
High Performance Graphics (2012)
C. Dachsbacher, J. Munkberg, and J. Pantaleoni (Editors)

Adaptive Image Space Shading for Motion and Defocus Blur

Karthik Vaidyanathan1, Robert Toth1, Marco Salvi1, Solomon Boulos2, and Aaron Lefohn1

1Intel Corporation 2Stanford University

Figure 1: Shading cost comparison for a complex scene rendered without motion and defocus blur (left), stochastic motion and
defocus blur with decoupled sampling (center), and stochastic motion and defocus blur with our adaptive anisotropic sampling
technique (right). Our approach reduces shading cost for this scene by a factor of three compared to the other two techniques.

Abstract

We present a novel anisotropic sampling algorithm for image space shading which builds upon recent advance-
ments in decoupled sampling for stochastic rasterization pipelines. First, we analyze the frequency content of a
pixel in the presence of motion and defocus blur. We use this analysis to derive bounds for the spectrum of a surface
defined over a two-dimensional and motion-aligned shading space. Second, we present a simple algorithm that
uses the new frequency bounds to reduce the number of shaded quads and the size of decoupling cache respectively
by 2X and 16X, while largely preserving image detail and minimizing additional aliasing.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

Rendering methods based on advanced optics models have
been used for decades in the off-line rendering community,
although such techniques have been out of the reach for real-
time graphics systems. Stochastic rasterization provides an
attractive alternative to the standard pinhole camera model
supported by current rasterization pipelines and it has gained
traction in the real-time graphics research community. While
new types of rasterization have the potential of improving
image quality by incorporating realistic motion and defocus
blur effects into the real-time domain, they require shading
many samples per pixel, which poses severe limitations to
their feasibility.

This problem can be addressed by decoupling visibil-
ity from shading while performing the latter at lower rate.

Current real-time graphics APIs support a limited form
of decoupling with multi-sampling anti-aliasing [Ake93]
(MSAA), which shades primitives once per pixel while sam-
pling visibility at higher rates. However, efficient shading
in a stochastic rasterization pipeline requires further decou-
pling visibility from shading to efficiently handle blurry
primitives covering large regions of the image [MCH∗11].
The shading rate can be more efficiently controlled by
using advanced decoupling techniques that map visibility
samples to a separate shading space via a memoization
cache [RKLC∗11].

We also note that blurring an image reduces its frequency
content. This implies that is possible to render an accurate
image using a lower shading rate than is used for a static
(i.e. not blurred) image.

c© The Eurographics Association 2012.

K. Vaidyanathan, R. Toth, M. Salvi, S. Boulos and A. Lefohn / Adaptive Image Space Shading for Motion and Defocus Blur

To exploit this observation we improve upon previous im-
age space decoupled sampling algorithms by using Fourier
analysis to derive frequency bounds, to which the signal of
a moving and defocused surface may be band-limited. We
use these bounds to guide the shading rate, without having a
noticeable impact on the image quality.

We also introduce the concept of anisotropic adaptive
sampling, where we align the shading space to the direc-
tion of motion. This method, in conjunction with our newly
derived frequency bounds, makes it possible to sample the
scene signal along the main axis of motion at a significantly
lower rate, while still resolving fine detail along the orthog-
onal axis.

We implement anisotropic adaptive sampling in a decou-
pled sampling system, and show that the shading rates dic-
tated by our frequency analysis results in up to 50% reduc-
tion in shading and minimal impact on image quality. Fur-
thermore, we demonstrate a 16X reduction of the size of the
memoization cache size over previous work without impact-
ing performance.

Our primary contributions are:

• Deriving lower shading rates for shading motion and defo-
cus blurred primitives in a stochastic rasterization pipeline
by analyzing which parts of a surface spectra are visible;
and
• Introducing a motion-aligned shading space that allows

using the aforementioned reduced shading rates.

2. Related Work

The earliest real-time GPU implementations of stochas-
tic rasterization, most notably the implementation by
McGuire et al. [MESL10], shade using MSAA. A shader
is thus invoked for each pixel overlapped by a primitive.
This approach is inefficient with large blurs, as shown by
Munkberg et al. [MCH∗11].

Ragan-Kelley et al. [RKLC∗11] introduced decoupled
sampling for real-time graphics pipelines using a separate
shading space. Similarly to Reyes, the shading space is in-
dependent of the time and aperture distributions. The amount
of defocus and motion therefore do not affect shading rates
significantly, and the authors also mention adaptively shad-
ing at a rate depending on the circle of confusion. Lik-
tor et al. [LD12] propose a new data structure called com-
pact geometry buffer which allows implementing decoupled
sampling techniques on current graphics hardware.

Micropolygon pipelines [CCC87] are popular for offline
rendering. In such systems, geometry is tessellated into grids
of pixel-sized primitives and each vertex is shaded prior
to visibility sampling. The amount of motion and defocus
do therefore not significantly affect the number of shaded
points. Furthermore, modern micropolygon renderers have
support for adaptive shading rates for defocus and motion

blur [Pix09]. However, these systems can only – to the best
of our knowledge – select shading rates along the parametric
axis of the geometry. This significantly limits the amount of
shading reduction that can be achieved without perceivably
degrading image quality.

