wait for the renderer to
finish rendering a frame before the lists could be swapped. When
triple buffers are used, the scene managers have to stall only when
they produce scenes faster than the renderer can process them.

At the beginning of each frame, the renderer fetches the most
current view parameters from the user interface thread. Typically,
the UI thread runs at least as fast as the renderer. For each win-
dow, the renderer then fetches the most recently updated associated
display list, and begins parsing it. For stereo views, the same dis-
play list is used twice, with different view parameters for each eye.
Nearly all of the commands and parameters in the display list map
directly to OpenGL function calls. However, there are a few com-
mands that have special meanings, which will be described below.

Because the scene managers and the renderer work asyn-
chronously, there is no single consistent set of view parameters
among them.5 They all fetch the most current parameters from the
UI thread at the beginning of each frame/pass. Hence, view culling
cannot be performed by the scene managers since the field of view
may change after a scene has been submitted, at which point parts of
the scene may be absent. Since view culling can drastically improve
rendering rates, VGIS assigns this task to the renderer. The scene
managers can insertcull-begin/end commands accompanied
by bounding boxes that completely enclose the object in question.
Whenever the renderer encounters a bounding box, it tests the box
for intersection with its copy of the view volume, and skips the
commands up till the correspondingcull-end command if the
two do not intersect. Cull commands can be nested to quickly elim-
inate large parts of the scene.

The terrain surface is represented as a number of quadnodes in
possibly different coordinate systems (see Section 4.2.2). When-
ever a transition from one coordinate system to another occurs, the

5The view parameters between threads exhibit a lot of coherence, how-
ever, since they are updated at nearly the same rate.

6



scene manager must instruct the renderer to switch to the new co-
ordinate system. This implies changing the current modelview ma-
trix, which is the product of the local to global coordinate trans-
formation and the world to eye coordinate transformation. Thus,
there is a command for loading the current modelview matrix, as
well as the regular OpenGL matrix multiply command. All matrix
transformations are done in double precision to reduce roundoff er-
rors. Many implementations of OpenGL do not perform matrix
multiplications indouble precision, so these have to be carried out
manually, and the result is then loaded onto the OpenGL matrix
stack.

Texture data is not passed to the renderer explicitly, but is rather
referenced via a pointer to a shared memory structure. Whenever a
use-texture command is encountered, the renderer determines
whether the texture has already been defined. If not, a texture iden-
tifier is allocated and the texture is defined usingglTexImage .
If a texture is no longer needed, the last scene manager to use it
sends adelete-texture command, which allows the renderer
to deallocate the texture ID for later reuse. A number of policies
are enforced such that texture allocation and deallocation are syn-
chronized among threads, ensuring that the thread deallocating the
image data is the only remaining thread with a reference to the tex-
ture.

Many terrain rendering systems approach the problem of render-
ing non-protrusive features such as roads and rivers by constraining
the surface triangulation to follow the terrain features. This is not
a viable alternative in VGIS as the surface triangulation is regular.
Instead, we exploit the automatic texture coordinate generation and
clipping facilities supported by OpenGL. As a pre-processing step,
2D vector data that describes the features is converted to a set of
adjoining quadrilaterals (assuming some feature width). For fea-
tures that use texturing, two adjacent edges of each quadrilateral
in conjunction with the vertical define two reference planes from
which texture coordinates are determined using theglTexGen
function. A single, high resolution image such as a road texture
can be repeated across the quadrilateral, whose boundary is defined
using OpenGL'sglClipPlane feature. For each quadrilateral,
the terrain surface triangles that intersect it in two dimensions are
identified using simple line intersection tests in thex-y plane. This
culling task is aided by the hierarchical structures associated with
the quadtree and the recursively defined triangle mesh. The result-
ing triangles are then rendered on top of the already drawn terrain
surface.

4.2.6 User Interface and Navigation

The user interface thread handles input events from steering de-
vices and interface widgets such as menus and sliders, performs
navigation, and also acts as the overall manager of the run-time
system. The decoupling of the user interface from other threads
ensures high responsiveness to user input, while letting the most
time-critical threads bypass expensive systems calls such as device
polling. The user interface is otherwise mostly callback driven and
is based on the X11/Motif mechanisms for event handling in the
Unix version. Menus, sliders, and forms are provided to the user for
interacting with and navigating the environment, with real-time re-
sponses to user input. Several input devices, such as mouse, space-
ball, and 3D position and orientation tracking are supported. Two
modes of navigation are currently in use: orbital mode, in which
the user manipulates the globe via rotations and zooming, and free
flight mode, which provides a six degree of freedom navigation in-
terface. For each view, the UI thread maintains a master copy of the
view parameters, which are fetched frequently by the renderer and
scene managers. The UI thread additionally oversees system-wide
tasks such as system initialization, resource allocation (e.g. tex-
ture memory, polygon budgets, thread and message queue creation,

CPU time, etc.), and coordinates both internal threads and external
connections.

