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What does mobile-first mean?

~60% of online devices are now smartphones or tablets
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+ all web sites should mobile friendly

+ any desktop task should be do-able on your smartphone,
although programming or writing will be inconvenient

+ addressing the needs of the next billion users...
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The next billion users

+ probably don'’t speak English
+ have paid dearly for their computing device

+ will access the Internet mostly/ only through a smartphone
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tndia. |

Smartphone unit sales, 2014 forecast l
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The next billion users

+ probably have mediocre connectivity (low bandwidth)

+ cell phones give us convenience and entertainment;
for them 1t means livelihood, freedom, and power

+ the camera becomes an important tool...
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Mobile cameras

+ ~2B pictures are uploaded or shared per day

Daily Number of Photos Uploaded & Shared on Select Platforms, 2005-2013YTD
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Mobile cameras

+ the best camera is the one you have with you

+ mobile cameras are a powertful political tool
(“hberation technology”)

Demonstration in Kiev

Shooting of Walter Scott, North Charleston, SC
© Marc Levoy




Mobile cameras

~2B pictures are uploaded or shared per day
the best camera 1s the one you have with you

mobile cameras are a powerful political tool

e SR SR

wearable cameras are even more powertful...
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What Google Glass means for the
future of photography

University of North Carolina at Chapel Hill
October 28, 2013

Marc Levoy

Computer Science Department

Stanford University
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Why did Glass not launch in 20157

+ to be successful, Glass needed to be
o lightweight enough,
* unobtrusive enough,
o fashionable enough, and
e useful enough,

to wear all day

+ 1n the end, ~
e it was lightweight and fcwbwnaé[e but

e the ratio of uvseful to unobtrusive was too low

e and it was too expendive to build \ smart watches,
BEWARE!

+ privacy was not a factor in canceling the launch
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The challenges of mobile

limited computing power

always worried about battery life

no precision pointing, just your finger(s)

no keyboard, so can’t program or write extensively
small screen, dithicult ambient ighting

variable (or no) connectivity

S Y ST SRS e

complicated computing platform
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The challenges of mobile

+ limited computing power

+ always worried about battery life

+ variable (or no) connectivity
+ complicated computing platform

+ might be tethered to a wearable...
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The chaﬂenges of wearables

+ even more limited computing and battery life
+ even smaller display and cruder user interface

+ even worse connectivity, and an extra hop

© Marc Levoy
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The chaﬂenges of wearables

+ even more limited computing and battery life

+ even worse connectivity, and an extra hop
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Performance 1s measured by speed and power

+ cumulative usage (energy)

e measured 1n milliwatt-hours

* mobile devices must last all day
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Performance 1s measured by speed and power

+ cumulative usage (energy)

e measured in milliwatt-hours

» mobile devices must last all day

+ peak usage (power)

(Cerezo)

20

e measured 1n milliwatts

big challenge

/ for phones!

e limited by current draw on battery and heat dissipation

e heat controlled by thermal throttling, e.g. cutting clock rate

Power Breakdown (Excluding Idle Time) ¥ 8e000
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Apple A7 Thermal Test

Iterations of Benchmark
— iPad Air — iPad mini with Retina Display
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Performance 1s measured by speed and power

+ peak usage (power) big challenge

. P f' h !
e measured in milliwatts / or phones
e limited by current draw on battery and heat dissipation

e heat controlled by thermal throttling, e.g. cutting clock rate

eavy cmutih sk if 1t's ver quicly. *’,

il’l cooling, not performance.
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Upload data to cloud for computation?

+

sending a burst of 10 x 5Mpix JPEG images (2MB@)
over 3G to the cloud takes 50 secs at 400mA power

for the same energy you could compute on an Android

phone for 100 seconds

100 seconds x 2.7GHz x 4 cores = 22K operations on
each pixel of our 50 Mpix burst

It's almost never worth sending data to .

the cloud for processing. |
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Action items for computer scientists

1. embarrassingly parallel algorithms are not a panacea on
mobile; you need algorithms that actually do less work

© Marc Levoy
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Functionality depends on connectivity

+ a cell phone might contain 7 radios
e« CDMA, GSM, Wifi, Bluetooth, NFC, GPS, FM

+ graceftul degradation in functionality 1t
connectivity 1s poor or intermittent or missing
e seamless hand-oft between wifi and cellular data
e progressive streaming & rendering of images and video

e ability to use device without cloud-based voice recognition

big challenge /

for wearables!