Burns et al. [BFM10] proposed decoupling the shading
space from the grids in micropolygon renderers, to allow
larger primitives to be rasterized while preserving most sur-
face detail. While they do not discuss adaptive shading rates,
our analysis should be applicable to the shading space used
by their architecture.

Frequency analysis has lately been used for many as-
pects in graphics. Durand et al. [DHS∗05] present a gen-
eral framework for analysing light transport, and discuss
complex interactions such as occlusion and surface BRDFs.
Chai et al. [CTCS00] employ frequency analysis to deter-
mine required sampling rates of light-fields to reconstruct
views. Soler et al. [SSD∗09] analyse the frequency content,
and required sampling rates, over both the image and lens
for rendering depth of field. Egan et al. [ETH∗09] use fre-
quency analysis to determine suitable reconstruction filters
for stochastically rendered motion blurred images.

Loviscach [Lov05] works in texture space and integrates
texture footprints over time for a gaussian shutter using mod-
ified gradients for the EWA texture filter [GH86].

3. Frequency Analysis

Surfaces exhibiting motion and defocus often do not con-
vey high frequency surface detail, due to blur. We reduce
the surface shading rate without introducing significant er-
rors, under the assumption that the shader output frequency
can be bandwidth limited for these surfaces. We do so by
estimating spectral bounds in shading space that constitute
a significant contribution to the final image. In this section,
we will first characterize the image contribution of a surface
using Fourier analysis, and then derive these bounds.

We can express the output signal value O(x,y) at a point
x,y in the image using the equation:

O(x,y) = E ∗R (1)

where E is the irradiance, which is convolved with R, a re-
construction filter that is chosen to reduce aliasing that might
result from discretizing the signal O(x,y) [MN88].

We define the irradiance E as

E(x,y)=
∫
R3

L(x,y,u,v, t)A(u,v)S(t)dudvdt, (2)

where L is the radiance at (x,y) corresponding to the point
(u,v) on the camera lens at time t. We ignore the lens
form factor [KMH95], which is a fairly common assumption
[CPC84]. S(t) is the camera shutter response and A(u,v) de-
scribes the shape of the camera aperture.

c© The Eurographics Association 2012.

K. Vaidyanathan, R. Toth, M. Salvi, S. Boulos and A. Lefohn / Adaptive Image Space Shading for Motion and Defocus Blur

P

u

x - ϕux

0
Lens

Primitive

Virtual Image

Plane

z

f

2ϕ

xx - μt

μt

P

u0
Lens

Primitive

Virtual Image

Plane

z

f
vt

(b)(a)

Figure 2: (a) Knowing a point in image space at t we can
determine the position at t = 0 based on it’s image space
velocity µ. (b) Knowing a point in image space at u,v we
can predict the position at u,v = 0,0 based on it’s circle of
confusion φ. Note that φ is a signed value.

Similarly to Reyes [CCC87] and the decoupled sampling
approach [RKLC∗11], we assume that the radiance L cor-
responding to a point ~p on a surface is constant inside the
shutter interval and across all points on the lens. We can
therefore always evaluate radiance on the 2D subspace given
by slicing the temporal light field at (u0,v0, t0). We call this
space the shading space and the corresponding 2D radiance
function L′:

E(x,y)=
∫
R3

L′(x0,y0)A(u,v)S(t)dudvdt (3)

We will now derive the shading-space coordinates (x0,y0)
on which to evaluate L′.

Referring to Figure 2, a shift in the lens position produces
a proportional shift in image space. The amount of shift φ is
governed by φ = kc

pz− f
pz

, where f is the focus distance and
kc is a constant scale that depends on the camera lens system.
We assume ~p has a constant velocity in screen space. While
this is not always true, it is often a reasonable approxima-
tion. With this simplification, if we know the location (x,y)
of a point in image space for a given (u,v, t) we can com-
pute the shading space position (x0,y0), that is, the point at
(u0,v0, t0) = (0,0,0):

x0 = x−µxt−φu

y0 = y−µyt−φv (4)

We call this space the shading space and the correspond-
ing 2D radiance function L′, where L′(x0,y0) = L(x,y,u,v, t)
By substituting Equation 4 into Equation 3, we obtain:

E(x,y) =
∫
R3

L′(x−µxt−φu,y−µyt−φv)A(u,v)S(t)dudvdt

We will now apply a series of variable changes in order to ex-
press this integral as convolutions to facilitate the frequency
analysis.

Figure 3: Left: Spectrum of A′ for a hexagonal aperture.
The circles show cutoff radii Ω

max
A′ that contain all but a

small fraction of the spectrum energy, as indicated by their
labels. Right: Spectrum of S′ for a Gaussian shutter. The la-
beled lines show cutoff widths Ω

max
S′ .

