
What “mobile-first” means for the
future of computer science research

ETH
September 18, 2015

Professor, Emeritus
Computer Science Department
Stanford University

Marc Levoy
Principal Engineer
Google Research

© Marc Levoy

What does mobile-first mean?

✦ many of the next billon users will only have a phone

✦ any desktop task should be do-able on your smartphone,
although programming or writing will be inconvenient

✦ every computer will have a camera...
2

© Marc Levoy

Mobile cameras
✦ the best camera is the one you have with you

✦ mobile cameras are a powerful political tool
(“liberation technology”)

3

Shooting of Walter Scott, North Charleston, SC
Syrian toddler washed ashore in Turkey

© Marc Levoy

Mobile cameras
✦ the best camera is the one you have with you

✦ mobile cameras are a powerful political tool

✦ wearable cameras are even more powerful...

4

What Google Glass means for the
future of photography

Marc Levoy
Computer Science Department
Stanford University

ETH
January 2013

on leave from Stanford
to work at...

(picture by Sebastian Thrun)
hands free

point of view

always available

instantly triggerable

your eyes are unobstructed

Glass 2015 consumer launch

© Marc Levoy

Why did Glass fail?
✦ to be successful, Glass needed to be

• lightweight enough,
• unobtrusive enough,
• fashionable enough, and
• useful enough,

to wear all day

✦ in the end,
• it was lightweight and fashionable, but
• the ratio of useful to unobtrusive was too low
• and it was too expensive to build

✦ privacy was not a factor in canceling the launch
12

smart watches,
BEWARE!

© Marc Levoy

The challenges of mobile
✦ limited computing power

✦ always worried about battery life

✦ no precision pointing, just your finger(s)

✦ no keyboard, so can’t program or write extensively

✦ small screen, difficult ambient lighting

✦ variable (or no) connectivity

✦ complicated computing platform

13

© Marc Levoy

The challenges of mobile
✦ limited computing power

✦ always worried about battery life

✦ no precision pointing, just your finger(s)

✦ no keyboard, so can’t program or write extensively

✦ small screen, difficult ambient lighting

✦ variable (or no) connectivity

✦ complicated computing platform

✦ might be tethered to a wearable...

14

© Marc Levoy

The challenges of wearables
✦ even more limited computing and battery life

✦ even smaller display and cruder user interface

✦ even worse connectivity, and an extra hop

15

© Marc Levoy

The challenges of wearables
✦ even more limited computing and battery life

✦ even smaller display and cruder user interface

✦ even worse connectivity, and an extra hop

16

© Marc Levoy

Performance is measured by speed and power

✦ cumulative usage (energy)
• measured in milliwatt-hours
• mobile devices must last all day

17

big challenge
for watches!

(ubergizmo)

Apple
watch

© Marc Levoy

Performance is measured by speed and power

✦ cumulative usage (energy)
• measured in milliwatt-hours
• mobile devices must last all day

✦ peak usage (power)
• measured in milliwatts
• limited by current draw on battery and heat dissipation
• heat controlled by thermal throttling, e.g. cutting clock rate

18

big challenge
for watches!

big challenge
for phones!

(anandtech)

(Cerezo)

© Marc Levoy

Performance is measured by speed and power

✦ cumulative usage (energy)
• measured in milliwatt-hours
• mobile devices must last all day

✦ peak usage (power)
• measured in milliwatts
• limited by current draw on battery and heat dissipation
• heat controlled by thermal throttling, e.g. cutting clock rate

19

big challenge
for watches!

Heavy computing is ok if it’s over quickly.

Mobile devices need a breakthrough
in cooling, not computing speed.

big challenge
for phones!

© Marc Levoy

Upload data to cloud for computation?

✦ sending a burst of 10 × 5Mpix JPEG images (2MB@)
over 3G to the cloud takes 50 secs at 400mA power

✦ for the same energy you could compute on an Android
phone for 100 seconds

✦ 100 seconds × 2.7GHz × 4 cores = 22K operations on
each pixel of our 50Mpix burst

20

It’s almost never worth sending data to
the cloud for processing.

© Marc Levoy

Action items for researchers
1. embarrassingly parallel algorithms are not a panacea on

mobile; you need algorithms that actually do less work

21

© Marc Levoy

Functionality depends on connectivity

✦ a cell phone might contain 7 radios
• CDMA, GSM, Wifi, Bluetooth, NFC, GPS, FM

✦ graceful degradation in functionality if
connectivity is poor or intermittent or missing

• seamless hand-off between wifi and cellular data
• progressive streaming & rendering of images and video
• ability to use device without cloud-based voice recognition

22

big challenge
for wearables!

