What “mobile-first” means for the
future of computer science

UNC Computer Science
50th Anniversary Symposium
Bilias: 7= 26k

Google

Marc Levoy Professor, Emeritus
Engineering Manager Computer Science Department

GoogleX Stanford University

What does mobile-first mean?

~60% of online devices are now smartphones or tablets

%
-
@
=
]
3
=
o
g
o]
o]
;
£
3
=

-0
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014E

BI INTELLIGENCE

+ all web sites should mobile friendly

+ any desktop task should be do-able on your smartphone,
although programming or writing will be inconvenient

+ addressing the needs of the next billion users...

© Marc Levoy

The next billion users

+ probably don'’t speak English
+ have paid dearly for their computing device

+ will access the Internet mostly/ only through a smartphone

china | ¢ ilion
tndia. |

Smartphone unit sales, 2014 forecast l

us 1 50 % of Chinese Internet Users Accessing the Web
. via Desktop PCs vs. via Mobile Phones, 6/07 — 12/12
Brazil || 47 100%
Indonesia -46 96,
Russia [31 80%
Japan - 30 «==via Desktop PC 71%
Mexico - 23 60% via Mobile Phone 7 ’

Germany [22
France [Jjjj 18.7

UK [17.7

Quartz | qz.com Data: Mediacells,

% of Total Internet Users in China

6/07 12/07 6/08 12/08 6/09 12/09 6/10 12/10 6/11 12/11 6/12 12/12

(Kleiner Perkins)

© Marc Levoy

The next billion users

+ probably have mediocre connectivity (low bandwidth)

+ cell phones give us convenience and entertainment;
for them 1t means livelihood, freedom, and power

+ the camera becomes an important tool...

© Marc Levoy

Mobile cameras

+ ~2B pictures are uploaded or shared per day

Daily Number of Photos Uploaded & Shared on Select Platforms, 2005-2013YTD

600
> 500
a
o 1 Flickr
Q.
E 400 m Snapchat
£
”n m Instagram
% _ 300
T =
3 = m Facebook
3
= 200
=)
(%24
2
2 100
kS
*

0

2005 2006 2007 2008 2009

(Kleiner Perkins)

© Marc Levoy

Mobile cameras

+ the best camera is the one you have with you

+ mobile cameras are a powertful political tool
(“hberation technology”)

Demonstration in Kiev

Shooting of Walter Scott, North Charleston, SC
© Marc Levoy

Mobile cameras

~2B pictures are uploaded or shared per day
the best camera 1s the one you have with you

mobile cameras are a powerful political tool

e SR SR

wearable cameras are even more powertful...

© Marc Levoy

What Google Glass means for the
future of photography

University of North Carolina at Chapel Hill
October 28, 2013

Marc Levoy

Computer Science Department

Stanford University

point of view

always available

| &

=

3T
N

ghR

OAKLAND %

C‘I.,o

-5

your eyes are unobstructed

Why did Glass not launch in 20157

+ to be successful, Glass needed to be
o lightweight enough,
* unobtrusive enough,
o fashionable enough, and
e useful enough,

to wear all day

+ 1n the end, ~
e it was lightweight and fcwbwnaé[e but

e the ratio of uvseful to unobtrusive was too low

e and it was too expendive to build \ smart watches,
BEWARE!

+ privacy was not a factor in canceling the launch

14 © Marc Levoy

156

The challenges of mobile

limited computing power

always worried about battery life

no precision pointing, just your finger(s)

no keyboard, so can’t program or write extensively
small screen, dithicult ambient ighting

variable (or no) connectivity

S Y ST SRS e

complicated computing platform

© Marc Levoy

16

The challenges of mobile

+ limited computing power

+ always worried about battery life

+ variable (or no) connectivity
+ complicated computing platform

+ might be tethered to a wearable...

© Marc Levoy

17

The chaﬂenges of wearables

+ even more limited computing and battery life
+ even smaller display and cruder user interface

+ even worse connectivity, and an extra hop

© Marc Levoy

18

The chaﬂenges of wearables

+ even more limited computing and battery life

+ even worse connectivity, and an extra hop

© Marc Levoy

19

Performance 1s measured by speed and power

+ cumulative usage (energy)

e measured 1n milliwatt-hours

* mobile devices must last all day

5000
4500
4000
3500
3000
2500
2000
1500
1000 ~

iPhone 5s
iPhone 6

(ubergizmo)

Moto X

Battery Capacity (mAh), Higher is better

Nexus 5

One (M8)

Galaxy S5

G3

Xperia Z3

Xperia Z2

Nexus 6

Galaxy Note 4

Ascend Mate2 4G

450

Battery Capacity
m
N
8

400 -
350 -
300 -

= ey

= 250

150 -

big challenge

/ for watches!

