Packet-based Ray Tracing of Catmull-Clark Subdivision Surfaces

Carsten Benthin®

Intel Corporation °Stanford University

Solomon Boulos®
fWalt Disney Animation Studios

Ingo Wald Tt
FSCI Institute, University of Utah

Dylan Lacewell

(c) Disney

Figure 1: Direct ray tracing of a complex subdivision surface scene containing 1.79M base faces, from Disney’s Meet the Robinsons (©).
Left: For reference, production rendering using Pixar’s PRMan. Center: Pure ray casting of the subdivision surfaces (no water or skydome)
with simple shading. Using 5 levels of uniform subdivision, we can render this frame at 2.2 frames per second on an 8-Core 2.0 GHz Core
2 Quad MacPro (1384 x 757 pixels). Right: Using an adaptive subdivision scheme at comparable quality at 4.8 fps (red = 5 subdivisions;

green = 4, blue = 3, cyan is crack fixing).
Abstract

Efficient ray tracing of subdivision surfaces is an important prob-
lem in production rendering, and for interactive applications in the
near future. The current hardware trends for both CPUs and GPUs
suggest that compute power is outpacing bandwidth. Despite this,
current approaches for ray tracing subdivision surfaces favor ge-
ometry caches or full pre-tessellation. We demonstrate that directly
ray tracing subdivision surfaces using ray packets uses much less
bandwidth, while still providing amortization benefits. Our pro-
posed method performs competitively with pre-tessellation even on
current hardware, outperforms a single-ray implementation by up
to 16x and Pixar’s PRMan 13.0 geometry caching by up to 23.1x.

1 Introduction

Subdivision surfaces (Subds) have become the most widely used
organic modeling primitive in the animation industry, and we ex-
pect games to follow this trend in the future. The advantage of
subds is that smooth surfaces can be described at a very coarse
level, with the generation of a temporary, dense polygonal mesh de-
ferred until late in the rendering pipeline (e.g., as in a REYES ren-
derer [CCC87]). Deferred tessellation places the strain on compute
power rather than on the memory system, which will have increas-
ing benefits over geometry caching as compute power continues to
increase more quickly than memory bandwidth.

We also expect future games to demand increasing amounts of ray
tracing. At first ray tracing might be used for occlusion queries
(e.g. exact hard shadows, easy soft shadows, collision detection),
and later for indirect lighting effects such as reflections and global
illumination. Not having the ability to ray trace subds will quickly
become a barrier to the adoption of ray tracing in games.

In this paper, we show that it is possible to efficiently support di-
rect ray tracing of subds, specifically Catmull-Clark surfaces, with-
out a geometry cache. We instead rely on ray packets to provide a
similar amortization benefit but with lower memory bandwidth; we
use only kilobytes of memory per packet, which fits in the proces-
sor’s local cache hierarchy. Compared to either geometry caching
schemes or single-ray intersection, our packet traversal provides
significant speedups even for real-world film production scenes (see
Figure 1).

2 Background

2.1 Subdivision surfaces

Subdivision surfaces define a smooth limit surface by recursively
subdividing a polygonal mesh, called the control mesh. Vari-
ous subdivision rules have been proposed (e.g., [DS78; CC78;
Loo87; ZSS96]), but Catmull-Clark subdivision has become the
most common scheme in production rendering since it was adopted
by Pixar [DKT98].

Catmull-Clark subdivision

Catmull-Clark (CC) subdivision surfaces generalize bicubic B-
spline surfaces. For detailed background information, the recent
SIGGRAPH course notes [ZSD*00] are an excellent primer. We
will focus on the properties most relevant to our implementation.

To refine one mesh M into another Mi“, the Catmull-Clark sub-
division rules are as follows (also see, e.g., [DKT98]):

1. Create new face points. For each face, compute it’s centroid,
and add it as a new face point f**!.

2. Create new edge points. For each edge compute a new edge
point e;H by averaging it’s two vertices v}, vj; and the mid-

points f;“ and f;ﬂ of its two neighboring faces.

3. Refine vertices. For each vertex v’, the new vertex v't! is

the weighted average of the adjacent edge points e;-, all face
points f;*l of faces incident to this vertex and v" itself.

4. Generate new mesh by connecting each new face point f i+l
to all of its surrounding new edge ' ™! and vertex points v**?.

Though not obvious from the rules above, CC subdivision has a
number of useful properties for purposes of efficient ray tracing.
After one round of subdivision all faces become quads, and except
for boundaries, at most one vertex of a quad can be an extraordinary
vertex (EV), with valence not equal to 4. Also, CC subdivision is
invariant under affine transformations, which means any number
of data “channels” (e.g., position plus texture coordinates) can be
stored at the vertices, and every channel can be subdivided inde-
pendently. Most importantly for our purposes, subdivision is local:
only a small neighborhood of adjacent faces (the 1-ring) is need to
subdivide a face.

a) b) *——o)

Figure 2:

2 3

1 1 1
1 1 1
OI 1I 1
i Y M. R

o o d)

a) 1-ring for a single vertex. The 1-ring of a quad consists of the union of the 1-rings of its four vertices. b) 1-ring for a regular

face. The sixteen control vertices can be stored in an efficient 4x4 layout. Explicit connectivity is not required. c) After one subdivision step,
a quadrilateral can only contain one EV. Even for irregular faces, the 4x4 layout is maintained and the 1-ring for the EV is stored separately.
d) One-ring for a regular boundary face. Vertices O through 3 are extrapolated, e.g., vo = 2v4 — vs.