© Marc Levoy

Action items for researchers
1. embarrassingly parallel algorithms are not a panacea on

mobile; we need algorithms that do less work

2. need better voice recognition / transcription on device,
and the solution can’t require a giant database

23

© Marc Levoy

Functionality depends on connectivity

✦ a cell phone might contain 7 radios
• CDMA, GSM, Wifi, Bluetooth, NFC, GPS, FM

✦ graceful degradation in functionality if
connectivity is poor or intermittent or missing

• seamless hand-off between wifi and cellular data
• progressive streaming & rendering of images and video
• ability to use device without cloud-based voice recognition

✦ ways of synchronizing content with the cloud
1. must be online (web, email, chat), or
2. cache most recent (Google Docs), or
3. pin selected content (iTunes, iPhoto, Play Music), or
4. cache everything on device (Dropbox, Evernote)

24

© Marc Levoy

Action items for researchers
1. embarrassingly parallel algorithms are not a panacea on

mobile; we need algorithms that do less work

2. need better voice recognition / transcription on device,
and the solution can’t require a giant database

3. robust synchronization of large, diverse databases across
multiple, intermittently connected devices is still elusive

25

© Marc Levoy

Mobile devices are insanely complicated

✦ heterogeneous mixture of computing resources
• CPU
• GPU
• DSP
• VLIW co-processor
• “programmable” ISP

26

increasingly hard to
program

© Marc Levoy

Mobile devices are insanely complicated

✦ heterogeneous mixture of computing resources
✦ multiple vendors who barely talk to each other

• IP provider (face detection circuitry)
• SoC chipmaker (Qualcomm)
• phone maker (Motorola, if Nexus 6)
• OS writer (Google, if Android)
• app writer (including independent developers)

27

unless all of them
are Apple

© Marc Levoy

Mobile devices are insanely complicated

✦ heterogeneous mixture of computing resources
✦ multiple vendors who barely talk to each other
✦ the software stack is deeper than you think

• multiple languages
(in Android: Java, C++, assembler, microcode)

• 13 nested calls to lock the focusing lens on Nexus 6!

28

© Marc Levoy

Mobile devices are insanely complicated

✦ heterogeneous mixture of computing resources
✦ multiple vendors who barely talk to each other
✦ the software stack is deeper than you think
✦ many functions are implemented in hardware...

29

© Marc Levoy

Enabling hardware technologies for
burst-mode computational photography
✦ fast sensor readout

• 13Mpix @ 30fps on Nexus 6

✦ fast processing
• 13Mpix @ 30fps to YUV

✦ live viewfinder consists of processing at full-res to YUV,
then downsizing to screen resolution

✦ this processing is implemented in ASIC hardware on
most cameras

30

© Marc Levoy

Texas Instruments OMAP4 SoC
(used in Nexus 5 and Google Glass)

31

© Marc Levoy

Major subsystems

32

© Marc Levoy

Imaging subsystem (ISS)

33

© Marc Levoy

Image and signal processor (ISP)

34

© Marc Levoy

Image processing pipeline (IPIPE)
(public version of documentation)

35

The Ope nGL M a chineR

The OpenGL graphics system diagram, Version 1.1. Copyright  1996 Silicon Graphics, Inc. All rights reserved.

TexCoord1

TexCoord2

TexCoord3

TexCoord4

Color3

Color4
Convert

RGBA to float

Index Convert
index to float

Current
Texture

Coordinates

Current
RGBA
Color

Current
Color
Index

Current
Normal

Normal3

Vertex2
RasterPos2

Vertex3
RasterPos3

Vertex4
RasterPos4

b
M

M*b

Model View
Matrix
Stack

OBJECT
COORDINATES

EYE
COORDINATES

M

Matrix
Control

MatrixMode
PushMatrix

PopMatrix

LoadIdentity
LoadMatrix

N
M

M*N

Matrix
Generators

Translate
Scale

Rotate
Frustum

Ortho

EdgeFlag
Current

Edge
Flag

Current
Raster

Position

CullFace

Polygon
Rasterization

Line
Segment

Rasterization

Point
Rasterization

Bitmap
Rasterization

Pixel
Rasterization

Polygon
Culling

Polygon
Mode

PolygonMode

PointSize

Enable/Disable
(Antialiasing/Stipple)