By introducing A′(u,v) = 1
φ2 A(u

φ
, v

φ
), we can rewrite the

equation above as:

E(x,y) =
∫
R3

L′(x−µxt−u,y−µyt− v)A′(u,v)S(t)dudvdt

=
∫
R

(
L′ ∗A′

)
(x−µxt,y−µyt)S(t)dt (5)

We can also rewrite the time integral in Equation 5 as a con-
volution by mapping the time domain to a line along the di-
rection of motion in 2D space; x′ = µxt and y′ = µyt. There-
fore the shutter response S gets transformed to its spatial ana-
log S′ and we get:

S′(x′,y′) = δ(y′µx− x′µy)
1
‖~µ‖S

(
(x′,y′) ·~µ
‖~µ‖2

)
E(x,y) =

∫
R2

(
L′ ∗A′

)
(x− x′,y− y′)S′(x′,y′)dx′dy′

=
(
L′ ∗A′ ∗S′

)
(x,y)

We can now write the computed pixel values as:

O(x,y) =
(
L′ ∗A′ ∗S′ ∗R

)
(x,y)

or, finally, in the Fourier domain as:

F
(
O
)
= F

(
L′
)
F
(
A′
)
F
(
S′
)
F
(
R
)

(6)

3.1. Frequency Bounds at Shader Output

Now that we have expressed the spectral content of the im-
age in shading space, we can draw some interesting conclu-
sions. From Equation 6, we can see that the spectrum of O is
the product of the spectrum of L′, A′, S′ and R. It is therefore
safe to bandlimit L′ to the support of the spectrum of A′, S′

and R. By bandlimiting the shading space L′, we may sample
shading less densely, and thus reduce the cost of shading.

As with traditional real-time rendering, actually bandlim-
iting shading according to the shading sample spacing is the

c© The Eurographics Association 2012.

K. Vaidyanathan, R. Toth, M. Salvi, S. Boulos and A. Lefohn / Adaptive Image Space Shading for Motion and Defocus Blur

Figure 4: The required sampling frequencies are calculated using several quantities, which are shown for a frame from the
ARENA scene. Left: The minimum circle of confusion radius of the primitives. Center: The minimum screen space velocity of
the primitives (with constant vertex velocity approximation). Right: Span of motion directions, θ̂.

responsibility of the shader author; we are only interested in
safe limits to which the shader should bandlimit its output
(by means of texture filtering or otherwise) and determine
sample spacing accordingly. A′, S′ and R have typically in-
finite support in the frequency domain, but in practice a rea-
sonable threshold can be used. As example this is illustrated
for a hexagonal aperture in Figure 3.

While A′ and R are often roughly radially symmetric,
and thus boundable by radii Ω

max
A′ and Ω

max
R in frequency

space, this is not the case for S′. The spectrum of S′ is com-
pressed in the direction of motion, and extends unattenuated
in the orthogonal direction. This is illustrated in Figure 3.
The spectrum of S′ is related to the spectrum of S as follows:

F
(
S′
)
(~Ω) =

∫∫
S′(x,y)e−2πi~Ω·(x,y)dxdy

=
∫

S′(µxt,µyt)e−2πi(~Ω·~µ)tdt

=
∫

1
‖~µ‖S

(
(µxt,µyt) ·~µ
‖~µ‖2

)
e−2πi(~Ω·~µ)tdt

=
1
‖~µ‖

∫
S(t)e−2πi(~Ω·~µ)tdt

=
1
‖~µ‖F

(
S
)
(~Ω ·~µ). (7)

From Equation 7 we see that if the spectrum of S is bounded
by the shutter constant Ω

max
S , then the spectrum of S′ is

bounded by Ω
max
S′ = ‖~µ‖−1

Ω
max
S in the direction of motion.

3.2. Frequency Bounds For a Primitive

Up until now, we have considered a single point moving at
constant velocity. For real scenes, the motion direction and
magnitude, as well as the defocus amount, vary over a primi-
tive and during the shutter interval (see Figure 4). This would
also produce variations in the frequency response of A′ and
S′.

We can however approximate the overall frequency
bounds based on the frequency response computed at the
bounding values of ‖~µ‖, θ and φ. The underlying assump-
tion for this approximation is that a significant portion of the
spectral energy lies between the extents of the variation. This
is similar to the assumption used in Chai et al. [CTCS00] and
Egan et al. [ETH∗09].

We can estimate the cutoff frequency of A′, Ω
max
∆A′ , by iden-

tifying the smallest circle of confusion radius φmin for the
primitive. Assuming linear motion in clip space, this can eas-
ily be detected as follows: first determine the depths of each
vertex at the start and end of the shutter interval, and deter-
mine the minimum and maximum of these depths. If they
are on opposite sides of the plane in focus, then A′ cannot
be bounded. Otherwise, compute φmin using the depth that
is closer to the plane in focus. Finally, the cutoff radius for
the primitive is Ω

max
∆A′ = φ

−1
minΩ

max
A , where the lens dependent

constant Ω
max
A is the cutoff radius of A.