Due to the large range in geographic scale that VGIS operates
over, several navigation and view parameters must be set accord-
ing to the scale of the environment that is visualized. For example,
the flight speed should be relatively large when the entire globe is
visible to the user, while it must be reduced as the user approaches
the surface. Similarly, the angular velocity in orbital viewing mode
should preferably be mapped such that the arc length of a rotation
in screen space is proportional to the mouse cursor's movement on
the screen, i.e. the angular velocity should increase with altitude,
providing the user with a sense of grabbing and panning the terrain.
For stereo views, parameters such as focal length and eye-to-eye
distance must be adjusted appropriately to enhance the stereo ef-
fect as perceived by the user. From a rendering standpoint, the two
most important view-dependent parameters are the placements of
the near and far clipping planes. In order to maximizez buffer res-
olution, the far plane distance is made a small as possible without
clipping away any visible parts of the terrain. By using the curva-
ture of the Earth and an upper bound on elevation, the appropriate
far plane distance is recomputed whenever the user moves. The
near plane distance is then expressed as a fixed fraction of the far
plane distance, and most other view-dependent parameters are sim-
ilarly kept proportional to the latter.

5 RESULTS

VGIS has been extensively used both by itself and as the central
componentof the Battlefield Planning and Visualization (BPV) sys-
tem produced by the Army's CECOM organization. It has been
fielded for military exercises at Ft. Bragg, Ft. Hood, and the Na-
tional Training Center at Ft. Irwin among other places. Recently
it was used in the Force 21 Army Warfighter Experiment at NTC,
the biggest experiment of its kind in 20 years. In all these cases
VGIS was operated by non-expert military personnel (usually par-
ticipants in the exercises). This has generated a wealth of feedback
about the navigation interface, the tools provided, the quality of
the visualizations, the rendering speed, and the ability to add new
data to the database. Many of these evaluations were used to im-
prove the VGIS design and capabilities. VGIS has also been used
for strategic and tactical planning for military hotspots and poten-
tial hotspots. Often very large amounts of new terrain data must be
quickly prepared and inserted for these activities. Since the data is
often classified, this work must be done without direct or indirect
help of the VGIS team.

To evaluate the performance of VGIS, we have built a dataset
consisting of elevation and imagery data at multiple resolutions.
Color Plates 1–4 illustrate views along a continuous flight path
from outer space into downtown Atlanta. A 3.5 arcminute (approx-
imately 8 km) resolution global dataset constitutes the base layer,
with additional higher resolution data inset in select areas: a 1 km
resolution dataset for North America, a 100 meter resolution dataset
for the state of Georgia, the metropolitan Atlanta area at 10 meter
resolution, and finally higher resolution hotspots for the downtown
area (1 m) as well as the Georgia Tech campus (0.4 m). Both ele-
vation and image data exist for these areas, except for the last two
for which only imagery was obtained. In addition, 471 textured 3D
building models have been inserted into their geographically cor-
rect locations in the downtown area. The total size of this dataset
exceeds 900 MB. Despite being provided by a number of different
sources, we observed exceptionally good registration between the
datasets in both the elevation and imagery data, requiring no manual
labor to rectify or correlate the data.

The timings for the performance evaluation were obtained on
an SGI Onyx InfiniteReality workstation with a single 194 MHz
R10000 processor and 16 MB of texture memory. The pre-

7



processing stage took approximately 30 minutes from start to finish,
and required no user interaction other than the initial specification
of what datasets to include. The run-time performance was mea-
sured in terms of rendered frames per second, which ranged from
20–30 for a 1024�768 pixel window, with geometric and image
accuracies of two pixels. The scene update rates (level of detail
evaluations etc.) for the terrain varied between 1 and 20 Hz.

6 CONCLUSION AND FUTURE WORK

We have designed and implemented a real-time 3D visualization
system, VGIS, which integrates visual simulation techniques for
interactive rendering and management of huge graphical databases
with query and manipulation capabilities for spatial geographic
data. The system allows visualization of terrain and other data
types over the entire surface of the Earth, and manages very high
resolution datasets at real-time rates, by taking advantage of hier-
archical, multiresolution spatial data structures and asynchronous
multithreading. The system has met its original requirements for
high interactivity and the ability to handlehuge databases, and has
proved useful for military planning and visualization tasks in Army
exercises.