Unpack
Pixels

Bitmap

DrawPixels

TexImage

PolygonStipple

Pixel
Transfer

PixelZoom

PixelTransfer

PixelStore

Texel
Generation

Texture
Memory

TexParameter

Texture
Application Fog

TexEnv Fog
Enable/Disable Enable/Disable

Masking

ColorMask
IndexMask

DepthMask
StencilMask

Pack
Pixels

Coverage
(antialiasing)
Application

Pixel
Ownership

Test

Alpha
Test

(RGBA only)

Scissor
Test

Stencil
Test

Depth
Buffer
Test

Clear
Values

Clear
Control

Clear

ClearColor
ClearIndex
ClearDepth

ClearStencil

Blending
(RGBA only)

Dithering Logic Op

Frame Buffer

Scissor AlphaFunc
StencilOp

StencilFunc

Enable/Disable
Enable/Disable Enable/Disable Enable/Disable Enable/Disable Enable/Disable Enable/Disable

Enable/Disable

DepthFunc BlendFunc LogicOp

Frame Buffer
Control

DrawBuffer

Readback
Control

ReadBufferReadPixels

MultMatrix

Masking

b
M

M*b Normalize

Enable/Disable

TexGen
OBJECT_LINEAR

TexGen
EYE_LINEAR

TexGen
SPHERE_MAP

Enable/Disable

b
A

A*b

Texture
Matrix
Stack

Material
Parameters

Control

ColorMaterial
Material

Enable/Disable

Light
Parameters

RGBA Lighting Equation

Color Index Lighting Equation

Material
Parameters

Light Model
Parameters

Light
Enable/Disable

LightModel

M
M−T

Enable/Disable

Clamp to
[0,1]

Mask to

[0,2n−1]

Primitive
Assembly

Begin/End

TexGen

(Lighting)

EvalMesh
EvalPoint

EvalCoord

MapGrid

Map

Grid
Application

Map
Evaluation

Divide
Vertex

Coordinates
by
w

Apply
Viewport

DepthRange
Viewport

Flatshading

POINTS
RASTER POS.

LINE
SEGMENTS

POLYGONS

ShadeModel

Line
Clipping

Polygon
Clipping

Point
Culling

Clip
Planes

ClipPlane

Mb

b

b

(Vertex
Only)

Line
View Volume

Clipping

Polygon
View Volume

Clipping

Point
View Volume

Culling

M*b

Projection
Matrix
Stack

M
M−Tb

b

Feedback
Encoding

FeedbackBuffer

PassThrough

Selection
Control

SelectBuffer

RenderMode

Evaluator
Control

Rectangle
Generation

Rect

M*b

M*b

FrontFace

FrontFace

LineStipple

Enable/Disable
(Antialiasing)

PixelMap

Selection
Name
Stack

Selection
Encoding

InitNames

PopName
PushName

LoadName

Notes:
1. Commands (and constants) are shown without the
 gl (or GL_) prefix.
2. The following commands do not appear in this
 diagram: glAccum, glClearAccum, glHint,
 display list commands, texture object commands,
 commands for obtaining OpenGL state
 (glGet commands and glIsEnabled), and
 glPushAttrib and glPopAttrib. Utility library
 routines are not shown.
3. After their exectution, glDrawArrays and
 glDrawElements leave affected current values
 indeterminate.
4. This diagram is schematic; it may not directly
 correspond to any actual OpenGL implementation.

Convert
normal coords

 to float

Enable/Disable

TexSubImage

CopyPixels
CopyTexImage

CopyTexSubImage

PolygonOffset

LineWidth

Enable/Disable
(Antialiasing)