2.2 Interactive ray tracing

Researchers have demonstrated the feasibility of interactive ray
tracing in many settings over the last decade. With the supercom-
puter work by Parker et al. [PMS*99] and then later for commod-
ity hardware with SIMD by Wald et al. [WSBWO1]. Extending
this trend beyond simple hardware gains, Reshetov et al. [RSHOS5]
demonstrated a novel use of packets that allowed kd-trees to achieve
amortization beyond SIMD speedups alone. Wald et al. [WIK*06;
WBSO07] then presented a pair of algorithms that handle dynamic
scenes while also including new packet based approaches that go
beyond SIMD speedups alone.

In the packet based approaches, gains beyond single ray are only
achieved when the rays within packets follow the same traversal
path. In the case of primary rays and coherent shadow rays, the pre-
vious papers demonstrate excellent amortization results for packet
tracing. As noted by Reshetov [Res06], the speedups gained by
recent work in packets may not apply to more general ray trac-
ing. Boulos et al. [BEL*07] recently demonstrated, however, that
bounding volume hierarchies still allow for both SIMD and algo-
rithmic speedups for both Whitted style and distribution ray trac-
ing [CPC84].

In all of these packet approaches, the gains of using packets is
strongly linked to the cost of the repeated operation. If a packet
is used to amortize only a few inexpensive operations (e.g., kd-tree
plane tests), there is not very much benefit in amortization. In this
paper, we demonstrate that ray packets provide an efficient way to
amortize subdivision cost, and significantly outperform a single ray
implementation.

2.3 Ray tracing higher-order surfaces

Methods for ray tracing higher-order surfaces tend to fall into two
broad categories: tessellation and direct intersection.

In a tessellation approach, the higher-order surface is diced up into
small polygons (triangles or quads). This works well for stream-
ing geometry in the REYES system [CCC87] but usually requires a
caching system to support less coherent ray intersection. In Pharr et
al. [PKGH97], rays are coherently marched through a coarse scene
grid and geometry is tessellated on demand and reused. Chris-
tensen et al. [CLF*03] achieve high hit rates with a multi-resolution
caching scheme, using ray differentials to determine which level of
the cache to access.

In contrast to tessellation, researchers have also demonstrated di-
rect ray intersection of smooth surfaces including Bezier surfaces,
trimmed NURBS surfaces, and subdivision surfaces. Direct ray
tracing of trimmed NURBS surfaces were demonstrated in the Utah
Interactive Ray Tracer [PMS*99; MCFS00]. More recently, Ben-
thin et al. [BWS04] demonstrated ray tracing of Bezier surfaces

and Loop subdivision with a focus on SIMD parallelism. Using
multi-core systems it is now possible to directly ray trace trimmed
NURBS surfaces interactively [OA06].

In Whitted’s original ray tracing paper [Whi80], support for
Catmull-Clark subdivision was provided through a simple recur-
sive method, chosen for simplicity rather than efficiency. Kobbelt et
al. [KDS98] present a basis function approach to building a bound-
ing hierarchy over a subdivision surface and directly intersect this
surface. Mueller et al. [MTF03] present a method to adaptively ray
trace subdivision surfaces. Both methods use single ray implemen-
tations and were far from interactive.

3 Ray Tracing Subdivision Surfaces

In this section, we explain how we directly intersect a ray with a
Catmull-Clark subdivision surface. We first sketch this for a single
ray and then discuss important technical issues such as handling
of boundaries, termination criteria, and tightness of bounding vol-
umes. Finally, we discuss the extension to ray packets for improved
performance.

3.1 Catmull-Clark patch intersection

We begin by separating the base mesh into individual faces and
their 1-rings , which we call “patches”. Note that the 1-ring of
a quad consists of the union of the 1-rings of its four vertices, see
Figure 2 (a). Due to the local support of Catmull-Clark subdivision,
the 1-ring is the only information required to subdivide a face.

Next we build an acceleration structure over the initial set of patches
(we use a BVH), and begin tracing rays. Once we have deter-
mined that a ray has intersected a patch’s bounding box (more on
that later), we either decide we have reached a sufficient refine-
ment level or continue to subdivide. Subdivision produces four
sub-patches assuming we have subdivided the mesh once on input.

For each of these sub-patches, we recurse until a termination cri-
terion is satisfied. A constant maximum depth is the simplest cri-
terion, which we use as a baseline, but we also describe a sim-
ple adaptive scheme in Section 3.7. When we reach the maximum
depth, a final intersection test is performed. We split the final quad
(which may be non-planar) into two triangles and perform intersec-
tion tests on each of them. Note that we do not retain any of the
subdivided patches in memory once the ray terminates.

3.2 Efficient data layout

The vast majority of faces on a mesh are regular (each vertex has
valence 4) and form a 4 X 4 grid as shown in Figure 2 (b). For this
common case, connectivity is implicit and we only need to store the
16 vertices.

Irregular faces as shown in Figure 2 (c) are relatively rare, and their
relative occurrence decreases with the amount of subdivision ap-
plied. Furthermore, a face can have at most one EV, so the case
illustrated is really the only case, up to rotation and valence of the
EV. We only need to store the index and 1-ring of the EV separately.

For quads on the boundary of the mesh, we take advantage of ex-
trapolation to store the “virtual” 1-ring in our efficient 4 x 4 for-
mat (see Figure 2d). Extrapolation produces a B-spline boundary
by canceling terms in the bicubic B-spline; this allows us to treat
boundary cases as regular subdivision and avoid more complicated
control flow.

To ensure high data locality we store the 1-ring for each patch in a
continuous memory region. Moreover, all vertices are stored using
aligned SIMD vectors (each of which is 4 floats). As we wish to
support texture coordinates, we allow each vertex to represent a 5-
tuple (z,y, z, s,t). Because of the SIMD requirement, we end up
storing this as 2 SIMD vectors or 8-tuple.

Sometimes, however, rays only need to compute intersections with-
out regard to texture coordinates (e.g. shadow rays). In this case, we
subdivide only the first SIMD vector corresponding to the position
information. As detailed in Section 4, this can lead to almost a 2 x
speedup for these rays.