We approximate the bounds of F(S′) using the lowest
screen space velocity within the primitive. We define ~µi to
be the screen space velocity of each vertex i of the primitive.
Velocity is assumed to vary linearly over a primitive in clip
space, and each point of the primitive will thus have a screen
space velocity that is within the convex hull of {~µi}. For
the common case of triangular primitives, the convex hull is
just the triangle itself. In order to compute frequency bounds
for S′ over the entire primitive, we will first determine three
quantities: the minimum speed ‖µmin

∆ ‖ of the primitive, and
the interval θ̂ of velocity directions. The quantities are illus-
trated in Figure 5.

The minimum speed ‖µmin
∆ ‖ can be computed using con-

ventional closest-point-in-convex-hull algorithms between
{µi} and the origin. Computing θ̂ is also straightforward and
will not be described here. If ‖µmin

∆ ‖ = 0, then F(S′) has
infinite extents. Otherwise, since θ̂ contains the motion di-
rections of all points on the primitive, we bound F(S′) over
the primitive by taking the union of the bounds of the spec-
tra of S′ along each point on the arc defined by ‖µmin

∆ ‖ and
θ̂ as illustrated in Figure 5. The resulting shape Ω

max
∆S′ is an

hourglass defined by Ω
max
S′ (‖µmin

∆ ‖) and the extremes of θ̂,
and is illustrated in Figure 6.

With Ω
max
∆A′ , Ω

max
∆S′ and Ω

max
R determined, we can derive a

bounding box Ω
max
∆ in the frequency domain, that bounds

F(A′ ∗ S′ ∗ R) for the entire triangle. The bounding box,
as depicted in Figure 6, is aligned to the vector which
points towards the center of θ̂, which we denote êµ. We
denote the orthogonal vector ê⊥. We let Ω

max
∆ extend to

r = min(Ωmax
∆A′ ,Ωmax

R) along ê⊥.

To determine the extents along êµ, we intersect the circle

c© The Eurographics Association 2012.

K. Vaidyanathan, R. Toth, M. Salvi, S. Boulos and A. Lefohn / Adaptive Image Space Shading for Motion and Defocus Blur

μ0

μ1

μ2

Ø

θ

‹

||μΔ ||min

Ø

θ

‹

||μΔ ||min

Figure 5: Left: A triangle that represents the three vertex
velocities µi in a space spanned by µx and µy. The velocity
direction span θ̂ and the minimum speed ‖µmin

∆ ‖ can be de-
termined from this triangle. Right: An arc that represents the
direction span θ̂ and the minimum velocity ‖µmin

∆ ‖. We can
bound the spectrum of each point in the primitive by bound-
ing the spectrum on the arc.

with radius r with any one of the four lines that define Ω
max
∆S′ ;

this gives us up to two intersection points ~qi. We project the
two points ~qi onto êµ to get the final extents of Ω

max
∆ . The

bounding box dimensions are given by:

dµ = 2
(

r cos θ̂+
√

r2 +Ωmax
S′ (‖µmin

∆
‖)2 sin θ̂

)
(8)

d⊥ = 2r (9)

If Ω
max
S′ (‖µmin

∆ ‖) is larger than r, the spectrum of A′ ∗R is
tighter than that of S′. In this case we use a square bounding
box dµ = d⊥ = 2r.

To conclude, we have shown that it is safe to bandlimit the
shader output L′ to include only frequencies contained in the
oriented bounding box Ω

max
∆ .

3.3. Tight Packing in Frequency Space

In most rendering systems, the shader output L′ is point sam-
pled which produces frequency replicas that may overlap to
produce aliasing artifacts. The spacing of these frequency
replicas is the inverse of the sample spacing in the primal
domain. Therefore to avoid visible aliasing artifacts the sam-
ple spacing must be small enough to ensure that a significant
portion of the spectral energy does not overlap.

With the assumption that a significant part of the shader
output spectrum is contained in the oriented bounding box
Ω

max
∆ , we can derive a sampling grid such that the repli-

cas of Ω
max
∆ do not overlap. Moreover in order to sample

L′ efficiently, we also have to ensure that the replicas are
tightly packed. Figure 7 shows two different sampling strate-
gies and the corresponding frequency replicas. It can be seen
that the tightest packing of replicas can be achieved with an
anisotropic sampling grid oriented along êµ.

The sample spacing along êµ and ê⊥ is given by the in-
verse of the bounding box dimensions dµ and d⊥ derived in
Equations 8 and 9.

(||μΔ ||)minmax2ΩS’

Ø

θ

‹

q0

q1
maxΩΔS’

maxΩΔA’
maxΩΔ

êμê

Figure 6: Derivation of frequency bounds for a primitive.
Left: Each point on the arc shown in Figure 5 produces a
band in the frequency domain (Figure 3). The width of the
band is Ω

max
S′ (‖µmin

∆ ‖) and depends on the minimum velocity.
Tracing such bands for all points on the arc produces an
hourglass shape Ω

max
∆S′ . Right: The desired frequency bounds

can be determined as the intersection of Ω
max
∆S′ and Ω

max
A′ . We

can easily bound this intersection with an oriented bounding
box.