© Marc Levoy




25

Action items for computer scientists

2. need better voice recognition / transcription on device,
and the solution can’t require a giant database

© Marc Levoy
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Functionality depends on connectivity

+ a cell phone might contain 7 radios
e« CDMA, GSM, Wifi, Bluetooth, NFC, GPS, FM

+ graceftul degradation in functionality 1t
connectivity 1s poor or intermittent or missing
e seamless hand-oft between wifi and cellular data
e progressive streaming & rendering of images and video

e ability to use device without cloud-based voice recognition

+ ways of synchronizing content with the cloud
I. must be online (web, email, chat), or
2. cache most recent (Google Docs), or
3. pin selected content (iTunes, 1Photo, Play Music), or
4. cache everything on device (Dropbox, Evernote)
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Action items for computer scientists

3. robust synchronization of large, diverse databases across
multiple, intermittently connected devices 1s still elusive

© Marc Levoy
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Mobile devices are insanely complicated

+ heterogeneous mixture of computing resources
« CPU
« GPU increasingly hard to
. DSP program
e VLIW co-processor
e “programmable” ISP

© Marc Levoy
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Mobile devices are insanely complicated

+ multiple vendors who barely talk to each other

[P provider (face detection circuitry) N
® SOC Chipmaker (Qualcomm) unless aﬂ ()f them
e phone maker (Motorola, if Nexus 6) are Apple

e OS writer (Google, if Android)

e app writer (including independent developers)
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Mobile devices are insanely complicated

+ the software stack 1s deeper than you think

e multiple languages
(in Android: Java, C++, assembler, microcode)

e 13 nested function calls to lock the focusing lens!

© Marc Levoy
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Mobile devices are insanely complicated

+ many functions are implemented in hardware...

© Marc Levoy
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Enabling hardware technologies for
burst-mode computational photography

+ fast sensor readout
e 5Mpix @ 30fps on Google Glass

+ fast processing
o 5Mpix @ 30fps to YUV

+ live viewfinder consists of processing at full-res to YUV,
then downsizing to screen resolution

+ this processing i1s implemented in ASIC hardware on
most cameras

© Marc Levoy
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Texas Instruments OMAP4 SoC

(used in Google Glass)
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Major subsystems
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Imaging subsystem (ISS)
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Image and signal processor (ISP)
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Image processing pipeline (IPIPE)

(public version of documentation)
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The OpenGL Machine

The OpenGL"” graphics system diagram, Version 1.1. Copyright © 1996 Silicon Graphics, Inc. All rights reserved.
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Typical pipeline

+ dark frame subtraction
+ lens shading correction
+ sensor linearization

+ gain and offset controls
+ statistics gathering

+ pixel defect correction
+ 1nitial denoising

+ demosaicking

+ color correction

+ tone mapping

+ edge sharpening/denoising

+ warping / resizing

1
DHEENEE —
I N

Bayer mosaic

A 4

YUV
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What if we could reconfigure 1t?

+ dark frame subtraction
+ lens shading correction
+ sensor linearization

+ gain and offset controls

+ statistics gathering /tap-out ot Bayer mosaic

+ pixel defect correctizN

+ initﬁ denoising

+ der%aicking

+ color correction

+ tone mapping

+ edge sharpening/denoising

+ warping / resizing

re-injection of Bayer mosaic

Using handshake to avoid demosaicking

1. read frames, process to RAW

2. align features with pixel precision
3. hope for an R,G,B in every pixel

4. re-inject but suppress demosaicing

© Marc Levoy
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Mobile devices are insanely complicated

+ key 1s inding the right points of abstraction

e for computer graphics:
Jim Clark’s Geometry Engine —
OpenGL — GPU shading languages

e for computational photography:
Frankencamera architecture —

Camera2 API — camera shading languages?

e for computer vision: ??

© Marc Levoy




Stanford Frankencamera architecture
and FCam API [Adams SIGGRAPH 2010]

Sensor sensor;
Elkash=tlaishs:

Ve C eSOt D S )=

imade Sensor)
Shot Requests _ [ Image Sensor

L

Configure

Application Devices 1

Processor
Actions Expose
2

Readout
3

Imaging Processor N
Images and
[ Statistics ‘ Image Statistics 4
Processing Collection
J

| 57201 O
Il

bursti@l=exposure
burst[1l] .exposure

J

Metadata

Flash::FireAction fire(&flash) ;
fire.time = burst[0] .exposure/2;
burst[0].actions.insert(fire);

sensor.stream(burst) ;

while (1) {
Frame flashFrame =
sensor.getFrame() ;
Frame noflashFrame =
sensor.getFrame();
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Demonstration applications