3.3 Tight bounding volumes

As with any acceleration structure, tighter bounding volumes pro-
duce better traversal results. In this case we seek a tight bounding
box for the limit surface of a patch. From subdivision surface the-
ory, the only guarantee that can be made is that the convex hull of
the patch bounds the limit surface. By extension, an axis aligned
bounding box of the patch also bounds the limit surface. However,
the convex hull contains the full one-ring around the current patch,
and so is usually very large (for a regular mesh, it’s roughly 9x the
size of the eventual limit surface). Since the probability of a ran-
dom ray hitting a box is proportional to its surface area, these boxes
are not very efficient to use for ray tracing.

In our system, we instead utilize a “look-ahead” scheme, based on
a nesting property: since we seek to bound the limit surface, we
may replace the bounds for a patch with the combined bounds for
its children. As part of reading the model, we subdivide each patch
a fixed number of times before calculating its bounding box. (We
do not retain the child patches in memory, only the bounding box
and the base patch). The tighter bounding boxes greatly reduce the
overlap of boxes for neighboring patches and reduces the average
number of intersections per packet by up to an order or magnitude
for some scenes.

3.4 Amortization using packets

The cost of a subdivision step in the modified Catmull-Clark
scheme is fairly high. Even in the regular case (see Figure 2b),
we must compute 9 new face vertices, 12 new edge vertices, and 4
new vertex positions. This maps well to an efficient SIMD imple-
mentation, but the computational costs are still large.

Extending the BVH packet traversal algorithm [WBS07] is fairly
straightforward for the recursive subdivision method. The behavior
with respect to culling and first hit probabilities seems to remain
roughly the same as in the triangular case (comparing the culling
probabilities in Table 1 with those in [WBS07]). The benefit of
early culling is also higher for subdivision surfaces, as we save
more by avoiding a subdivision step than avoiding a triangle test.

Scene | Killerroo Forest Disney
BVH Traversal Steps 25.09 54.39 72.21
BVH Leaf Intersections 2.71 7.77 30.19
Subdivisions 12.54 3549 803.48
- regular 11.99 3526 797.55
- irregular 0.54 0.23 5.93
AABB Culling Tests 79.87% 61.04% 48.98%
- Early Hit Tests 25.82% 26.77% 17.72%
- IA Culling Tests 54.06% 34.27% 31.26%
Final Intersections 8.64 20.66 119.64
- Active SIMD packets 3.65 2.14 1.71

Table 1: Traversal stats for a ray packet size of 64 rays (max.
16 active SIMD packets) using a predefined subdivision level of
5 (1+4). Each frame is rendered using ray casting (primary rays
only) and uses approximately 1M rays.

As with any packet-based method, the packet size strongly corre-
lates with performance. If the number of rays within the packet is
too small, the costs for subdivision cannot be efficiently amortized.
On the other hand, a larger number of rays in a packet usually ex-
hibit less coherence and culling efficiency is greatly reduced. In
our case a packet size of 64 rays shows the best relation between
culling efficiency and amortization, which is also in line with pre-
vious findings for triangular scenes [WBS07].

3.5 Final intersection

When the termination criteria is reached a final intersection step is
performed. Our approach separates the final quadrilateral, which
might not be planar, into two triangles which are intersected se-
quentially. As triangle tests are typically more expensive than ray-
box tests, we first shrink the packet by determining both the first
and the last index of rays in the packet which intersect the current
bounding box [WBS07]. Triangle intersections are then only per-
formed for these active rays. It is still more likely for a ray to miss
a triangle than to hit it, so we perform an inside-outside test before
the distance test [Ben06], typically resulting in a 5-8% speedup.

3.6 Pseudo-code and implementation details

Algorithm 1 shows the pseudo code for our patch intersection algo-
rithm. As vertices are stored in a SIMD-friendly layout, the bound-
ing box for each patch can be computed by a sequence of SSE-
min/max operations. In combination with the SIMD implementa-
tion of the BVH-first hit and BVH-interval culling test, a patch can
be either chosen for subdivision or quickly culled.

During intersection, we must maintain a stack of patches that need
to be subdivided. Essentially these patches are like nodes in a stan-
dard BVH, but the subdivision rules lead to a branching factor of
4. Each patch is fairly small, however, so the full stack for a rea-
sonable number of subdivisions requires only a few KB of storage.
Therefore we don’t bother pre-allocating the stack for each thread.
As regular and irregular patches have a slightly different memory
layout, the subdivision code checks the type and branches to differ-
ent optimized versions of the “Subdivide” method.

3.7 Adaptive subdivision

A fixed subdivision level is not efficient for scenes with a large
range of depth values, where a single resolution is too low for ob-
jects near the camera, but too high for distant objects. When ren-
dering from a known camera position it may be possible (although
tedious) for an artist to assign a subdivision level to each object;
this is not possible in interactive applications.

Algorithm 1 Pseudo C++ code for our on-the-fly subdivision in-
tersection. Sub-patches are processed in a depth-first manner which
limits the size of the subdivision stack to four times the maximum
subdivision level. As the stack typically requires only kilobytes of
memory, it can be resident within the CPU’s cache hierarchy.

while true do
if stack.isEmpty() == true then
break
currentPatch = stack.pop()
Bounds box = currentPatch.GetBounds()
if box.CulledByIATest(rayPacket) == true then
continue
if box.FirstHitTest(rayPacket) == false then
if box. AnyRayBoxIntersection(rayPacket) == false then

continue
if currentPatch.depth == maximumDepth then
currentPatch.Finallntersection(rayPacket)
else
Patch sub[4]
currentPatch.Subdivide(sub)
stack.push(sub,4);

Some researchers have used adaptive metrics based on ray distance
to assign a subdivision level automatically to small units of geom-
etry (e.g., patches in our system). With discrete subdivision levels,
however, cracks can appear between adjacent patches with different
levels. Cracking becomes worse if the subdivision level is allowed
to vary along a ray; this can produce “tunneling”, or cracks between
sub-patches within a single initial patch [SMD™*06].