World's highest battery capacity
in an Android Wear smartwatch3

STRATEGYANALYTICS

RAX

© Marc Levoy

Performance 1s measured by speed and power

+ cumulative usage (energy)

e measured in milliwatt-hours

» mobile devices must last all day

+ peak usage (power)

(Cerezo)

20

e measured 1n milliwatts

big challenge

/ for phones!

e limited by current draw on battery and heat dissipation

e heat controlled by thermal throttling, e.g. cutting clock rate

Power Breakdown (Excluding Idle Time) ¥ 8e000

. o
AEEEEEEEEEN ‘ ; “music § ‘W\\\NM
i - 8
c
L, ! S
[} E 18000

o
} K T
u &

[}

[}

oooooooo

Lol i o o o o~

Apple A7 Thermal Test

Iterations of Benchmark
— iPad Air — iPad mini with Retina Display

© Marc Levoy

21l

Performance 1s measured by speed and power

+ peak usage (power) big challenge

. P f' h !
e measured in milliwatts / or phones
e limited by current draw on battery and heat dissipation

e heat controlled by thermal throttling, e.g. cutting clock rate

eavy cmutih sk if 1t's ver quicly. *’,

il’l cooling, not performance.

© Marc Levoy

22

Upload data to cloud for computation?

+

sending a burst of 10 x 5Mpix JPEG images (2MB@)
over 3G to the cloud takes 50 secs at 400mA power

for the same energy you could compute on an Android

phone for 100 seconds

100 seconds x 2.7GHz x 4 cores = 22K operations on
each pixel of our 50 Mpix burst

It's almost never worth sending data to .

the cloud for processing. |

© Marc Levoy

23

Action items for computer scientists

1. embarrassingly parallel algorithms are not a panacea on
mobile; you need algorithms that actually do less work

© Marc Levoy

24

Functionality depends on connectivity

+ a cell phone might contain 7 radios
e« CDMA, GSM, Wifi, Bluetooth, NFC, GPS, FM

+ graceftul degradation in functionality 1t
connectivity 1s poor or intermittent or missing
e seamless hand-oft between wifi and cellular data
e progressive streaming & rendering of images and video

e ability to use device without cloud-based voice recognition

big challenge /

for wearables!

© Marc Levoy

25

Action items for computer scientists

2. need better voice recognition / transcription on device,
and the solution can’t require a giant database

© Marc Levoy

26

Functionality depends on connectivity

+ a cell phone might contain 7 radios
e« CDMA, GSM, Wifi, Bluetooth, NFC, GPS, FM

+ graceftul degradation in functionality 1t
connectivity 1s poor or intermittent or missing
e seamless hand-oft between wifi and cellular data
e progressive streaming & rendering of images and video

e ability to use device without cloud-based voice recognition

+ ways of synchronizing content with the cloud
I. must be online (web, email, chat), or
2. cache most recent (Google Docs), or
3. pin selected content (iTunes, 1Photo, Play Music), or
4. cache everything on device (Dropbox, Evernote)

© Marc Levoy

27

Action items for computer scientists

3. robust synchronization of large, diverse databases across
multiple, intermittently connected devices 1s still elusive

© Marc Levoy

28

Mobile devices are insanely complicated

+ heterogeneous mixture of computing resources
« CPU
« GPU increasingly hard to
. DSP program
e VLIW co-processor
e “programmable” ISP

© Marc Levoy

29

Mobile devices are insanely complicated

+ multiple vendors who barely talk to each other

[P provider (face detection circuitry) N
® SOC Chipmaker (Qualcomm) unless aﬂ ()f them
e phone maker (Motorola, if Nexus 6) are Apple

e OS writer (Google, if Android)

e app writer (including independent developers)

© Marc Levoy

30

Mobile devices are insanely complicated

+ the software stack 1s deeper than you think

e multiple languages
(in Android: Java, C++, assembler, microcode)

e 13 nested function calls to lock the focusing lens!

© Marc Levoy

31

Mobile devices are insanely complicated

+ many functions are implemented in hardware...