EdgeFlagPointer
TexCoordPointer

ColorPointer
IndexPointer

NormalPointer

VertexPointer

InterLeavedArrays

 EnableClientState
DisableClientState

DrawElements

ArrayElement

Vertex
Array

Control

t 0

r 0

q 1

A 1

z 0

w 1

Key to OpenGL Operations

Primitives Fragments

Vertices

Feedback
&

Selection

Input
Conversion

&
Current
Values

Texture Coordinate
Generation

Evaluators
&

Vertex Arrays

Lighting

Matrix
Control Clipping, Perspective,

and
Viewport Application Rasteriz−

ation Texturing,
Fog,
and

Antialiasing

Per−Fragment Operations

Frame Buffer
&

Frame Buffer ControlPixels

DrawArrays

© Marc Levoy

Typical pipeline
✦ dark frame subtraction

✦ lens shading correction

✦ sensor linearization

✦ gain and offset controls

✦ statistics gathering

✦ pixel defect correction

✦ initial denoising

✦ demosaicking

✦ color correction

✦ tone mapping

✦ edge sharpening/denoising

✦ warping / resizing
37

YUV

Bayer mosaic

© Marc Levoy

What if we could reconfigure it?
✦ dark frame subtraction

✦ lens shading correction

✦ sensor linearization

✦ gain and offset controls

✦ statistics gathering

✦ pixel defect correction

✦ initial denoising

✦ demosaicking

✦ color correction

✦ tone mapping

✦ edge sharpening/denoising

✦ warping / resizing
38

tap-out of Bayer mosaic

re-injection of Bayer mosaic

Using handshake to avoid demosaicking
1. read frames, process to Bayer mosaic
2. align features with pixel precision
3. hope for an R,G,B in every pixel
4. re-inject but suppress demosaicking

✗
✗

© Marc Levoy

Mobile devices are insanely complicated

✦ heterogeneous mixture of computing resources
✦ multiple vendors who barely talk to each other
✦ the software stack is deeper than you think
✦ many functions are implemented in hardware
✦ key is finding the right points of abstraction

• for computer graphics:
Jim Clark’s Geometry Engine →
OpenGL → GPU shading languages

• for computational photography:
Frankencamera architecture →
Camera2 API → camera shading languages?

• for computer vision: ??
39

© Marc Levoy40

Sensor sensor;
Flash flash;
vector<Shot> burst(2);

burst[0].exposure = 1/200.;
burst[1].exposure = 1/30.;

Flash::FireAction fire(&flash);
fire.time = burst[0].exposure/2;
burst[0].actions.insert(fire);

sensor.stream(burst);

while (1) {
 Frame flashFrame =
 sensor.getFrame();
 Frame noflashFrame =
 sensor.getFrame();
}

Stanford Frankencamera architecture
 and FCam API [Adams SIGGRAPH 2010]

© Marc Levoy

Demonstration applications

41

• Canon 430EX (smaller flash)
 strobed continuously

• Canon 580EX (larger flash)
 fired once at end of exposure

© Marc Levoy42

Sensor sensor;
Flash flash;
vector<Shot> burst(2);

burst[0].exposure = 1/200.;
burst[1].exposure = 1/30.;

Flash::FireAction fire(&flash);
fire.time = burst[0].exposure/2;
burst[0].actions.insert(fire);

sensor.stream(burst);

while (1) {
 Frame flashFrame =
 sensor.getFrame();
 Frame noflashFrame =
 sensor.getFrame();
}

Stanford Frankencamera architecture
 and FCam API [Adams SIGGRAPH 2010]

© Marc Levoy43

Sensor sensor;
Flash flash;
vector<Shot> burst(2);

burst[0].exposure = 1/200.;
burst[1].exposure = 1/30.;

Flash::FireAction fire(&flash);
fire.time = burst[0].exposure/2;
burst[0].actions.insert(fire);

sensor.stream(burst);

while (1) {
 Frame flashFrame =
 sensor.getFrame();
 Frame noflashFrame =
 sensor.getFrame();
}

Android Camera HAL 3 architecture
 and Camera2 API (Eddy Talvala and others)

© Marc Levoy44

Sensor sensor;
Flash flash;
vector<Shot> burst(2);

burst[0].exposure = 1/200.;
burst[1].exposure = 1/30.;

Flash::FireAction fire(&flash);
fire.time = burst[0].exposure/2;
burst[0].actions.insert(fire);

sensor.stream(burst);

while (1) {
 Frame flashFrame =
 sensor.getFrame();
 Frame noflashFrame =
 sensor.getFrame();
}

Android Camera HAL 3 architecture
 and Camera2 API (Eddy Talvala and others)