VGIS continues to be improved and extended to meet new appli-
cation demands. One issue we plan to address is acquisition and in-
tegration of terrain data “on-the-fly,” modifying the current terrain
data pre-processing stage to allow fast changes to the underlying
terrain and GIS source data. This will allow for dynamic defor-
mations of the terrain surface, as well as dramatic decreases in the
time required to visualize newly obtained terrain data. Other areas
of current and future work include further development of a level
of detail framework integrating the large variety of data types, and
improving the user interface functionality and system support for
users in making sense of the huge amounts of information VGIS is
capable of displaying.

Acknowledgement

This work was performed in part under contract DAKF11–91–D–
0004–0034 from the U.S. Army Research Laboratory. We would
like to thank Larry Tokarcik and his team at the Army Research
Laboratory for their help in developing specifications for VGIS and
in supplying high resolution terrain data.

References
[1] BRYSON, S. T. and JOHAN, S. Time Management, Simultaneity and Time-

Critical Computation in Interactive Unsteady Visualization Environments. In
Proceedings of Visualization '96, October 1996, pp. 255–261.

[2] COHEN-OR, D., RICH, E., LERNER, U. and SHENKAR, V. A Real-Time
Photo-Realistic Visual Flythrough.IEEE Transactions on Visualization and
Computer Graphics2(3), September 1996, pp. 255–265.

[3] COSMAN, M. A., M ATHISEN, A. E., and ROBINSON, J. A. A New Visual
System to Support Advanced Requirements. InProceedings, IMAGE V Confer-
ence, June 1990, pp. 370–380.

[4] DE BERG, M. and DOBRINDT, K. T. G. On Levels of Detail in Terrains. In
11th ACM Symposium on ComputationalGeometry, June 1995.

[5] DE FLORIANI , L. and PUPPO, E. Hierarchical Triangulation for Multiresolu-
tion Surface Description.ACM Transactions on Graphics14(4), October 1995,
pp. 363–411.

[6] DOUGLAS, D. H. Experiments to Locate Ridges and Channels to Create a New
Type of Digital Elevation Model.Cartographica23(4), 1986, pp. 29–61.

[7] ERVIN , S. M. Landscape Visualization with Emaps.IEEE Computer Graphics
and Applications13(2), 1993, pp. 28–33.

[8] FEKETE, G. Rendering and Managing Spherical Data with Sphere Quadtrees.
In Proceedings of Visualization '90, 1990.

[9] FERGUSON, R. L., ECONOMY, R., KELLY, W. A., and RAMOS, P. P. Contin-
uous Terrain Level of Detail for Visual Simulation. InProceedings, IMAGE V
Conference, June 1990, pp. 144–151.

[10] FOWLER, R. J. and LITTLE, J. J. Automatic Extraction of Irregular Network
Digital Terrain Models. Proceedings of SIGGRAPH 79. InComputer Graphics
13(2) (August 1979), pp. 199–207.

[11] GARLAND , M. and HECKBERT, P. S. Fast Polygonal Approximation of
Terrains and Height Fields. Technical Report CMU-CS-95-181, CS Dept.,
Carnegie Mellon U., 1995.

[12] GIERTSEN, C. and LUCAS, A. 3D Visualization for 2D GIS: an Analysis of the
Users' Needs and a Review of Techniques. InProceedings of Eurographics'94,
1994, pp. C-1–C-12.

[13] GOODCHILD, M. F. and SHIREN, Y. A Hierarchical Spatial Data Structure
for Global Geographic Information Systems.CVGIP: Graphical Models and
Image Processing54(1), 1992, pp. 31–44.

[14] GROSS, M. H., GATTI , R., and STAADT, O. Fast Multiresolution Surface
Meshing. InProceedings of Visualization '95, October 1995, pp. 135–142.

[15] GRUENEIS, G., MAYER, P., SAUTER, J., and SCHMIDT, A. T Vision. InVisual
Proceedings of SIGGRAPH 95, August 1995, p. 134.

[16] HITCHNER, L. E. Virtual Planetary Exploration: A Very Large Virtual Envi-
ronment. ACM SIGGRAPH 92 Tutorial on Implementing Immersive Virtual
Environments, 1992.