© Marc Levoy

32

Enabling hardware technologies for
burst-mode computational photography

+ fast sensor readout
e 5Mpix @ 30fps on Google Glass

+ fast processing
o 5Mpix @ 30fps to YUV

+ live viewfinder consists of processing at full-res to YUV,
then downsizing to screen resolution

+ this processing i1s implemented in ASIC hardware on
most cameras

© Marc Levoy

33

Texas Instruments OMAP4 SoC

(used in Google Glass)

Handset Ear
microphones x2 speaker

HF speakers
x2

Vibrator!
o actuator
x2

WL1283 BT/FMIGPSWLAN
12C cm] Audio |
SIPDIF
& & ool
Wicro USS | mcase| [mcPo omic | |«eveoaro| | sumsusi | SDMMCS
@ MCBSP2 || MCaSP1 MCSPI2
UART2 || 12c2
Crher flash
memory
eMMC™
(JCB4) |—— SDMMC2
{Nor, Nand,
OneNand, ...
— o (ot
NVM LPDDR 2 2 or 4x
memory LPDDR2 | LPDDR21
SD
’ | LPoDR22 = I
OMAP4430 USBB
ULPIHSIC]
L
= | soMme 1
SOTMME [MCBSP2 I
NFC 8 12C4

Mobile TV —\Y

t-H g

IDA

Hom |

|CS|.2-A|J |2+:a | csgﬂ_

iRAilan -
| (Ls+ESD+StepUp) |

o

PicoDLP®

Touchscreen | | Main display| | Touchscreen

Subdisplay Tvout

*rimary Secondary
camera camera

© Marc Levoy

Major subsystems

8E
Q
(2]
=
(23
n
@

|
s

From Debug subsystem

- 32bits a
i T —— i ! i !
| | | L I_ = | |
- m—_ { [face) % T I
Detect | | | || |
Cortex-A9 | Cortex-A9 ! (FOIF) ! | t |

CPUO CPU { | ! HEDEBOTO
+Neon « VFPV3 | 4 Neon + VEPVE |) |3ylhl'nDMAl 'l 2x I
| o | |13227dmmh | I|I-|S-IJJC|
| o | 127 ruests | . !
[) |)]

| |

= L -
| I |

r
L

£

H To HS,
: 3 HS ugna[yr% Yo
R 3
= H EMIF4D

) ToEMU L3
b , T Shared OCP WP, instrumentation
cees | -4x HS°C :
| - 1x HDQ/1-Wire |
| - 1x MCBSP | 1
| -4x MCSPI | ’ ——1 ﬁToCORE'LB
| - 4x UART (ximoa) | —_—_—_—_—_—_—_—_—_—_—_—_I instrumentation
|
|
|
|
|

N
w

From
ca2Cc

3
3

I [i

3| -6x GPTIMER
| - 5x GPIO

L4_PER interconnect

: EMIFAD : : EMl_;w : () (CEC RS N~ To FOIF (face detect)
1 —————————
| | PSRAM | To DSP subsystem
LLPODRZ | LPODR? | | conoller | _ I[N - == - ———— | - 7 == SRR -

L4_CFG interconnect

To EMUL3
instrumentation

[PAors e s - B PR
|- GPTIMER \
1-GPIO I g

.mmﬂ l ____________
:-mmmm
|- SAR RAM (8KB 32-bit data) |

L4_WKUP interconnect

___________ intro_swpu141-001

34 © Marc Levoy

35

Imaging subsystem (ISS)

!

!

!

Imaging subsystem TCTRL CSI2 CsI2 CCP2
protocol engine | | protocol engine protocol engine
SIMCOP _ t =
= |
5 ™ |
NSF2 ROT !
|
I
- ISP I
2x coerrn | || W~ """ " """1§f """ """ °°°°~ ! !
LDC 4MAC iMX 1%' : I
J Lo’ IPIPEIF | | \
] c |
DCT VLCD S reoErES | S |
g 16KB 3 : 3 |
L L | rows ISIF |> H3A IPIPE [& |
- - LB
| BUFF n | BUFF n BTstream : é% = |
4x512x16b 4x512x16b 2@ NLi=1d- L] 518y
uffman g S==r o d 1)
I Ful | 1 BERRE
4KB | [! 5 5
DMA HW SEQ Guart "N =
|| 512 bytes v v \ A / 3 % |
Buffer logic |
I Master port I |Slave portI TBUSIOCP |
§ v ; YVYVY :
aza 5 ISS interconnect (128b) :
T | <
x g A4 :
§ % Burst translation engine ISS top-level resources :
N R — — — — — — — — — = = = = = = = = = = = ————— = ——— '
Bridge Bridge

l Master interface

Slave interface

Marc Levoy

Image and signal processor (ISP)