Like Christensen et al. [CLF*03] we avoid tunneling by using a
fixed subdivision level for an entire patch, although instead of
ray differentials we use a cheaper ad hoc distance metric: level
= log, (ad/D), where d is the diameter of the scene bounding
box, D is the minimum distance from the camera to the center of
the patch, and « is a user parameter for the scene. We threshold this
value to determine which of three levels to use: coarse, medium, or
fine. The finest level corresponds to the same value as uniform
subdivision, while medium and coarse reduce that value by 1 level
each. If adjacent patches have different subdivision levels then we
stitch cracks on the lower resolution patch (see Figure 3). Note that
our scheme ensures that we never have to stitch patches that are
more than one level apart.

This simple adaptive scheme allows our crack fixing logic to be
both simple and efficient. While more advanced adaptive subdivi-
sion may result in larger gains, we present our method as a simple
example of what might be gained through adaptivity.

L]

Figure 3: Left: Adjacent patches are subdivided to different
depths, so cracks might appear at T-vertices. Right: We fix cracks

by creating triangle fans at border sub-patches. No crack fixing
needs to be done for interior sub-patches (red).

4 Results

In this section, we evaluate our algorithm’s performance for a set
of test scenes against some competing approaches for rendering
subdivision surfaces. We will compare each approach under three
rendering types: ray casting with simple shading, ray casting with
shadows, and Whitted style ray tracing with 1 bounce of reflections.

(c) Disney

Figure 4: The “Killerroo” (12.1K base quads), the “Forest” scene
(122K base quads) and the “Disney” scene (1.8M base quads). In
these examples, we use a fixed subdivision depth of 5 with 1 sub-
division performed as a model preprocess. The scenes then have
geometric complexity equivalent to 6.2M, 62.5M, and 918M trian-
gles. On a single 2 GHz core, these examples run at 1.7, 3.92, and
6.98 seconds per frame, casting primary rays and performing sub-
division for 8-tuples. For 4-tuples the scenes render at 0.96, 1.92,
3.54 seconds per frame (of approximately IM rays).

The ray casting results will establish our best possible performance.
Each refinement upon that (shadows and then reflections) will step
along the continuum from coherent towards incoherent ray distri-
butions. As with any packet based method, it is expected that per-
formance advantages present in the ray casting case will decrease
as the ray distributions become incoherent.

4.1 Comparison methodology

For a fair comparison, we have chosen a mix of scenes with vary-
ing complexity: a simple floating object (the Killerroo, 12K base
quads), the forest scene from the Razor paper (122K base quads),
and a large, real-world production scene (1.8M base quads) as
shown in Figure 4. The Killerroo and Forest scenes are both ren-
dered at a resolution of 1024 x 1024 pixels, while the Disney scene
is rendered at a resolution of 1384 x 757 pixels to maintain an ap-
propriate aspect ratio for film.

We have identified three competing approaches for ray trac-
ing subdivision surfaces: PRMan’s multi-resolution geometry
caching [CFLBO06], the Razor system [DHW™*07], and full pre-
tessellation of the surfaces. Since pre-tessellation is conceptually
different, we will discuss it in Section 4.7, and focus first on “true”
subdivision surface based ray tracing. We also present the results
for our simple adaptive subdivision scheme in Section 4.6, which
we consider an additional improvement over our basic method.

PRMan. PRMan does not directly trace primary rays from the cam-
era, so we place a transparent “window” in front of the camera to
do so using the t race shade-op. This also allows us to accurately
separate tracing time from setup time as PRMan reports statistics
for the total “shading time” which now includes the t race shade-
op. All time spent in “shading” is essentially ray tracing time.

PRMan uses a multi-resolution geometry cache which uses adap-
tive subdivision of the surfaces based on the REYES shading
rate [CFLBO06] and does not have a uniform subdivision mode. In-
stead of attempting to match their adaptive subdivision method, we
have chosen to match their rendering quality even when using uni-
form subdivision. This comparison results in a large disadvantage
for our system, but we feel quality is the only adequate metric for
comparison. To further improve our performance, yet retain the
same quality requirements, we use our own adaptive subdivision
scheme. In Section 4.6 we provide a comparison between our two
approaches.

To determine which uniform subdivision level matches the quality
of PRMan’s adaptive subdivision, we rendered the same scene in
both PRMan and our system using a highly specular shader with a
high frequency procedural environment map. Using simple diffuse
shaders instead would have allowed us to use a lower subdivision
level (2 levels lower in most cases), as diffuse shaders obfuscate
high-frequency detail.

We attempted to use the multi-threading feature in PRMan 13.0,
but found that employing more than 1 thread reduces performance.
Consequently, all comparisons between our approach and PRMan
are done using a single thread for both systems.

Razor. As we do not have access to the Razor system to run com-
parisons, we rely on the data available from the original paper.
The data in the most recent Razor paper [DHW*07] only presents
Catmull-Clark subdivision results for the “Forest” scene. The ren-
dering method used for that setup is ray casting with shadows, so
we will only have a single point of comparison with the Razor sys-
tem. We hope to be able to conduct a more detailed comparison
with Razor at some point in the future.

Razor’s adaptive subdivision scheme is different from ours, just as
is the case when comparing to PRMan. We compare our uniform
subdivision to Razor’s adaptive subdivision, while trying to match
the same quality. To do so, we ensured that for a given subdivision
level, none of the final triangles in our method exceeded 8 pixels
in area (matching the Razor quality metric); however, our subdivi-
sion amount applies to all rays, whereas Razor is able to decide a
subdivision amount per ray regardless of type. While Razor may
choose a higher subdivision amount for some shadow rays, we feel
it is unlikely that the amount is vastly different.