© Marc Levoy45

Android Camera HAL 3 architecture
 and Camera2 API (Eddy Talvala and others)

 try {
 // This is how to tell the camera to trigger.
 mPreviewRequestBuilder.set(CaptureRequest.CONTROL_AE_PRECAPTURE_TRIGGER,
 CaptureRequest.CONTROL_AE_PRECAPTURE_TRIGGER_START);
 // Tell #mCaptureCallback to wait for the precapture sequence to be set.
 mState = STATE_WAITING_PRECAPTURE;
 mCaptureSession.capture(mPreviewRequestBuilder.build(), mCaptureCallback,
 mBackgroundHandler);
 } catch (CameraAccessException e) {
 e.printStackTrace();
 }
 }

 /**
 * Capture a still picture. This method should be called when we get a response in
 * {@link #mCaptureCallback} from both {@link #lockFocus()}.
 */
 private void captureStillPicture() {
 try {
 final Activity activity = getActivity();
 if (null == activity || null == mCameraDevice) {
 return;
 }
 // This is the CaptureRequest.Builder that we use to take a picture.
 final CaptureRequest.Builder captureBuilder =
 mCameraDevice.createCaptureRequest(CameraDevice.TEMPLATE_STILL_CAPTURE);
 captureBuilder.addTarget(mImageReader.getSurface());

 // Use the same AE and AF modes as the preview.
 captureBuilder.set(CaptureRequest.CONTROL_AF_MODE,
 CaptureRequest.CONTROL_AF_MODE_CONTINUOUS_PICTURE);
 captureBuilder.set(CaptureRequest.CONTROL_AE_MODE,
 CaptureRequest.CONTROL_AE_MODE_ON_AUTO_FLASH);

 // Orientation
 int rotation = activity.getWindowManager().getDefaultDisplay().getRotation();
 captureBuilder.set(CaptureRequest.JPEG_ORIENTATION, ORIENTATIONS.get(rotation));

 CameraCaptureSession.CaptureCallback CaptureCallback
 = new CameraCaptureSession.CaptureCallback() {

 @Override
 public void onCaptureCompleted(CameraCaptureSession session, CaptureRequest request,
 TotalCaptureResult result) {
 Toast.makeText(getActivity(), "Saved: " + mFile, Toast.LENGTH_SHORT).show();
 unlockFocus();
 }
 };

 mCaptureSession.stopRepeating();
 mCaptureSession.capture(captureBuilder.build(), CaptureCallback, null);
 } catch (CameraAccessException e) {
 e.printStackTrace();
 }
 }

 /**

• allows control over the camera

• doesn’t accelerate image processing

open problem!

© Marc Levoy

Mobile devices are insanely complicated

✦ heterogeneous mixture of computing resources
✦ multiple vendors who barely talk to each other
✦ the software stack is deeper than you think
✦ many functions are implemented in hardware
✦ key is finding the right points of abstraction
✦ we also need the right programming model

• library (API)
• general language
• domain-specific language
• low-level language (machine instructions)

46

Halide?

© Marc Levoy

Separating algorithms from schedules
[Ragan-Kelley 2012]

47

© Marc Levoy

Separating algorithms from schedules
[Ragan-Kelley 2012]

48

© Marc Levoy

Separating algorithms from schedules
[Ragan-Kelley 2012]

49

© Marc Levoy

Why is Halide spreading so fast?
✦ because with a bit of portable code you can write

• faster matrix multiply than Eigen
• faster Gaussian blur than Intel Performance Primitives
• faster Fourier transform than fftw

✦ or maybe because it...
• runs on device and in the cloud
• is supported on Linux, Windows, OSX, iOS, Android
• compiles to x86, ARM, MIPS, native client, OpenCL, OpenGL,

CUDA, JavaScript, RenderScript (ISPs soon)

✦ companies writing Halide code
• Apple, Intel, Adobe, Microsoft, Nvidia, Google, Facebook,

Qualcomm, Sony, Datexim, Algolux, ContextVision, Leap Motion,
Nodasys, Nikon, Vicomtech, Ubisoft, Idruna, Imgtec, Lytro

50

© Marc Levoy

Action items for researchers
1. embarrassingly parallel algorithms are not a panacea on

mobile; we need algorithms that do less work

2. need better voice recognition / transcription on device,
and the solution can’t require a giant database

3. robust synchronization of large, diverse databases across
multiple, intermittently connected devices is still elusive

4. need architectures for accelerating image processing and
computer vision, and good ways to program them

51

© Marc Levoy

CS’s biggest successes in 25 years
✦ deep learning + big data is replacing hand-built

algorithms for many tasks, including photography

52

Input Image

Auto White Balancing (AWB)
(J. Barron, Convolutional Color Constancy, To appear in Proc. ICCV 2015)