bits

+‘

and clip

data gain

RSz

IPIPEIF_CFG1[3:2) INPSRC2

IPIPEIF_CFG1[15:14] INPSRC1
16 bi \E
Video port 6 bits L 4 0
2
16
O, »
Dark
@ frame .@‘
subtraction 3/
1
16 bits DCPM
\E IPIPEIF_CFG1[3:2] INPSRC2
. > Read
Buffer logic |_32 bits buffer I® 3
interface
» 1 (1.2,1) Horizontal
32-bit RAW/YCDbCr data —»| Averaging || pixel
» 2 filter decimator
16 bit
its ° o o
|~
10 bits (1,2,1) Horizontal
Averaging [~*| pixel
filter decimator

Timing generator

10 bits

IPIPE

Image processing pipeline (IPIPE)

(public version of documentation)

rb RAM 1024 data x 20 bits ‘j RAM 960 x 32 bits x 2 <
Boxcar Histogram |« A ®
2176 x 12 bits
From x 4 lines
IPIPEIF u8 x3
. Input H Line Line
Video port jegP e memory | LUT DPC P memory
16 16 12 | 198 x 30 bits x 4 |
2176 x 12 bits A
x4 lines Line 2176 x 6 bits 512x20
128 x 29 bits x 2 memory x 1lines RAM:512x20x3
&
§ 3 ul0
= 12x3
3z 1]
=5 White Line RGB RGB RGB |us,
g P color =P to » ©
balance memory correction | RGB YCbCr
) Buffer logic 2176 x 12 bits RGB2RGB blending I u8
x5 lines _ 2176 x 12 bits 10x3 10x3 10x3
RAW data Line x 2 lines 4:4:4
memory 16 to 24
v L 4:2:2 Vi
7 7
RAM:512x18
5 x5 taps
® X » ‘Y. Ed) 4 >
ge
s Line 8 enhancer -’ i
memory
CGs (Y8+C8)
Cb/Cr
8 8
Cb/Cr cber
2176 x 8 bits x 4 lines
2176 x 8 bits x 3 lines I -
mage pipe

© Marc Levoy

&7

=

The OpenGL Machine

The OpenGL"” graphics system diagram, Version 1.1. Copyright © 1996 Silicon Graphics, Inc. All rights reserved.

Il
[
833

Verti
i &
Vertex Areaysi__
51 Textufe Goordinate,
Uotoss Geperation -
iz el
N o Cuiront 1
. Values ;

B Lighing Ecution

—]

iing, Perspective,
e TIORR e
Viewpori Applicalian - |

votea [oact
i COORDINATES

{Texturirigi
47 Fog,

5ok

= eve
COORONATES

Sélection Antialiasing

Key to OpenGL Operations

popsn

e
B

ASTER PGS ——

Commands (and constants) are shown without the
gl (or GL._) prefix.

The following commands do not appear in this
diagram: glAccum, giClearAccum, glHint,
display list commands, texture object commands,
commands for obtaining OpenGi

(glGet commands and glisEnabled), and
glPushAttrib and glPopAttrib. Utiity library
foutines are not shown.

After their exectution, glDrawArrays and
glDrawElements leave affected current values
indeterminate.

This diagram is schematic; it may not directly

correspond to any actual OpenGL implementation. N_.,‘,,‘,._D_i [arciint

~

©

IS

39

Typical pipeline

+ dark frame subtraction
+ lens shading correction
+ sensor linearization

+ gain and offset controls
+ statistics gathering

+ pixel defect correction
+ 1nitial denoising

+ demosaicking

+ color correction

+ tone mapping

+ edge sharpening/denoising

+ warping / resizing

1
DHEENEE —
I N

Bayer mosaic

A 4

YUV

© Marc Levoy

40

What if we could reconfigure 1t?

+ dark frame subtraction
+ lens shading correction
+ sensor linearization

+ gain and offset controls

+ statistics gathering /tap-out ot Bayer mosaic

+ pixel defect correctizN

+ initﬁ denoising

+ der%aicking

+ color correction

+ tone mapping

+ edge sharpening/denoising

+ warping / resizing

re-injection of Bayer mosaic

Using handshake to avoid demosaicking

1. read frames, process to RAW

2. align features with pixel precision
3. hope for an R,G,B in every pixel

4. re-inject but suppress demosaicing

© Marc Levoy

41

Mobile devices are insanely complicated

+ key 1s inding the right points of abstraction

e for computer graphics:
Jim Clark’s Geometry Engine —
OpenGL — GPU shading languages

e for computational photography:
Frankencamera architecture —

Camera2 API — camera shading languages?

e for computer vision: ??