3.4. Anisotropic Mapping Function

Ragan-Kelley et al. [RKLC∗11] show that 5D samples can
be mapped to shading space using a 2D projective map-
ping function Mp. To account for the grid orientation and in-
creased sample spacing we introduce an additional transform
Mg. Therefore the overall mapping function is M = MgMp
where Mg is given by:

Mg =
[
êµ ê⊥

]T [dµ 0
0 d⊥

]
Mg applies a rotation and scaling such that the anisotropic
sampling grid gets transformed to a unit pixel grid. Therefore
after transformation by Mg, derivative computations using
finite differences and texture filtering can be performed as in
a conventional graphics pipeline. With the modified mapping
function, input textures are automatically bandlimited for the
anisotropic sampling grid.

We also note that to avoid artifacts from extrapolation
of shader attributes, it is important to constrain the shading
points to always lie inside primitive boundaries. If the center
of a pixel in shading space is found to lie outside the prim-
itive, the shading point has to be clamped to the primitive
boundaries [RKLC∗11], We address this problem by analyt-
ically determining a point on the primitive that is closest to
the center of the shading pixel [Eri05].

3.5. Cost And Quality vs. Complexity Balance

Although vertices move linearly in clip space, their screen
space velocities are not generally constant within a frame. To
conservatively bound F(S′), the velocity space convex hull
used to determine ‖µmin

∆ ‖ and θ̂ should include the velocities
both at the start and end of the shutter interval. In practice,
average velocities can be used instead, reducing the cost of
the closest-point computation.

With this simplification, the number of operations re-

c© The Eurographics Association 2012.

K. Vaidyanathan, R. Toth, M. Salvi, S. Boulos and A. Lefohn / Adaptive Image Space Shading for Motion and Defocus Blur

Parameter ADD MUL MISC
Ω

max
∆A′ 15 1 1

Ω
max
S′ (‖µmin

∆ ‖), θ̂ 26 35 17
dµ, d⊥ 3 4 4
Total 44 40 22

Table 1: Estimated cost of evaluating parameters required
to compute the bounding box Ω

max
∆ . Costs are listed sep-

arately for additions/subtractions, multiplications/divisions
and other miscellaneous operations such as reciprocals,
trigonometric functions and square roots.

(a) (b)

Figure 7: Sampling grids in shading space (top row) and the
corresponding frequency domain replicas of Ω

max
∆ (bottom

row): (a) Packing along y followed by packing along x (b)
Sampling grid oriented along êµ. The oriented sampling grid
gives the best packing of frequency replicas.

quired to compute the bounding box Ω
max
∆ for each primitive

is listed in Table 1.

For real-time applications to which computational effi-
ciency is more important than correctness, there are opportu-
nities for further reducing the cost of the computations. For
example, the velocity parameters could be computed at a re-
duced precision. Computation of Ω

max
∆A′ could also be simpli-

fied by calculating the circle of confusion at the center of the
shutter interval instead of computing it at the start and the
end of the shutter time.

4. Results

For evaluation purposes we have implemented both our al-
gorithm (AAS) and the decoupled sampling method (DS)
introduced by Ragan-Kelley et al. [RKLC∗11] as extensions
to a software simulator of the D3D11 rendering pipeline,
modified to support stochastic rasterization. Our frame-
work substitutes the standard 2D rasterizer with a 5D hi-
erarchical stochastic rasterizer based on recent work by
Munkberg et al. [MAM12]. The rasterizer uses a 3-level hi-
erarchy, from a top level tile of 8x8 pixels down to a leaf
level tile of 2x2 pixels.

While Ragan-Kelley et al. [RKLC∗11] experiment with
reducing shading rates for defocus blur, they do not provide

any relation between the reduction factor and image quality.
We therefore do not apply any adaptive approach for DS in
scenes with defocus blur.

As shown in Figure 10, we test DS and AAS under three
different scenarios. ARENA presents a complex scenario
with a combination of camera motion, character animation
and large camera defocus. This represents a sequence typi-
cal of an in-game cut scene. SUBD, a scene from the D3D11
SDK, displays a character animation with large variations in
motion but no defocus effects. Finally CITADEL is a level
from Epic Games’ Unreal SDK and includes rapid move-
ments of the player camera combined with moderate defo-
cus. The magnitude of motion is highest for the CITADEL
scene. The CITADEL scene includes a post-process pass
where stochastic rasterization is disabled. We therefore do
not include the shader executions for this post-process pass.
All scenes are rendered at a resolution of 1280x720 pixels
with 16 samples per pixel and a with a 16 tap anisotropic
texture filter. We use these scenes in unmodified form and do
not incorporate any additional bandlimiting in the shaders.