4.2 Hardware Configuration

We run all of our results on a system with 9GB of memory. How-
ever, our scenes do not utilize much of that memory. For example,
the Disney scene (which is the largest) uses approximately 1.1GB
for the control mesh after it has been subdivided once and split into
patches.

Our system has two Core 2 Quad 2.0GHz processors. As noted
earlier, when comparing our results to PRMan we use only a single
core for performance reasons. When comparing our system to itself
or to Razor, we use all 8 cores.

4.3 Ray casting with simple shading

We begin by comparing ray casting performance with only simple
local shading. As demonstrated in Table 2, packets of rays allow us
to perform up to 16.6x faster than a single ray implementation and
up to 5.6 faster than a single ray geometry cache. The reason for
this improvement is similar to those in previous BVH approaches:
the early hit and the interval culling test reduce the traversal cost
of the implicit BVH (see Table 1). Note that each traversal step in

our subdivision surface intersection is much more expensive than a
regular BVH system would use, so the savings are larger.

As mentioned earlier, the size of the tuples being subdivided can
greatly increase the cost of subdivision. In particular, on a 4-wide
SIMD machine, a 4-tuple is particularly well suited to the architec-
ture. We show the cost for both 4 and 8-tuples for our ray casting
results to demonstrate the possible optimization for rays that don’t
need more than position information (e.g. shadow and other binary
visibility queries). It is also interesting to note that for wider SIMD
architectures, it may be possible to subdivide more parameters than
simply position and a single texture coordinate.

Even for the more expensive subdivision of 8-tuples we are 2.4 —
5.6 x faster than PRMan’s geometry caching, and about 5 — 15x%
faster than single ray traversal. In particular, our performance ad-
vantage increases for realistically complex scenes, as we outper-
form PRMan for the Disney scene by 5.6x and 11x for 8-tuples
and 4-tuples, respectively.

Scene Absolute time speedup over
packet single ~ PRMan single ~ PRMan
4-tuple
Killerroo | 0.96 5.50 423 5.7x 4.4x
Forest 1.92 5.62 1943 29x 10.1x
Disney 3.54 3770 39.03 | 10.7x 11.0x
8-tuple
Killerroo 1.70 16.40 423 9.7x 2.4x
Forest 3.92 19.47 1943 5.0x 5.0x
Disney 6.98 115.67 39.03 | 16.6x 5.6x

Table 2: Ray casting performance in seconds per frame for IM
rays with 4-tuple and 8-tuple subdivision, respectively (using 1
core). For both packet and single-ray implementations we use a
predefined subdivision level of 5 (1+4) for all scenes to match the
visual quality of the PRMan renderings.

4.4 Ray casting with shadows

Primary rays tend to exhibit higher coherence than other types of
rays. In Table 3, we investigate our performance for secondary rays
with simple shadows from 2 point light sources. The results demon-
strate that packets are already beginning to lose some ground in
performance as compared to both single ray and PRMan.

The loss of performance versus single rays is due simply to coher-
ence, while the performance loss to PRMan is due to both coher-
ence and PRMan’s reuse of its cached geometry for shadow rays.
This is the intended use of PRMan’s geometry cache, however, so
this result is expected. For the Disney scene there are still some
areas of large coherence due to large control meshes on some of the
buildings. It should be noted, however, that this is a “real world”
instance of subdivision surface modeling: large and simple control
meshes can be used to describe otherwise complicated smooth sur-
faces. This allows the packets to remain more competitive with the
single ray and PRMan approaches for this scene.

Scene Absolute time speedup over

‘ packet single ~ PRMan ‘ single ~ PRMan
Killerroo 4.48 21.43 5.47 4.8x 1.2x
Forest 9.40 30.54 27.99 3.2x 3.0x
Disney 13.35 17456 53.64 | 13.1x 4.0x

Table 3: Rendering performance in seconds per frame including
shadows from 2 point lights. For all scenes, shadow rays use 4-
tuples for subdivision while primary rays use 8-tuples.

(c) Disney

(c) Disney (c) Disney

Figure 5: The Disney scene rendered using our adaptive termination criterion. In these examples, we set the maximum subdivision depth to
5 with 1 subdivision performed as a model preprocess. With all 8 cores these examples run at 2.67, 3.14, and 4.78 fps, casting primary rays
and performing subdivision for 4-tuples. For 8-tuples the scenes render at 1.2 fps, 1.4 fps, and 2.0 fps. By comparison, uniform subdivision

runs at 2.2 and 1.1 fps for 4-tuple and 8-tuple subdivision, respectively.

This particular setup—ray casting with two point lights—is also the
only one that allows for direct comparison to Razor. This scene is
the only one presented in the Razor paper that uses Catmull-Clark
subdivision. While Razor does provide three renderings of this
scene using different quality setups, our system has not yet been
extended for distribution ray tracing so we can only compare to the
ray casting with shadows case.

We modify our standard test case of 1024 x 1024 rays to match the
original Razor test of 512 x 512. In Table 4 we demonstrate per-
formance for this test for a number of subdivision levels (for com-
pleteness). Due to the subdivision performed on input, we believe
that a subdivision level of 3 matches the Razor subdivision amount
most closely (based on the visible micropolygon area at level 3).

As compared to Razor [DHW*07], we are using a similar proces-
sor but a lower clock rate (2.0GHz vs 2.66GHz). To take into ac-
count this frequency difference, we scale their result to match our
clock. Depending on which level of subdivision is chosen, we are
anywhere between 2.7 and 16.8 x faster than Razor for this setup.
Though the entire comparison is too “apples-and-oranges” to be
conclusive, the overall point is that our approach is at least highly
completive for this rendering style. In particular we note that this
is only one scene and that Razor is designed to be a distribution ray
tracer not a ray caster with point light shadows.