Canon 430EX (smaller flash)

strobed continuously

Canon 580EX (larger flash)

ﬁred once at end Of exposure




Stanford Frankencamera architecture
and FCam API [Adams SIGGRAPH 2010]
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Flash::FireAction fire(&flash) ;
fire.time = burst[0] .exposure/2;
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while (1) {
Frame flashFrame =
sensor.getFrame() ;
Frame noflashFrame =
sensor.getFrame();
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Android Camera HAL 3 architecture
and Camiera 2 AU (Eddy Talvala and others)

Sensor sensor;
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Frame noflashFrame =
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Android Camera HAL 3 architecture
and Camiera 2 AU (Eddy Talvala and others)

Sensor sensor;
Elkash=tlaishs:

Application Framework Request Queue

Camera Apps ’_*_4 Requests e R Ere o IO E =SS Sl (s
{__;_J | burst[0] .exposure = 1/200.;
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Frame Metadata Queue Image Buffers f-lret-lme == burSt[@] EXpOSUFG/Z,
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C ) Image Buffers

sensor.stream(burst) ;

—

whitle—=Cl)--{
Frame flashFrame =
sensor.getFrame() ;
Frame noflashFrame =
sensor.getFrame();
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Android Camera HAIL.=3:

hd e

API...

// This is how to tell the camera to trigger.
mpreVIewRequestBullder set aptureRequest CONTROL_AE_PRECAPTURE_TRIGGER,
Capture equest C RECA URE TRIGGER_START);

l@ e%@ e e u be set.
mState = AITI G_PRECA

mCaptureSessu)n capture(mPreVIewRequestBullder build(), mCaptureCallback,
dHandler

FPEE Hbvala and others)

Back,
e.prin € §

Application Framework Request Queue

A
Camera Apps ‘ ’JJ
Requests
Camera HAL Implementation

Frame Metadata Queue Image Buffers

yusisiiasiinsiisnbisiiniis]
DR,

Image Buffers

( Metadata

® allows control over the camera

® doesn’t accelerate image processing

47

}

/" =
* Capture a still picture. This method should be called when we get a response in
* {@link #mCaptureCallback} from both {@link #lockFocus()}.
9:9/
private void captureStillPicture() {
try {
final Activity activity = getActivity();
if (null == activity |l null == mCameraDevice) {
return;
}
// This is the CaptureRequest.Builder that we use to take a picture.
final CaptureRequest.Builder captureBuilder =
mCameraDevice.createCaptureRequest(CameraDevice. TEMPLATE_STILL_CAPTURE);
captureBuilder.add Target(mImageReader.getSurface());

// Use the same AE and AF modes as the preview.

captureBuilder.set(CaptureRequest. CONTROL_AF_MODE,
CaptureRequest. CONTROL_AF_MODE_CONTINUOUS_PICTURE);

captureBuilder.set(CaptureRequest. CONTROL_AE_MODE,
CaptureRequest. CONTROL_AE_MODE_ON_AUTO_FLASH);

// Orientation
int rotation = activity.getWindowManager().getDefaultDisplay().getRotation();
captureBuilder.set(CaptureRequest. JPEG_ORIENTATION, ORIENTATIONS.get(rotation));

CameraCaptureSession.CaptureCallback CaptureCallback
= new CameraCaptureSession.CaptureCallback() {

@Override
public void onCaptureCompleted (CameraCaptureSession session, CaptureRequest request,
TotalCaptureResult result) {
Toast.makeText(getActivity(), "Saved: " + mFile, Toast LENGTH_SHORT).show();
unlockFocus();
}
Bs

mCaptureSession.stopRepeating();

mCaptureSession.capture(captureBuilder.build(), CaptureCallback, null);
} catch (CameraAccessException e) {

e.printStack Trace();

}
} © Marc Levoy
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Mobile devices are insanely complicated

+ we also need the right programming model
e library (API)

e general language / Halide?

e domain-specific language

¢ low-level language (machine instructions)

© Marc Levoy




Separating algorithms from schedules
[Ragan-Kelley 2012]

(a) Clean C++ : 9.94 ms per megapixel

void blur (const Image &in, Image &blurred) {
Image tmp(in.width (), in.height());

for (int y = 0; y < in.height(); y++)
for (int x = 0; x < in.width(); x++)
tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+1l, y))/3;
for (int y = 0; y < in.height(); y++)
for (int x = 0; x < in.width(); x++)
) blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;