Input Image Log-Chrominance Histogram

H
is

to
gr

am

Auto White Balancing (AWB)
(J. Barron, Convolutional Color Constancy, To appear in Proc. ICCV 2015)

Input Image Log-Chrominance Histogram Learned Filter

H
is

to
gr

am

⇤

C
on

vo
lv

e

Auto White Balancing (AWB)
(J. Barron, Convolutional Color Constancy, To appear in Proc. ICCV 2015)

Input Image Log-Chrominance Histogram Learned Filter

H
is

to
gr

am

⇤

C
on

vo
lv

e

=

Heat Map

Softmax

Auto White Balancing (AWB)
(J. Barron, Convolutional Color Constancy, To appear in Proc. ICCV 2015)

Input Image Log-Chrominance Histogram Learned Filter

H
is

to
gr

am

⇤

C
on

vo
lv

e

=

Fi
nd

M

ax

Heat MapHeat Map Arg max

Softmax

Auto White Balancing (AWB)
(J. Barron, Convolutional Color Constancy, To appear in Proc. ICCV 2015)

Input Image Log-Chrominance Histogram Learned Filter

H
is

to
gr

am

⇤

C
on

vo
lv

e

=

Fi
nd

M

ax

U
n-

Ti
nt

Heat MapHeat Map Arg maxOutput Image / Illuminant

Softmax

Auto White Balancing (AWB)
(J. Barron, Convolutional Color Constancy, To appear in Proc. ICCV 2015)

Input Image Log-Chrominance Histogram Learned Filter

H
is

to
gr

am

⇤

C
on

vo
lv

e

=

Fi
nd

M

ax

U
n-

Ti
nt

Heat MapHeat Map Arg maxOutput Image / Illuminant

Softmax

Auto White Balancing (AWB)
(J. Barron, Convolutional Color Constancy, To appear in Proc. ICCV 2015)

Discriminatively learned weights

In properly white-balanced images,
lots of things are very close to white,
but sometimes things are sky-blue or
green like grass, but not pale green

and definitely not magenta, but
possible pale purple…

Experimental results
379 training Images with ground truth from Macbeth color checker

~35% Improvement

© Marc Levoy

CS’s biggest successes in 25 years
✦ deep learning + big data is replacing hand-built

algorithms for many tasks, including photography
✦ computer vision is beginning to work

• Google image search no longer relies solely on text
• can estimate camera pose from sensed imagery

(“visual odometry”) in real-time
• can compute stereo (at low-res) in real time

62

© Marc Levoy

DTAM: dense tracking and mapping in real-time
[Newcombe, ICCV 2011]

✦ becoming possible on a mobile device (Google Tango)

✦ in the future, JPEG files will include depth (RGBZ)
63

© Marc Levoy

CS’s biggest successes in 25 years
✦ deep learning + big data is replacing hand-built

algorithms for many tasks, including photography
✦ computer vision is beginning to work

• Google image search no longer relies solely on text
• can estimate camera pose from sensed imagery

(“visual odometry”) in real-time
• can compute stereo (at low-res) in real time
• can build 3D models in real time
• lots of applications, including VR, AR

64

© Marc Levoy

Word Lens
(app for iOS and Android)

✦ mediocre translation, but clever user interface

✦ recently bought by Google, part of Android Translate
65

© Marc Levoy

Google’s JUMP project

66

© Marc Levoy

Google’s JUMP project

67

© Marc Levoy

CS’s biggest successes in 25 years
✦ deep learning + big data is replacing hand-built

algorithms for many tasks, including photography
✦ computer vision is beginning to work

• Google image search no longer relies solely on text
• can estimate camera pose from sensed imagery

(“visual odometry”) in real-time
• can compute stereo (at low-res) in real time
• can build 3D models in real time
• lots of applications, including VR, AR
• pressure on hardware, abstractions, languages
• brain drain from academia

68

© Marc Levoy

Action items for researchers
1. embarrassingly parallel algorithms are not a panacea on

mobile; we need algorithms that do less work

2. need better voice recognition / transcription on device,
and the solution can’t require a giant database

3. robust synchronization of large, diverse databases across
multiple, intermittently connected devices is still elusive

4. need architectures for accelerating image processing and
computer vision, and good ways to program them