Level | Frames per second | speedup

packet Razor
1 13.81 .82 16.8x
2 8.69 .82 10.6x
3 4.29 .82 5.2x
4 223 .82 2.7x

Table 4: Ray casting with shadows for the Forest scene used by
Razor. The frame size is 512 x 512 using 8-cores with shadows
from two point lights. All values are frames per second and the
Razor result has been scaled to match our 2.0GHz processor.

4.5 Whitted style ray tracing

While primary and shadow rays are commonly believed to be
highly coherent, ray distributions including specular reflections be-
have quite differently [Res06; BEL*07]. While our system does not
have actual production shaders to compare to, we have ported the
diffuse/specular model used by Boulos et al. [BEL*07]. We have
currently only focused on single bounce reflections, but hope to do
more extensive secondary ray comparisons in the future.

As can be seen from Table 5 we outperform PRMan by about
1 — 2.5%. As expected, PRMan’s multi-resolution geometry cache
performs better and better in relation to our approach as coherence

Scene Absolute time speedup over

‘ packet single PRMan | single = PRMan
Killerroo 7.70 38.08 7.58 | 4.9x 1.0x
Forest 21.28 66.99 52.63 | 3.1x 2.5x
Disney 33.88 268.02 66.59 | 7.9x 2.0x

Table 5: Rendering performance in seconds per frame including
shadows from 2 point lights and 1 bounce reflections. Note that
shadow rays are cast for both primary and reflected hit points.

decreases. Compared to our single-ray implementation, the packet
performance advantage is roughly 3 — 8 x. This is somewhat lower
than for primary rays, but clearly indicates that the our approach is
not limited to primary rays only. In particular, packets have an 8 x
performance advantage over single rays for the Disney scene, in the
presence of both less coherent packets and incredibly fine geometry
(adaptive subdivision is not used).

4.6 Adaptive subdivision

In comparing to PRMan and our single ray implementation, we
have only considered uniform subdivision so far. To demonstrate
the possible benefit that adaptive subdivision may provide in ad-
dition to the speedups already demonstrated, we compare uniform
subdivision to our simple adaptive heuristic for varying subdivision
depths in Table 6. We have chosen to focus on the Disney scene as
it has enough depth variability to allow for a useful demonstration.

ray casting shadows

Level | uiform adaptive speedup | uniform adaptive speedup
0.04 0.036 1.2x | 0.11 0.10 1.1x
0.09 0.053 18x | 026 0.17 1.5x
0.22 0.10 2.1Ix | 061 036 1.7x
0.45 021 21Ix | 1.24 073 1.7x

WA W

Table 6: Uniform vs adaptive subdivision depth for the Disney
scene, using 4-tuple subdivision for ray casting (left half) and ray
casting with shadows (right half). The adaptive results correspond
to the rendering in Figure 1 and Figure 5 right.

Table 6 also demonstrates the linear increase in rendering time for
our subdivision method. This is due to ray tracing’s logarithmic
behavior applied to a scene that grows by a factor of 4x for every
subdivision step. Our simple adaptive criteria seems to regain about
a 2x speedup which suggests it is only performing approximately
one level of subdivision less than the uniform case on average (i.e. it
is choosing the medium level). Following the trend in the previous
tables, adding shadows decreases the overall gain to approximately
1.7x (while not explicitly shown in the table, adding reflections
decreases it further to approximately 1.5X).

If we combine our adaptive rendering speedup with the uniform
subdivision tables already presented against PRMan, our method
is approximately 23.1x faster for ray casting with 4-tuples, 6.8x
faster for ray casting with shadows, and 3.0x faster for ray trac-
ing with single bounce reflections. The gains over our single ray
implementation are even more pronounced.

As we can see from the chosen levels (Figure 5 right), a large por-
tion of the geometry uses the finest level of subdivision (5) match-
ing the uniform case. Another reasonable portion uses the medium
level (4), and only very distant objects use the coarsest level (3).
The crack fixing logic introduces overhead, so our currently mod-
est gains are understandable but encouraging.

4.7 Comparison to pre-tessellation

For small models it may be feasible to subdivide the model as a
preprocess and directly ray trace the resulting triangles. An obvi-
ous question for our on-the-fly scheme is how close performance
compares to ray tracing a pre-tessellated result.

Since each additional level of subdivision quadruples the triangle
count of the pre-tessellated model, we can only compare with a
relatively coarse base mesh—the Killerroo. At 12168 base quads,
the equivalent number of triangles after 4 levels of subdivision is
already 6.23M triangles (12168 x 4% % 2). Assuming a (rather low)
size of 40 bytes per triangle, pre-tessellation for this (rather simple)
model would 250 MB storage space; for the Disney scene, it would
be roughly 40GB of triangle data alone.

4.7.1 Performance

As can be seen from Table 7, our implementation is slower than
tracing a pre-tessellated model. As a reminder, our claim is that our
algorithm will provide benefits over caching and pre-tessellation in
the future as compute power exceeds bandwidth. Given that we are
running on a current CPU our lower ray casting performance is not
surprising, since we eventually intersect exactly the same triangles,
but have to generate them on the fly. Furthermore, the bandwidth
required even for the tessellated version of this scene per frame is
not enough at current frame rates to be prohibitive on a modern
CPU.

number of | Frames per second | slowdown
Level | triangles tessellated direct
1 97K 10.4 9.87 1.05
2 398K 6.15 4.99 1.23
3 1.55M 3.17 2.19 1.44
4 6.23M 1.75 1.04 1.68

Table 7: Our direct Catmull-Clark subdivision surface ray trac-
ing method vs. ray tracing a pre-tessellated model, for the Killerroo
scene with ray casting and 4-tuple subdivision. For every subdivi-
sion step the number of triangles quadruple. For this setup, our
performance is always slower but the slowdown is always less than
2X.