© Marc Levoy

Stanford Frankencamera architecture
and FCam API [Adams SIGGRAPH 2010]

Sensor sensor;
Elkash=tlaishs:

Ve C eSOt D S)=

imade Sensor)
Shot Requests _ [Image Sensor

L

Configure

Application Devices 1

Processor
Actions Expose
2

Readout
3

Imaging Processor N
Images and
[Statistics ‘ Image Statistics 4
Processing Collection
J

| 57201 O
Il

bursti@l=exposure
burst[1l] .exposure

J

Metadata

Flash::FireAction fire(&flash) ;
fire.time = burst[0] .exposure/2;
burst[0].actions.insert(fire);

sensor.stream(burst) ;

while (1) {
Frame flashFrame =
sensor.getFrame() ;
Frame noflashFrame =
sensor.getFrame();

49 © Marc Levoy

43

Demonstration applications

Canon 430EX (smaller flash)

strobed continuously

Canon 580EX (larger flash)

ﬁred once at end Of exposure

Stanford Frankencamera architecture
and FCam API [Adams SIGGRAPH 2010]

Sensor sensor;
Elkash=tlaishs:

Ve C eSOt D S)=

imade Sensor)
Shot Requests _ [Image Sensor

L

Configure

Application Devices 1

Processor
Actions Expose
2

Readout
3

Imaging Processor N
Images and
[Statistics ‘ Image Statistics 4
Processing Collection
J

| 57201 O
Il

bursti@l=exposure
burst[1l] .exposure

J

Metadata

Flash::FireAction fire(&flash) ;
fire.time = burst[0] .exposure/2;
burst[0].actions.insert(fire);

sensor.stream(burst) ;

while (1) {
Frame flashFrame =
sensor.getFrame() ;
Frame noflashFrame =
sensor.getFrame();

44 © Marc Levoy

45

Android Camera HAL 3 architecture
and Camiera 2 AU (Eddy Talvala and others)

Sensor sensor;
Elkash=tlaishs:

Ve C eSOt D S)=

imade Sensor)
Shot Requests _ [Image Sensor

L

Configure

Application Devices 1

Processor
Actions Expose
2

Readout
3

Imaging Processor N
Images and
[Statistics ‘ Image Statistics 4
Processing Collection
J

| 57201 O
Il

bursti@l=exposure
burst[1l] .exposure

J

Metadata

Flash::FireAction fire(&flash) ;
fire.time = burst[0] .exposure/2;
burst[0].actions.insert(fire);

sensor.stream(burst) ;

while (1) {
Frame flashFrame =
sensor.getFrame() ;
Frame noflashFrame =
sensor.getFrame();

© Marc Levoy

Android Camera HAL 3 architecture
and Camiera 2 AU (Eddy Talvala and others)

Sensor sensor;
Elkash=tlaishs:

Application Framework Request Queue

Camera Apps ’_*_4 Requests e R Ere o IO E =SS Sl (s
{__;_J | burst[0] .exposure = 1/200.;
puEsEEEEexposute=—=1/30::
Camera HAL Implementation |
| Flash::FireAction fire(&flash);
Frame Metadata Queue Image Buffers f-lret-lme == burSt[@] EXpOSUFG/Z,

D]———:L burst[0].actions.insert(fire);
C) Image Buffers

sensor.stream(burst) ;

—

whitle—=Cl)--{
Frame flashFrame =
sensor.getFrame() ;
Frame noflashFrame =
sensor.getFrame();

46 © Marc Levoy

Android Camera HAIL.=3:

hd e

API...

// This is how to tell the camera to trigger.
mpreVIewRequestBullder set aptureRequest CONTROL_AE_PRECAPTURE_TRIGGER,
Capture equest C RECA URE TRIGGER_START);

l@ e%@ e e u be set.
mState = AITI G_PRECA

mCaptureSessu)n capture(mPreVIewRequestBullder build(), mCaptureCallback,
dHandler

FPEE Hbvala and others)

Back,
e.prin € §

Application Framework Request Queue

A
Camera Apps ‘ ’JJ
Requests
Camera HAL Implementation

Frame Metadata Queue Image Buffers

yusisiiasiinsiisnbisiiniis]
DR,

Image Buffers

(Metadata

® allows control over the camera

® doesn’t accelerate image processing

47

}

/" =
* Capture a still picture. This method should be called when we get a response in
* {@link #mCaptureCallback} from both {@link #lockFocus()}.
9:9/
private void captureStillPicture() {
try {
final Activity activity = getActivity();
if (null == activity |l null == mCameraDevice) {
return;
}
// This is the CaptureRequest.Builder that we use to take a picture.
final CaptureRequest.Builder captureBuilder =
mCameraDevice.createCaptureRequest(CameraDevice. TEMPLATE_STILL_CAPTURE);
captureBuilder.add Target(mImageReader.getSurface());