49 © Marc Levoy
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Separating algorithms from schedules

[Ragan-Kelley 2012]

— (b) Fast C++ (for x86) : 0.90 ms per megapixel ——

void fast_blur (const Image &in, Image &blurred) {
-ml28i one_third = mm setl epil6(21846);
#pragma omp parallel for
for (int yTile = 0; yTile < in.height(); yTile += 32) {
-ml28i a, b, ¢, sum, avg;
~.ml28i tmp[ (256/8) % (32+2)1];
for (int xTile = 0; xTile < in.width(); xTile += 256) {
.ml28i *tmpPtr = tmp;
for (int y = -1; y < 32+41; y++)
const uintlé _t »inPtr = & (in(xTile, yTile+y));
for (int x = 0; x < 256; x += 8)
a _mm_loadu sil28((..ml28ix%) (inPtr-1));
b _mm_loadu sil28((-ml28ix) (inPtr+l));
c mm load sil28 ((..ml28ix) (inPtr));
s _mm_add_epil6(_mm_add epil6(a, b), c);
avg _mm_mulhi_epil6 (sum, one_third);
_mm_store_sil28 (tmpPtr++, avg);
inPtr += 8;

g nnn
|

tmpPtr = tmp;
for (int y = 0; y < 32; y++) {
- ml28i xoutPtr = (_.ml28i ) (& (blurred(xTile, yTile+y)));
for (int x = 0; x < 256; x += 8) {
a _mm_load_sil28 (tmpPtr+(2x256)/8);
b _mm_load_sil28 (tmpPtr+256/8);
= mm_load_sil28 (tmpPtr++) ;
s _mm_add_epil6( mm _add epil6(a, b), c);
avg _mm_mulhi_epil6 (sum, one_third);
mm_store_sil28 (outPtr++, avg);

133333

g nun
nonj
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Separating algorithms from schedules
[Ragan-Kelley 2012]

(c) Halide : 0.90 ms per megapixel

Func halide_blur (Func in) {
Func tmp, blurred;
Var x, y, xi, yi;

// The algorithm
tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+1l, y))/3;
blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;

// The schedule
blurred.tile(x, y, xi, yi, 256, 32) .vectorize(xi, 8) .parallel(y);
tmp.chunk (x) .vectorize (x, 8);

return blurred;

}

© Marc Levoy
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Why 1s Halide spreading so fast?

+ because with a bit of portable code you can write
e faster matrix multiply than Eigen
o faster Gaussian blur than Intel Performance Primitives

e faster Fourier transform than fftw

+ or maybe because it...
e runs on device and in the cloud
e 1s supported on Linux, Windows, OSX, 10S, Android

e compiles to x86, ARM, MIPS, native client, OpenCL, OpenGL,
CUDA, JavaScript, RenderScript (ISPs soon)

+ companies writing Halide code

o Apple, Intel, Adobe, Microsoft, Nvidia, Google, Facebook,
Qualcomm, Sony, Datexim, Algolux, ContextVision, Leap Motion,
Nodasys, Nikon, Vicomtech, Ubisoft, Idruna, Imgtec, Lytro

© Marc Levoy
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Action items for computer scientists

4. need architectures for accelerating image processing and
computer vision, and good ways to program them

© Marc Levoy
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CS’s biggest successes 1n 25 years

+ deep learning + big data 1s replacing hand-built
algorithms for many tasks, including photography

+ computer vision 1s beginning to work
* Google image search no longer relies solely on text

e can estimate camera pose from sensed imagery
(“visual odometry”) in real-time

e can compute stereo (at low-res) in real time

© Marc Levoy
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'AM: dense tracking and mapping in real-time

[ Newcombe, ICCV 2011]

Live incremental reconstruction of a large scene

Texture mapped model Inverse depth solution

+ becoming possible on a mobile device (Google Tango)

+ 1n the future, JPEG files will include depth (RGBZ)

56
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CS’s biggest successes 1n 25 years

e can build 3D models in real time

e lots of applications, including VR, AR

© Marc Levoy




Word Lens

(app for 10S and Android)

Word Lens

www.QuestVisual.com

+ mediocre translation, but clever user interftace

+ recently bought by Google, runs on Glass

57 © Marc Levoy
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CS’s biggest successes 1n 25 years

e pressure on hardware, abstractions, languages

e brain drain from academia

© Marc Levoy
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Action items for computer scientists

5. allow faculty to rotate through industry, or spend 50%

of their ime 1n industry, without losing tenure

© Marc Levoy
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Mobile systems are hard to teach

+ competition and patent lawsuits leads companies to
keep their technologies secret

+ mobile device manufacturers are EEs, not CSers, so
their devices have poor, opaque, and inflexible software

+ as a result, there are few textbooks about mobile
systems technologies (or cameras), and few courses

e How does auto white balancing work on real cameras?
e Or auto exposure metering?
e Or auto focusing?

e Or denoising?