The BVH over the subdivision control meshes is naturally looser
and has more subtree overlap than in the tessellated case. With this
in mind, the performance difference is surprisingly small (5-70%
depending on subdivision amount). This is particularly interesting
when we consider that the memory use for our approach is only a
small fraction of that used for tessellation. For “real” scenes like
the Disney scene, full pre-tessellation would far exceed available
memory.

4.7.2 Off-cache bandwidth

As our algorithm directly intersects a subdivision surface, the only
model data required is the initial patch. Because we recurse in a
depth-first manner, only a small amount of stack space for “to be
subdivided” patches needs to be maintained. Current CPUs can
hold this stack mostly in their L2 cache which significantly reduces
off-cache (external memory) bandwidth. In order to measure the
off-cache bandwidth we used the cachegrind cache profiler [Val07]
to track L2 cache misses.

Table 8 shows that direct ray tracing requires a very low and
constant off-cache bandwidth. Compared to ray tracing a pre-
tessellated scene, it requires 2.4 — 64.7 times less bandwidth (per
frame), depending on the subdivision level.

number of | Bandwidth (MB) | reduction
Level | triangles tessellated direct
1 97K 5.2 2.2 2.4x
2 398K 18.5 2.2 8.4x
3 1.55M 60.4 2.2 27.5x
4 6.23M | 1424 2.2 64.7x

Table 8: Required off-cache (main memory) bandwidth for direct
Catmull-Clark subdivision surface and ray tracing a pre-tessellated
model, for the Killerroo scene with ray casting and 4-tuple subdi-
vision. For high subdivision levels on-the-fly subdivision is able to
reduce the bandwidth by a factor of 64.

On future architectures that have more compute resources than
caching, less bandwidth should translate into a significant perfor-
mance advantage. For now, however, a modern CPU memory hier-
archy can easily sustain the required bandwidth for this scene even
for the highest level of subdivision.

4.8 Impact of ray packet size

Like any packet method, reduced coherence will reduce the amor-
tization benefits (see Section 4.5 for evidence). As the coherence
is typically related to the number of rays per packet we tested our
method using a varying ray packet sizes as shown in Table 9. Like
previous work [WBSO07] we achieve the best performance for a ray
packet size of 8 X 8 = 64 rays.

packet size

Level 4x4 8x8 16x16 32x32
1 77(89) 1.0(1.0) .94(.87) .48(.39)
2 74 (80) 1.0(1.0) .95(.90) .36(.27)
3 70(75) 1.0(1.0) 97(92) .27(21)
4 70(76) 1.0(1.0) .99(.93) .20(.20)

Table 9: Ray casting (Whitted style ray tracing) performance for
varying ray packet size and subdivision level (Killerroo scene). All
results are shown to the normalized performance for 8x8 = 64 rays
per packet: Having less than 64 rays per packet makes amortization
of subdivision less effective, while performance for larger packets
suffers under reduced ray coherence. For our setup, a size of 8x8
rays has been determined to be the most efficient.

5 Summary and Conclusion

We have proposed an approach to ray tracing subdivision surfaces
using on-the-fly tessellation. Whereas other systems like Razor or
PRMan amortize the cost for patch subdivisions by caching ge-
ometry, we instead use large packets of rays coupled with an ef-
ficient traversal algorithm. Our approach is competitive with ge-
ometry caching, and in addition allows for all the other advantages

of packet techniques. Consequently, we not only need less memory
than geometry cache approaches, but are also faster than both Razor
and PRMan.

For scenes with varying depth complexity, we have proposed an
adaptive subdivision method. Though crack fixing adds complexity
to the system, for the Disney scene it provides additional speedups
of up to 2.1x. Adaptive subdivision also becomes particularly in-
teresting when considering packets of less coherent secondary rays
by using a coarser scene representation [CLF*03; DHW™*07].

Performance-wise, our uniform subdivision approach outperforms
both Razor and PRMan by up to 5.2x and 5.6, and a single-ray
implementation of the same algorithm by 16.6x. Our adaptive sub-
division is even more competitive as it adds an additional factor of
2% on top of these results. Compared to pre-tessellated models
with pre-built acceleration structures we achieve roughly compet-
itive performance, but require only a fraction of the storage and
bandwidth requirements. We also demonstrated our approach for a
complex film scene which would not fit into memory if tessellated.

The compute power of future graphics architectures, regardless of
being more CPU or GPU oriented, is expected to grow much faster
than their memory bandwidth. This makes it essential to reduce the
off-chip bandwidth to achieve optimal utilization. Our approach is
well suited for these architectures as it requires only a small amount
of on-chip memory per core.

Future Work. Potential extensions to our system abound. We
are particularly interested in supporting displacement maps, which
are important for real-world production rendering. More advanced
methods for adaptive subdivision would further reduce the number
of required subdivisions per patch. Apart from that, the biggest
issue for supporting real-world rendering is support for complex
shaders and textures. Using packets of secondary rays for dynamic
ambient occlusion and indirect diffuse lighting, would further stress
the coherence needs of our method.

Acknowledgments

We would like to thank Walt Disney Animation Studios for provid-
ing us with a scene from Disney’s Meet the Robinsons. For model-
ing and providing us the Razor scene we would like to thank Jeffery
A. Williams, Headus (Metamorphosis), Phil Dench, Martin Rezard,
Jonathan Dale, and the DAZ studio team.

References

BouLos S., EDWARDS D., LACEWELL J. D., KNiss J., KAuTz J.,
SHIRLEY P., WALD I.: Packet-based Whitted and Distribution Ray
Tracing. In Proceedings of Graphics Interface 2007 (May 2007).