// Use the same AE and AF modes as the preview.

captureBuilder.set(CaptureRequest. CONTROL_AF_MODE,
CaptureRequest. CONTROL_AF_MODE_CONTINUOUS_PICTURE);

captureBuilder.set(CaptureRequest. CONTROL_AE_MODE,
CaptureRequest. CONTROL_AE_MODE_ON_AUTO_FLASH);

// Orientation
int rotation = activity.getWindowManager().getDefaultDisplay().getRotation();
captureBuilder.set(CaptureRequest. JPEG_ORIENTATION, ORIENTATIONS.get(rotation));

CameraCaptureSession.CaptureCallback CaptureCallback
= new CameraCaptureSession.CaptureCallback() {

@Override
public void onCaptureCompleted (CameraCaptureSession session, CaptureRequest request,
TotalCaptureResult result) {
Toast.makeText(getActivity(), "Saved: " + mFile, Toast LENGTH_SHORT).show();
unlockFocus();
}
Bs

mCaptureSession.stopRepeating();

mCaptureSession.capture(captureBuilder.build(), CaptureCallback, null);
} catch (CameraAccessException e) {

e.printStack Trace();

}
} © Marc Levoy

48

Mobile devices are insanely complicated

+ we also need the right programming model
e library (API)

e general language / Halide?

e domain-specific language

¢ low-level language (machine instructions)

© Marc Levoy

Separating algorithms from schedules
[Ragan-Kelley 2012]

(a) Clean C++ : 9.94 ms per megapixel

void blur (const Image &in, Image &blurred) {
Image tmp(in.width (), in.height());

for (int y = 0; y < in.height(); y++)
for (int x = 0; x < in.width(); x++)
tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+1l, y))/3;
for (int y = 0; y < in.height(); y++)
for (int x = 0; x < in.width(); x++)
) blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;

49 © Marc Levoy

50

Separating algorithms from schedules

[Ragan-Kelley 2012]

— (b) Fast C++ (for x86) : 0.90 ms per megapixel ——

void fast_blur (const Image &in, Image &blurred) {
-ml28i one_third = mm setl epil6(21846);
#pragma omp parallel for
for (int yTile = 0; yTile < in.height(); yTile += 32) {
-ml28i a, b, ¢, sum, avg;
~.ml28i tmp[(256/8) % (32+2)1];
for (int xTile = 0; xTile < in.width(); xTile += 256) {
.ml28i *tmpPtr = tmp;
for (int y = -1; y < 32+41; y++)
const uintlé _t »inPtr = & (in(xTile, yTile+y));
for (int x = 0; x < 256; x += 8)
a _mm_loadu sil28((..ml28ix%) (inPtr-1));
b _mm_loadu sil28((-ml28ix) (inPtr+l));
c mm load sil28 ((..ml28ix) (inPtr));
s _mm_add_epil6(_mm_add epil6(a, b), c);
avg _mm_mulhi_epil6 (sum, one_third);
_mm_store_sil28 (tmpPtr++, avg);
inPtr += 8;

g nnn
|

tmpPtr = tmp;
for (int y = 0; y < 32; y++) {
- ml28i xoutPtr = (_.ml28i) (& (blurred(xTile, yTile+y)));
for (int x = 0; x < 256; x += 8) {
a _mm_load_sil28 (tmpPtr+(2x256)/8);
b _mm_load_sil28 (tmpPtr+256/8);
= mm_load_sil28 (tmpPtr++) ;
s _mm_add_epil6(mm _add epil6(a, b), c);
avg _mm_mulhi_epil6 (sum, one_third);
mm_store_sil28 (outPtr++, avg);

133333

g nun
nonj

© Marc Levoy

51

Separating algorithms from schedules
[Ragan-Kelley 2012]

(c) Halide : 0.90 ms per megapixel

Func halide_blur (Func in) {
Func tmp, blurred;
Var x, y, xi, yi;

// The algorithm
tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+1l, y))/3;
blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;

// The schedule
blurred.tile(x, y, xi, yi, 256, 32) .vectorize(xi, 8) .parallel(y);
tmp.chunk (x) .vectorize (x, 8);

return blurred;

}

© Marc Levoy

52

Why 1s Halide spreading so fast?