© Marc Levoy
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Mobile systems are hard to teach

+ competition and patent lawsuits leads companies to
keep their technologies secret

+ mobile device manufacturers are EEs, not CSers, so
their devices have poor, opaque, and inflexible software

+ as a result, there are few textbooks about mobile
systems technologies (or cameras), and few courses

+ students come out of school without the skills they need
to succeed 1n industry

e machine learning should be mandatory
e so should web development, security, NLP

e and mobile systems

Udacity’s business model

© Marc Levoy
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Action items for computer scientists

6. develop platforms and write textbooks to enable
teaching of mobile systems, especially via lab courses

© Marc Levoy
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[Lab courses? With these enrollments?!

400 -

Stanford CS major declarations

(Mehran Sahami)

© Marc Levoy
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[Lab courses? With these enrollments?!

Total CS Units Taught
70,000
CS teaches more total units than
60,000 any other department at Stanford
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(Mehran Sahami)
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Superhero vision

+ seeing 1n the dark

© Marc Levoy
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Digital photography

can easily exceed human vision

(Jesse Levinson Canon 10D, 28mm /4, 3 min, ISO 100, 4 image pano)

+ required a tripod

+ can't currently do this using a cell phone, but it's not impossible

e dark current (if one shot) or read noise (if a burst) must be very_loy

evoy




Low-light imaging using
burst-mode computational

photography

single frame

(iPhone 4)




Low-light imaging using
burst-mode computational

photography

SNR increases as

sqrt(# of frames)

average of
~30 frames

(SynthCam)




single frame
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average of
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Superhero vision

+ seeing in the dark

+ seeing through objects

© Marc Levoy




Removing foreground objects
by translating the camera
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+ align the shots

S

+ match histograms

+ apply median filter
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Superhero vision

+ seeing in the dark
+ seeing through objects

+ magnifying glass, telescopic vision

© Marc Levoy




Camera-based magniﬁers

+ optical zoom

e requires a long optical path

+ digital zoom (cropping)

e requires a high pixel count, ¥
hence a thick camera

,,,,,,

Nokia 808

+ super-resolution
e results typically look oversharpened
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Beyond SLLRs: Superhero vision

seeing 1n the dark
seeing through objects

magnifying glass, telescopic vision

e SRR I

slowing down motion

79
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Superhero vision

seeing 1n the dark
seeing through objects
magnifying glass, telescopic vision

slowing down motion

ity e e

motion magnification, change magnification

© Marc Levoy




Motion magnification
[Liu, SIGGRAPH 2005]

+ can this be done using a (shaky) handheld camera?

+ can it be computed on a (slow) mobile device?

82
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Change magniﬁcation
[Wu, SIGGRAPH 2012]

Source Color-amplified (x100)

+ how much SNR is needed to detect this signal?

+ 1s it socially acceptable to run this on Glass?
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Superhero vision

seeing 1n the dark

seeing through objects
magnifying glass, telescopic vision
slowing down motion

motion magnification, change magnification

VUi S S SR

face recognition
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It you met this man at a party...

name: Jack Sparrow
address: Black Pearl

profession: pirate
» net worth: Zero
spouse: many

criminal record: long
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Face recognition

+ recognition from uncontrolled photos 1s still sci-h

+ Google pro-actively prohibited it on Glass

+ 1t could eventually work

+ 1f 1t does, someone will build a device to do it

+ anonymity 1s so...20th century, get over it

4 gIving up anonymity # giving up privacy

© Marc Levoy
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Sensor sensor;
Shot low, med, high;

s Low.exposure = 1/80.;
* med.exposure 1/20.;
high.exposure = 1/5.;

sensor.capture(low) ;
sensor.capture(med) ;
sensor.capture(high);

Frame frames[3];

frames[0@] = sensor.getFrame();
frames[1l] = sensor.getFrame();
frames[2] sensor.getFrame();

fused = mergeHDR(frames);