For the ARENA scene we use two different lens models.
A sharp lens model with a truncated circular aperture and
a smooth lens model with a slow falloff. The smooth lens
has a reduced spectral support as compared to the sharp lens
and therefore makes it possible to sample more efficiently
(i.e. further lowering the shading cost) without significant
compromise on image quality. The smooth lens function is
derived by applying a smoothstep around the edge of the lens
[0.9r,1.1r], where r is the lens radius.

4.1. Performance

To measure shading performance and the required cache
sizes with the two sampling techniques, we chose one rep-
resentative frame from each of the three test sequences. We
pick a frame that has large blur which presents a more chal-
lenging scenario for shading reuse. These frames are shown
in Figure 10. Figure 8 shows the shading cost (number of
shaded quads) with DS and AAS under different cache size
constraints.

For the ARENA scene, it can be seen that DS requires
a cache size of 1K entries to achieve close to its optimal
shading cost. With a smooth lens model, AAS can lower this
shading cost by more than 53% with a cache size which is 16
times smaller (64 entries). With this cache size, the shading
cost with DS is around nine times higher than AAS. With
a sharp lens, AAS can lower the shading cost by more than
40% with a cache size of 256 entries.

Similarly, in the CITADEL scene DS requires a cache size
of at least 1K entries to achieve close to its lowest shad-
ing cost, while AAS achieves a 75% reduction in this cost
with a cache size of just 64 entries. The SUBD scene has
a lower magnitude of blur as compared to the other scenes
and therefore both DS and AAS require smaller caches in

c© The Eurographics Association 2012.

K. Vaidyanathan, R. Toth, M. Salvi, S. Boulos and A. Lefohn / Adaptive Image Space Shading for Motion and Defocus Blur

(a) ARENA (b) SUBD (c) CITADEL

0.2

0.8

3.2

12.8

8 16 32 64 128 256 512 1k 2k 4k

S
h

a
d

e
d

 Q
u

a
d
s
 (

M
)

 DS (Sharp)

AAS (Sharp)

AAS (Smooth)

0.12

0.24

0.48

8 16 32 64 128 256 512 1k 2k 4k

Cache Size (Entries)

DS

AAS

0.13

0.52

2.08

8.32

33.28

8 16 32 64 128 256 512 1k 2k 4k

DS

AAS

Figure 8: A comparison of the shading cost in terms of the number of shading quads with Decoupled Sampling (DS) and
Adaptive Anisotropic Sampling (AAS) for different cache sizes. The shading cost is presented on a logarithmic scale. DS requires
a cache size of 1K entries to achieve close to its lowest shading cost across the three test scenarios. With a soft lens model, AAS
can achieve a 30% to 50% reduction in shading cost with a cache size that is 16 times smaller (64 entries).

this scenario. In spite of the relatively small blur magnitude,
AAS can achieve close to 31% reduction in shading costs as
compared to DS.

We also measure shading costs across multiple frames for
the ARENA scene as shown in Figure 9. This sequence has
a combination of motion and defocus blur with reduced mo-
tion blur towards both the ends of the sequence. Because of
the large spectral support of the hard lens model, the savings
in shading cost is largely derived from motion blur. There-
fore the shading cost is lowest at the center of the sequence
where the savings is close to 50%. At the ends of the se-
quence the savings are much lower at close to 8%. With the
soft lens model however, the shading cost is consistently low
with savings between 50% to 60% across all frames.

4.2. Quality

Examples of the visual quality obtained from adaptive
anisotropic sampling are shown in Figure 10.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

S
h
a

d
e

d
 Q

u
a
d

s
 (

M
)

Frames

 DS (Sharp)

AAS (Sharp)

AAS (Smooth)

Figure 9: Shading costs (millions of shaded quads per
frame) with the DS and AAS techniques for individual frames
in the ARENA animation sequence. With a sharp lens model,
AAS derives a large portion of the savings in shading cost
from motion blur. Therefore depending on the amount of
motion blur in each frame, the shading cost varies signif-
icantly with savings between 8% to 50%. With the smooth
lens model, the savings are consistent (50% to 60%).

The most noticeable difference in the images produced by
Decoupled Sampling (DS) and Adaptive Anisotropic Sam-
pling (AAS) is reduced noise as a result of improved texture
filtering. In scenes with large motion and defocus blur, 16
samples per pixel is usually not adequate for producing noise
free images. By modifying the shader to use blur-adaptive
texture filtering methods such as Loviscach [Lov05] this
noise can be effectively reduced in regions of the image that
are fully covered by a primitive. With our method, blur-
adaptive texture filtering is automatically provided by the
anisotropic sampling grids. Noise can be further reduced
with aperture and shutter functions that have sharper falloffs
in the frequency domain. For instance Egan et al. [ETH∗09]
assume a Gaussian function as the shutter function.