+ because with a bit of portable code you can write
e faster matrix multiply than Eigen
o faster Gaussian blur than Intel Performance Primitives

e faster Fourier transform than fftw

+ or maybe because it...
e runs on device and in the cloud
e 1s supported on Linux, Windows, OSX, 10S, Android

e compiles to x86, ARM, MIPS, native client, OpenCL, OpenGL,
CUDA, JavaScript, RenderScript (ISPs soon)

+ companies writing Halide code

o Apple, Intel, Adobe, Microsoft, Nvidia, Google, Facebook,
Qualcomm, Sony, Datexim, Algolux, ContextVision, Leap Motion,
Nodasys, Nikon, Vicomtech, Ubisoft, Idruna, Imgtec, Lytro

© Marc Levoy

53

Action items for computer scientists

4. need architectures for accelerating image processing and
computer vision, and good ways to program them

© Marc Levoy

54

CS’s biggest successes 1n 25 years

+ deep learning + big data 1s replacing hand-built
algorithms for many tasks, including photography

+ computer vision 1s beginning to work
* Google image search no longer relies solely on text

e can estimate camera pose from sensed imagery
(“visual odometry”) in real-time

e can compute stereo (at low-res) in real time

© Marc Levoy

D’

'AM: dense tracking and mapping in real-time

[Newcombe, ICCV 2011]

Live incremental reconstruction of a large scene

Texture mapped model Inverse depth solution

+ becoming possible on a mobile device (Google Tango)

+ 1n the future, JPEG files will include depth (RGBZ)

56

© Marc Levoy

56

CS’s biggest successes 1n 25 years

e can build 3D models in real time

e lots of applications, including VR, AR

© Marc Levoy

Word Lens

(app for 10S and Android)

Word Lens

www.QuestVisual.com

+ mediocre translation, but clever user interftace

+ recently bought by Google, runs on Glass

57 © Marc Levoy

58

CS’s biggest successes 1n 25 years

e pressure on hardware, abstractions, languages

e brain drain from academia

© Marc Levoy

59

Action items for computer scientists

5. allow faculty to rotate through industry, or spend 50%

of their ime 1n industry, without losing tenure

© Marc Levoy

60

Mobile systems are hard to teach

+ competition and patent lawsuits leads companies to
keep their technologies secret

+ mobile device manufacturers are EEs, not CSers, so
their devices have poor, opaque, and inflexible software

+ as a result, there are few textbooks about mobile
systems technologies (or cameras), and few courses

e How does auto white balancing work on real cameras?
e Or auto exposure metering?
e Or auto focusing?

e Or denoising?

© Marc Levoy

6l

Mobile systems are hard to teach

+ competition and patent lawsuits leads companies to
keep their technologies secret

+ mobile device manufacturers are EEs, not CSers, so
their devices have poor, opaque, and inflexible software

+ as a result, there are few textbooks about mobile
systems technologies (or cameras), and few courses

+ students come out of school without the skills they need
to succeed 1n industry

e machine learning should be mandatory
e so should web development, security, NLP

e and mobile systems

Udacity’s business model

© Marc Levoy

62

Action items for computer scientists

6. develop platforms and write textbooks to enable
teaching of mobile systems, especially via lab courses

© Marc Levoy

63

[Lab courses? With these enrollments?!

400 -

Stanford CS major declarations

(Mehran Sahami)

© Marc Levoy

64

[Lab courses? With these enrollments?!

Total CS Units Taught
70,000
CS teaches more total units than
60,000 any other department at Stanford
50,000
40,000
30,000
20,000
10,000
0 | | | | [| [| [| | [| [[[| [| [
T D O N 00 OO ©O "5 AN N & 1D ON 00 O O - N NN <
A O O O O O O O O O O O O O O O ™=l ™ =l =
- e - - s - - - e s e - e e
MM < 1N O N 0 O ©O = &N NN < 1IN O N 0 OO O = NN M
A OO O O O O OO O O © O O O O OO0 O ™ =i =« —
A O
™l = e e e = - NN N AN AN N N NN N NN NN

(Mehran Sahami)
© Marc Levoy

65

Superhero vision

+ seeing 1n the dark

© Marc Levoy

66

Digital photography

can easily exceed human vision

(Jesse Levinson Canon 10D, 28mm /4, 3 min, ISO 100, 4 image pano)