5. allow faculty to rotate through industry, or spend 50%
of their time in industry, without losing tenure

69

© Marc Levoy

Superhero vision

70

(Hector Garcia-Molina)

© Marc Levoy

Superhero vision
✦ seeing in the dark

73

© Marc Levoy

✦ required a tripod
✦ can’t currently do this using a cell phone, but it’s not impossible

• dark current (if one shot) or read noise (if a burst) must be very low74

Digital photography
can easily exceed human vision

(Jesse Levinson Canon 10D, 28mm f/4, 3 min, ISO 100, 4 image pano)

single frame
(iPhone 4)

Low-light imaging using
burst-mode computational
photography

average of
~30 frames

(SynthCam)

SNR increases as
sqrt(# of frames)

Low-light imaging using
burst-mode computational
photography

single frame

average of
~30 frames

single frame

average of
~30 frames

© Marc Levoy

Typical approach to HDR
✦ exposure bracketing

• capture images with varying exposure
• combine highlights from low exposures

with shadows from high exposures

✦ hard to robustly handle camera shake or object motion
• noise level differs between exposures
• saturated areas cannot be aligned at all

85

© Marc Levoy

HDR+ in the Google camera app

✦ capture a burst of under-exposed images
• same exposure on all images in burst!
• avoid over-exposing highlights

✦ align and merge
• all images look similar, so alignment is more robust
• reduces noise in shadows

✦ tonemap
• boost shadows
• squeeze N-bit merged image into 8-bit for display, N > 8
• preserve local contrast at the expense of global contrast

86

(http://googleresearch.blogspot.com/2014/10/hdr-low-light-and-high-dynamic-range.html)

© Marc Levoy

Superhero vision
✦ seeing in the dark

✦ seeing through objects

93

© Marc Levoy

Removing foreground objects
by translating the camera

✦ align the shots

✦ match histograms

✦ apply median filter

94

© Marc Levoy

Superhero vision
✦ seeing in the dark

✦ seeing through objects

✦ magnifying glass, telescopic vision

95

© Marc Levoy

Camera-based magnifiers
✦ optical zoom

• requires a long optical path

✦ digital zoom (cropping)
• requires a high pixel count,

hence a thick camera

✦ super-resolution
• results typically look oversharpened

96

Nokia 808

© Marc Levoy

Beyond SLRs: Superhero vision
✦ seeing in the dark

✦ seeing through objects

✦ magnifying glass, telescopic vision

✦ slowing down motion, speeding up motion

97

(Dogs in Slow Motion, Devin Graham)

(First Person Hyperlapse, Johannes Kopf et al., Proc 2014)

© Marc Levoy

Superhero vision
✦ seeing in the dark

✦ seeing through objects

✦ magnifying glass, telescopic vision

✦ slowing down motion, speeding up motion

✦ motion magnification, change magnification

100

© Marc Levoy

Motion magnification
[Liu, SIGGRAPH 2005]

✦ can this be done using a (shaky) handheld camera?

✦ can it be computed on a (slow) mobile device?
101

© Marc Levoy

Change magnification
[Wu, SIGGRAPH 2012]

102

✦ how much SNR is needed to detect this signal?

✦ is it socially acceptable to run this on Glass?

© Marc Levoy

Superhero vision
✦ seeing in the dark

✦ seeing through objects

✦ magnifying glass, telescopic vision

✦ slowing down motion, speeding up motion

✦ motion magnification, change magnification

✦ face recognition

103

© Marc Levoy

If you met this man at a party...

104

•name: Jack Sparrow
•address: Black Pearl
•profession: pirate
•net worth: zero
•spouse: many
•criminal record: long

© Marc Levoy

Face recognition
✦ recognition from uncontrolled photos is still sci-fi

✦ Google pro-actively prohibited it on Glass

✦ it could eventually work

✦ if it does, someone will build a device to do it

✦ anonymity is so...20th century; get over it

✦ giving up anonymity ≠ giving up privacy

105

Sensor sensor;
Shot low, med, high;

low.exposure = 1/80.;
med.exposure = 1/20.;
high.exposure = 1/5.;

sensor.capture(low);
sensor.capture(med);
sensor.capture(high);

Frame frames[3];
frames[0] = sensor.getFrame();
frames[1] = sensor.getFrame();
frames[2] = sensor.getFrame();

fused = mergeHDR(frames);