[17] KOLLER, D., LINDSTROM, P., RIBARSKY, W., HODGES, L. F., FAUST, N.,
and TURNER, G. Virtual GIS: A Real-Time 3D Geographic Information Sys-
tem. InProceedings of Visualization'95, October 1995, pp. 94–100.

[18] L ECLERC, Y. G. and LAU, S. Q. TerraVision: A Terrain Visualization System.
SRI International Technical Note No. 540, April 1994.

[19] L I , P. P., DUQUETTE, W. H., and CURKENDALL , D. W. RIVA: A Versatile
Parallel Rendering System for Interactive Scientific Visualization.IEEE Trans-
actions on Visualization and Computer Graphics2(3), September 1996, pp.
186–201.

[20] L INDSTROM, P., KOLLER, D., RIBARSKY, W., HODGES, L. F., FAUST, N.,
and TURNER, G. A. Real-Time, Continuous Level of Detail Rendering of
Height Fields. Proceedingsof SIGGRAPH 96. InComputer GraphicsProceed-
ings, Annual Conference Series, 1996, ACM SIGGRAPH, pp. 109–118.

[21] NISHITA , T., SIRAI , T., TADAMURA , K., and NAKAMAE , E. Display of
the Earth Taking into Account Atmospheric Scattering. Proceedings of SIG-
GRAPH 93. InComputer GraphicsProceedings, Annual Conference Series,
1993, ACM SIGGRAPH, pp. 175–182.

[22] RHYNE, T. M., IVEY, W., KNAPP, L., KOCHEVAR, P., and MACE, T. Visual-
ization and GeographicInformationSystem Integration: What are the needs and
requirements, if any? InProceedings of Visualization '94, 1994, pp. 400–403.

[23] ROHLF, J. and HELMAN , J. IRIS Performer: A High Performance Multipro-
cessing Toolkit for Real-Time 3D Graphics. Proceedings of SIGGRAPH 94. In
Computer GraphicsProceedings, Annual Conference Series, 1994, ACM SIG-
GRAPH, pp. 381–394.

[24] ROST, R., DOZIER, J., HIBBARD, B., KOCHEVAR, P., TREINISH, L., and
VON SANT, T. ACM SIGGRAPH 93 Course Notes 71: Visualizing Planet
Earth, 1993.

[25] SAMET, H. The Quadtree and Related HierarchicalData Structures.ACM Com-
puting Surveys16(2), June 1984, pp. 187–260.

[26] SCARLATOS, L. L. A Refined Triangulation Hierarchy for Multiple Levels of
Terrain Detail. InProceedings, IMAGE V Conference, June 1990, pp. 114–122.

[27] SCHRODER, F. and ROSSBACH, P. Managing the Complexity of Digital Terrain
Models.Computers & Graphics18(6), 1994, pp. 775–783.

[28] SOUTHARD, D. A. Piecewise Planar Surface Models from Sampled Data.Sci-
entific Visualization of Physical Phenomena, June 1991, pp. 667–680.

[29] STYTZ, M., BLOCK, E., and SOLTZ, B. Providing Situation Awareness Assis-
tance to Users of Large-Scale, Dynamic, Complex Virtual Environments.Pres-
ence. Vol 2. No 4, Fall 1993, pp. 297–313.

[30] TURNER, G., HAUS, J., NEWTON, G., RIBARSKY, W., FAUST, N., and
HODGES, L. F. 4D Symbology for Sensing and Simulation. InProceedings
of the SPIE—The International Society for Optical Engineering2740, April
1996, pp. 31–41.

[31] WILLIS , L. R., JONES, M. T., and ZHAO, J. A Method for Continuous Adap-
tive Terrain. InProceedings of the1996 IMAGE Conference, June 1996.

[32] X IA , J. C. and VARSHNEY, A. Dynamic View-Dependent Simplification for
Polygonal Models. InProceedings of Visualization '96, 1996, pp. 327–334.

[33] YAN, J. K. Advances in Computer-Generated Imagery for Flight Simulation.
IEEE Computer Graphics and Applications5(8), 1985, pp. 37–51.

8



1. Visualization of the global dataset
(8 km resolution) from an altitude of
12,000 km.

2. View approaching the state of
Georgia inset data (100 m resolution).

3. Four data insets of varying
resolutions (1, 10, 100, and 1,000 m).

4. View of downtown Atlanta data
with 3D building models.

5. DIS simulation of tanks engaged in
battle at Ft. Irwin, CA.

6. Continuous level of detail terrain
surface tessellation.

9