+ required a tripod

+ can't currently do this using a cell phone, but it's not impossible

e dark current (if one shot) or read noise (if a burst) must be very_loy

evoy

Low-light imaging using
burst-mode computational

photography

single frame

(iPhone 4)

Low-light imaging using
burst-mode computational

photography

SNR increases as

sqrt(# of frames)

average of
~30 frames

(SynthCam)

single frame

Nnsadnly

4

average of
~30 frames

single frame

.1

25
&
iR

o

average of
~30 frames

75

Superhero vision

+ seeing in the dark

+ seeing through objects

© Marc Levoy

Removing foreground objects
by translating the camera

ST
sy >t)

i
e W ¢
@ A

N —

7]
e .
/I

+ align the shots

S

+ match histograms

+ apply median filter

i

Superhero vision

+ seeing in the dark
+ seeing through objects

+ magnifying glass, telescopic vision

© Marc Levoy

Camera-based magniﬁers

+ optical zoom

e requires a long optical path

+ digital zoom (cropping)

e requires a high pixel count, ¥
hence a thick camera

,,,,,,

Nokia 808

+ super-resolution
e results typically look oversharpened

78 © Marc Levoy

Beyond SLLRs: Superhero vision

seeing 1n the dark
seeing through objects

magnifying glass, telescopic vision

e SRR I

slowing down motion

79

© Marc Levoy

81

Superhero vision

seeing 1n the dark
seeing through objects
magnifying glass, telescopic vision

slowing down motion

ity e e

motion magnification, change magnification

© Marc Levoy

Motion magnification
[Liu, SIGGRAPH 2005]

+ can this be done using a (shaky) handheld camera?

+ can it be computed on a (slow) mobile device?

82

83

Change magniﬁcation
[Wu, SIGGRAPH 2012]

Source Color-amplified (x100)

+ how much SNR is needed to detect this signal?

+ 1s it socially acceptable to run this on Glass?

84

Superhero vision

seeing 1n the dark

seeing through objects
magnifying glass, telescopic vision
slowing down motion

motion magnification, change magnification

VUi S S SR

face recognition

© Marc Levoy

It you met this man at a party...

name: Jack Sparrow
address: Black Pearl

profession: pirate
» net worth: Zero
spouse: many

criminal record: long

856 © Marc Levoy

86

Face recognition

+ recognition from uncontrolled photos 1s still sci-h

+ Google pro-actively prohibited it on Glass

+ 1t could eventually work

+ 1f 1t does, someone will build a device to do it

+ anonymity 1s so...20th century, get over it

4 gIving up anonymity # giving up privacy

© Marc Levoy

Tol3Core L4 PER w cre L 6 14 pER
From Debiig ssboyeiem instumentaton 32 bis 2bis Whes oo e
. L cre_i HS
| _ 15 megacs ol uee g]
)) PH!

MPU subsystem ABE subsystem

1
SGX540 % T t

- Sys Cud, Acc. engines, ‘subsystem I

- Fiters, Msg IF (16 bis) 1 1

Seq: ARMBG winem 1

057 subsysiem it o, Madbox RN (opemows ||

graphics. 1
WS | | 2 rocuests | |

Shared L2 IF +

1| w
L2 256K8 1

,,,,,

LYYy

A & S
IOMM (splitter and TILER) | o Z NS i
coooooon [24
. iy I IR %
| - 1x HDQ/1-Wire ! ! ' oL
| - 1x MCBSP | cc |l | rees,
| - 4x MCSPI {]‘H SUS8|
= b = |
| - 1x SLIMBUS oy e %
11 1 |- . 350
T [. S, S i ! = s
IEmro ! | emrap! | CPMC 1IOCMLIRAM| (R = ———————— ! 1 =4
| EMEAD, | EMED | 1 \avomOR! 1 sekB SRAM) T ‘
I 1y 1| PSRAM || D e
(LPOR2) (LPODRZ | | contoller 1 ____ IR - --------
3 To
iep HSMMC 1
HS-MMC 2
0SS L
I~ GeTIvER
1-GPIO
- 32KTIMER
|- ScRM
|- WOTIMER
General Control module!

{
(- SAR RAM (8B 32-bt data) _ | ——

Sensor sensor;
Shot low, med, high;

s Low.exposure = 1/80.;
* med.exposure 1/20.;
high.exposure = 1/5.;

sensor.capture(low) ;
sensor.capture(med) ;
sensor.capture(high);

Frame frames[3];

frames[0@] = sensor.getFrame();
frames[1l] = sensor.getFrame();
frames[2] sensor.getFrame();

fused = mergeHDR(frames);