With large motion or defocus blur, adaptive texture fil-
tering can produce large texture footprints. This can lead to
increased filtering across texture seams and may produce ar-
tifacts. In such cases there is a visible improvement in im-
age quality when shading points are clamped to primitive
boundaries, as can be seen in Figure 11. In order to com-
pletely avoid sampling across texture seams, techniques like
seamless texture atlases [PCK04] can be used.

With AAS, it is also important to bandlimit specular light-

Figure 11: Filtering across texture seams. Left: without
clamping and Right: with clamping. There is a visible im-
provement in quality with clamping as texture footprints are
centered inside the primitive.

c© The Eurographics Association 2012.

K. Vaidyanathan, R. Toth, M. Salvi, S. Boulos and A. Lefohn / Adaptive Image Space Shading for Motion and Defocus Blur

Figure 10: Quality comparison between Decoupled Sampling (DS, left) and Adaptive Anisotropic Sampling (AAS, right). Top:
ARENA scene. The foreground blur on pillar ornament is accurately reproduced. The far wall has a high frequency bump map
which is reproduced to a lesser degree of accuracy due to inadequate bandlimiting in the shader. Motion on dragon wings is
reproduced very well. Middle: SUBD scene. This is a challenging scene due to a large number of specular objects. With AAS
smoother regions such as the face are accurately reproduced while sharp specular regions including the backpack and the gun
have minor noise artifacts. Bottom: CITADEL scene. This scene has large motion blur which results in noisy images with only
16 samples per pixel. However AAS produces less noise as a result of improved texture filtering. The anisotropic features on
the signboard (middle inset) are well preserved with a 16 tap anisotropic filter. There are small differences in the background
region which can be caused by filtering across texture seams.

c© The Eurographics Association 2012.

K. Vaidyanathan, R. Toth, M. Salvi, S. Boulos and A. Lefohn / Adaptive Image Space Shading for Motion and Defocus Blur

ing, bump maps and sharp shadows as they can produce arti-
facts as seen in Figure 10. Inadequate bandlimiting can also
produce visible temporal artifacts. These issues can be miti-
gated by adopting methods that can filter these shading terms
in real-time such as [OB10].

5. Conclusion

We introduce a shading system for a stochastic rasteriza-
tion pipeline that dynamically sets anisotropic shading rates
based on the amount of motion and defocus blur. We de-
rive these shading rates from the estimated output frequency
of the shaders on the blurry surfaces, assuming that shaders
are properly band limited and constant from the beginning
to end of the frame. The result is that we can render images
that are similar in quality to previously described decoupled
shading pipelines, but shade two to three times fewer points
and require up to sixteen times less storage for the decoupled
shading cache.

The assumptions we make to support our derivation are
based on approximations used previously in rendering sys-
tems (notably in the original Reyes pipeline). We demon-
strate results that show the assumptions hold for a number
of cases, and the errors that result when they do not hold
are often not objectional. However, future work includes de-
signing a pipeline that allows users to compute some shading
terms, such as shadows, at higher sampling rates (e.g., once
per pixel), while leaving the majority of the shading compu-
tation at the reduced rates we derive in this paper.

6. Acknowledgements

The authors thank Charles Lingle, Aaron Coday, and Tom
Piazza at Intel for supporting this research. We thank Jacob
Munkberg, Petrik Clarberg, Nir Benty and Uzi Sarel at Intel
for contributing to our rasterization and simulation infras-
tructure. We also thank Jon Hasselgren and Magnus Ander-
sson for helping prepare the test scenes. Finally we thank
Epic Games for the CITADEL scene.

References
[Ake93] AKELEY K.: RealityEngine Graphics. In Proceedings of

SIGGRAPH 93 (1993), ACM, pp. 109–116. 1

[BFM10] BURNS C. A., FATAHALIAN K., MARK W. R.: A
Lazy Object-Space Shading Architecture with Decoupled Sam-
pling. In Proceedings of High-Performance Graphics 2010
(2010), pp. 19–28. 2

[CCC87] COOK R. L., CARPENTER L., CATMULL E.: The
Reyes Image Rendering Architecture. In Computer Graphics
(Proceedings of SIGGRAPH 87) (1987), vol. 21, ACM, pp. 95–
102. 2, 3

[CPC84] COOK R. L., PORTER T., CARPENTER L.: Distributed
Ray Tracing. In Computer Graphics (Proceedings of SIGGRAPH
84) (1984), vol. 18, ACM, pp. 137–145. 2

[CTCS00] CHAI J.-X., TONG X., CHAN S.-C., SHUM H.-Y.:
Plenoptic Sampling. In Proceedings of SIGGRAPH 2000 (2000),
ACM, pp. 307–318. 2, 4

[DHS∗05] DURAND F., HOLZSCHUCH N., SOLER C., CHAN
E., SILLION F. X.: A frequency analysis of light transport. ACM
Transactions on Graphics 24 (2005), 1115–1126. 2

[Eri05] ERICSON C.: Real-Time Collision Detection (The Mor-
gan Kaufmann Series in Interactive 3-D Technology). Morgan
Kaufmann, 2005. 5