BENTHIN C.: Realtime Ray Tracing on current CPU Architectures. PhD
thesis, Saarland University, 2006.

BENTHIN C., WALD I., SLUSALLEK P.: Interactive Ray Tracing of Free-
Form Surfaces. In Proceedings of Afrigraph (November 2004), pp. 99—
106.

CATMULL E., CLARK J.: Behavior of recursive division surfaces near
extraordinary points. In Computer Aided Design 10(6) (1978), pp. 350—
355.

CoOK R. L., CARPENTER L., CATMULL E.: The REYES Image Render-
ing Architecture. Computer Graphics (Proceedings of ACM SIGGRAPH
1987) (July 1987), 95-102.

CHRISTENSEN P. H., FONG J., LAUR D. M., BATALI D.: Ray tracing for
the movie ’Cars’. In Proc. IEEE Symposium on Interactive Ray Tracing
(2006), pp. 1-6.

CHRISTENSEN P. H., LAUR D. M., FONG J., WOOTEN W. L., BATALI
D.: Ray Differentials and Multiresolution Geometry Caching for Distri-
bution Ray Tracing in Complex Scenes. In Computer Graphics Forum

(Eurographics 2003 Conference Proceedings) (September 2003), Black-
well Publishers, pp. 543-552.

CooOK R., PORTER T., CARPENTER L.: Distributed Ray Tracing. Com-
puter Graphics (Proceeding of SIGGRAPH 84) 18, 3 (1984), 137-144.

DJEU P., HUNT W., WANG R., ELHASSAN 1., STOLL G., MARK W. R.:
Razor: An Architecture for Dynamic Multiresolution Ray Tracing. Tech.
Rep. UTCS TR-07-52, University of Texas at Austin Dept. of Comp.
Sciences, Jan. 2007. Conditionally accepted to ACM Transactions on
Graphics.

DEROSE T. D., KASS M., TRUONG T.: Subdivision surfaces in character
animation. In Proceedings of SIGGRAPH 98 (July 1998), Computer
Graphics Proceedings, Annual Conference Series, pp. 85-94.

Doo D., SABIN M.: Behavior of recursive division surfaces near extraor-
dinary points. In Computer Aided Design 10(6) (1978), pp. 356-360.

KOBBELT L., DAUBERT K., SEIDEL H.-P.: Ray Tracing of Subdivision
Surfaces. Proceedings of the 9th Eurographics Workshop on Rendering
(1998), 69-80.

Loop C.: Smooth subdivision surfaces based on triangles. Master’s thesis,
University of Utah, 1987.

MARTIN W., COHEN E., FIsH R., SHIRLEY P.: Practical Ray Tracing of
Trimmed NURBS Surfaces. Journal of Graphics Tools: JGT 5 (2000),
27-52.

MUELLER K., TECHMANN T., FELLNER D.: Adaptive Ray Tracing of
Subdivision Surfaces. Computer Graphics Forum (Proceedings of Euro-
graphics *03) (2003), 553-562.

OLIVER ABERT MARKUS GEIMER S. M.: Direct and Fast Ray Tracing
of NURBS Surfaces. In Proceedings of the 2006 IEEE Symposium on
Interactive Ray Tracing (2006).

PHARR M., KOLB C., GERSHBEIN R., HANRAHAN P.: Rendering Com-
plex Scenes with Memory-Coherent Ray Tracing. Computer Graphics
31, Annual Conference Series (Aug. 1997), 101-108.

PARKER S. G., MARTIN W., SLOAN P.-P. J., SHIRLEY P., SMITS B. E.,
HANSEN C. D.: Interactive ray tracing. In Proceedings of Interactive
3D Graphics (1999), pp. 119-126.

RESHETOV A.: Omnidirectional ray tracing traversal algorithm for kd-
trees. In Proceedings of the 2006 IEEE Symposium on Interactive Ray
Tracing (2006), pp. 57-60.

RESHETOV A., SOUPIKOV A., HURLEY J.: Multi-Level Ray Tracing Al-
gorithm. ACM Transaction on Graphics 24, 3 (2005), 1176-1185. (Pro-
ceedings of ACM SIGGRAPH 2005).

SToLL G., MARK W. R., DJEU P., WANG R., ELHASSAN 1.: Ragzor:
An Architecture for Dynamic Multiresolution Ray Tracing. Tech. Rep.
06-21, University of Texas at Austin Dep. of Comp. Science, 2006.

VALGRIND TOOL SUITE: Cachegrind. http://valgrind.org/info/tools.html,
2007.

WALD I., BOULOS S., SHIRLEY P.: Ray Tracing Deformable Scenes using
Dynamic Bounding Volume Hierarchies. ACM Transactions on Graph-
ics 26, 1 (2007), 1-18.

WHITTED T.: An Improved Illumination Model for Shaded Display. Com-
munications of the ACM 23, 6 (1980), 343-349.

WALD I., IZE T., KENSLER A., KNOLL A., PARKER S. G.: Ray Tracing
Animated Scenes using Coherent Grid Traversal. ACM Transactions on
Graphics 25, 3 (2006), 485—493. (Proceedings of ACM SIGGRAPH).

WALD 1., SLUSALLEK P., BENTHIN C., WAGNER M.: Interactive Render-
ing with Coherent Ray Tracing. Computer Graphics Forum 20, 3 (2001),
153-164. (Proceedings of Eurographics).

ZORIN D., SCHROEDER P., DEROSE T., KOBBELT L., LEVIN A.,
SWELDENS W.: Subdivision for modeling and animation. SIGGRAPH
course notes, 2000.

ZORIN D., SCHRODER P., SWELDENS W.: Interpolating subdivision for
meshes with arbitrary topology. In Computer Graphics (1996), vol. 30,
pp. 189-192.