[ETH∗09] EGAN K., TSENG Y.-T., HOLZSCHUCH N., DURAND
F., RAMAMOORTHI R.: Frequency Analysis and Sheared Re-
construction for Rendering Motion Blur. ACM Transactions on
Graphics 28 (2009), 93:1–93:13. 2, 4, 7

[GH86] GREENE N., HECKBERT P.: Creating raster omni-
max images from multiple perspective views using the elliptical
weighted average filter. Computer Graphics and Applications,
IEEE 6, 6 (june 1986), 21 –27. doi:10.1109/MCG.1986.
276738. 2

[KMH95] KOLB C., MITCHELL D., HANRAHAN P.: A Realistic
Camera Model for Computer Graphics. In Proceedings of SIG-
GRAPH 1995 (1995), ACM, pp. 317–324. 2

[LD12] LIKTOR G., DACHSBACHER C.: Decoupled deferred
shading for hardware rasterization. In Proceedings of the ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games
(New York, NY, USA, 2012), I3D ’12, ACM, pp. 143–150. 2

[Lov05] LOVISCACH J.: Motion Blur for Textures by Means of
Anisotropic Filtering. In Rendering Techniques 2005 (2005),
pp. 105–110. 2, 7

[MAM12] MUNKBERG J., AKENINE-MÖLLER T.: Hyperplane
Culling for Stochastic Rasterization. Unpublished draft. Submit-
ted to Eurographics 2012, 2012. 6

[MCH∗11] MUNKBERG J., CLARBERG P., HASSELGREN J.,
TOTH R., SUGIHARA M., AKENINE-MÖLLER T.: Hierarchical
Stochastic Motion Blur Rasterization. In Proceedings of High-
Performance Graphics 2011 (2011), ACM, pp. 107–118. 1, 2

[MESL10] MCGUIRE M., ENDERTON E., SHIRLEY P., LUEBKE
D.: Real-Time Stochastic Rasterization on Conventional GPU
Architectures. In Proceedings of High-Performance Graphics
2010 (2010), pp. 173–182. 2

[MN88] MITCHELL D. P., NETRAVALI A. N.: Recon-
struction filters in computer-graphics. SIGGRAPH Com-
put. Graph. 22 (June 1988), 221–228. URL: http://
doi.acm.org/10.1145/378456.378514, doi:http:
//doi.acm.org/10.1145/378456.378514. 2

[OB10] OLANO M., BAKER D.: Lean mapping. In Pro-
ceedings of the 2010 ACM SIGGRAPH symposium on In-
teractive 3D Graphics and Games (New York, NY, USA,
2010), I3D ’10, ACM, pp. 181–188. URL: http://
doi.acm.org/10.1145/1730804.1730834, doi:10.
1145/1730804.1730834. 9

[PCK04] PURNOMO B., COHEN J. D., KUMAR S.: Seamless
texture atlases. In Proceedings of the 2004 Eurographics/ACM
SIGGRAPH symposium on Geometry processing (New York,
NY, USA, 2004), SGP ’04, ACM, pp. 65–74. URL: http://
doi.acm.org/10.1145/1057432.1057441, doi:10.
1145/1057432.1057441. 7

[Pix09] PIXAR: RenderMan Studio 2.0 Documentation,
2009. URL: http://penguin.ewu.edu/RenderMan/
RMS_2.0/. 2

[RKLC∗11] RAGAN-KELLEY J., LEHTINEN J., CHEN J.,
DOGGETT M., DURAND F.: Decoupled Sampling for Graph-
ics Pipelines. ACM Transactions on Graphics, 30, 3 (2011). 1, 2,
3, 5, 6

[SSD∗09] SOLER C., SUBR K., DURAND F., HOLZSCHUCH N.,
SILLION F.: Fourier depth of field. ACM Transactions on Graph-
ics 28 (2009), 18:1–18:12. 2

c© The Eurographics Association 2012.

http://dx.doi.org/10.1109/MCG.1986.276738
http://dx.doi.org/10.1109/MCG.1986.276738
http://doi.acm.org/10.1145/378456.378514
http://doi.acm.org/10.1145/378456.378514
http://dx.doi.org/http://doi.acm.org/10.1145/378456.378514
http://dx.doi.org/http://doi.acm.org/10.1145/378456.378514
http://doi.acm.org/10.1145/1730804.1730834
http://doi.acm.org/10.1145/1730804.1730834
http://dx.doi.org/10.1145/1730804.1730834
http://dx.doi.org/10.1145/1730804.1730834
http://doi.acm.org/10.1145/1057432.1057441
http://doi.acm.org/10.1145/1057432.1057441
http://dx.doi.org/10.1145/1057432.1057441
http://dx.doi.org/10.1145/1057432.1057441
http://penguin.ewu.edu/RenderMan/RMS_2.0/
http://penguin.ewu.edu/RenderMan/RMS_2.0/

