What “mobile-first” means for the
future of computer science research

ETH
September 18, 2015

Google

Marc Levoy Professor, Emeritus
Principal Engineer Computer Science Department

Google Research Stanford University

What does mobile-first mean?

~60% of online devices are now smartphones or tablets

%
-
@
=
]
3
=
o
g
o]
o]
;
£
3
=

-0
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014E

BI INTELLIGENCE

+ many of the next billon users will only have a phone

+ any desktop task should be do-able on your smartphone,
although programming or writing will be inconvenient

+ every computer will have a camera...

© Marc Levoy

Mobile cameras

+ the best camera is the one you have with you

+ mobile cameras are a powerful political tool
(“hberation technology”)

Shooting of Walter Scott, North Charleston, SC

Syrian toddler washed ashore in Turkey

© Marc Levoy

Mobile cameras

+ the best camera 1s the one you have with you
+ mobile cameras are a powertul political tool

+ wearable cameras are even more powerful...

© Marc Levoy

What Google Glass means for the
future of photography

ETH
January 2013

on leave from Stanford
Marc Levoy to work at...

Computer Science Department .
Stanford University GO ()gle l

point of view

always available

1nstahﬂy trlégerable
| E IS

0p\RLO

OAKLAND %

Q’“’O

aunch

|

—
ES e

Why did Glass fail?

+ to be successful, Glass needed to be
o lightwetght enough,

* unobtrusive enough,
o fashionable enough, and
e useful enough,

to wear all day

+ 1n the end, -
e it was lightweight and fcw/ywmzéle but

e the ratio of wseful to unobtrusive was too low

e and it was too expendive to build \ smart watches,
BEWARE!

+ privacy was not a factor in canceling the launch

12 © Marc Levoy

13

The challenges of mobile

limited computing power

always worried about battery life

no precision pointing, just your finger(s)

no keyboard, so can’t program or write extensively
small screen, dithcult ambient lighting

variable (or no) connectivity

& gt il e

complicated computing platform

© Marc Levoy

14

The challenges of mobile

+ limited computing power

+ always worried about battery life

+ variable (or no) connectivity
+ complicated computing platform

+ might be tethered to a wearable...

© Marc Levoy

15

The challenges of wearables

+ even more limited computing and battery life
+ even smaller display and cruder user interface

+ even worse connectivity, and an extra hop

© Marc Levoy

16

The challenges of wearables

+ even more limited computing and battery life

+ even worse connectivity, and an extra hop

© Marc Levoy

17

Performance 1s measured by speed and power

+ cumulative usage (energy) big challenge

e measured in milliwatt-hours / for watches!
R ——

e mobile devices must last all day

Battery Capacity (mAh), Higher is better

5000
4500
4000

STRATEGYANALYTICS
e World's highest battery capacity >PECTRAX
2500 in an Android Wear smartwatch3
2000
1500 =0

G3

iPhone 5s
iPhone 6
Moto X
Nexus 5
One (M8)
Xperia Z3
Xperia Z2
Nexus 6

Galaxy S5

m
8

Galaxy Note 4

Ascend Mate2 4G
Battery Capacity

1000 - 400 17—
350
. ‘ ‘S 300 -
= 250 -
. : Z 250
150
(ubergizmo) |

© Marc Levoy

Performance 1s measured by speed and power

+ cumulative usage (energy)
e measured 1n milliwatt-hours

* mobile devices must last all day

+ peak usage (power) big challenge

; 1 !
e measured in milliwatts / oz hones R
e limited by current draw on battery and heat dlSSlpatlon

e heat controlled by thermal throtthng, e.g. cuttlng clock rate

> N Apple A7 Thermal Test
Power Breakdown (Excluding Idle Time) / N se00

10 Tt e
1 O R B i] 8 27000
! |]
4 - E 8
2
] s §
4 f u 1 E 18000
‘ { 2
4 - 3
{ [}
[}

OOOOOOOO

W W P W T g g P g

(Cerezo)

Iterations of Benchmark
— iPad Air — iPad mini with Retina Display

18 (anan — © Marc Levoy

Performance 1s measured by speed and power

+ peak usage (power) big challenge

: = for ph !
e measured in milliwatts DERABRES

I ——

e limited by current draw on battery and heat dissipation
e heat controlled by thermal throttling, e.g. cutting clock rate

E =

in cooling, not computing speed.

19 : e ‘ : =3 © Marc Levoy

20

Upload data to cloud for computation?

+ sending a burst of 10 x 5Mpix JPEG images (2MB@)
over 3G to the cloud takes 50 secs at 400mA power

+ for the same energy you could compute on an Android

phone for 100 seconds

+ 100 seconds x 2.7GHz x 4 cores = 22K operations on
each pixel of our 50 Mpix burst

It's almost never worth sending data to
the cloud for processing.

© Marc Levoy

21

Action 1items for researchers

1. embarrassingly parallel algorithms are not a panacea on
mobile; you need algorithms that actually do less work

© Marc Levoy

2

Functionality depends on connectivity

+ a cell phone might contain 7 radios
« CDMA, GSM, Wifi, Bluetooth, NFC, GPS, FM

+ graceful degradation in functionality if
connectivity 18 poor or intermittent or missing
 seamless hand-off between wifi and cellular data
e progressive streaming & rendering of images and video

e ability to use device without cloud-based voice recognition

big challenge /

for wearables!

© Marc Levoy

23

Action 1items for researchers

2. need better voice recognition / transcription on device,

and the solution can’t require a giant database

© Marc Levoy

24

Functionality depends on connectivity

+ a cell phone might contain 7 radios
e« CDMA, GSM, Wifi, Bluetooth, NFC, GPS, FM

+ graceful degradation in functionality 1f
connectivity 1s poor or intermittent or missing
e seamless hand-offt between wifi and cellular data
e progressive streaming & rendering of images and video

° ability to use device without cloud-based voice recognition

+ ways of synchronizing content with the cloud
1. must be online (web, email, chat), or
2. cache most recent (Google Docs), or
3. pin selected content (iTunes, 1Photo, Play Music), or
4. cache everything on device (Dropbox, Evernote)

© Marc Levoy

25

Action 1items for researchers

3. robust synchronization of large, diverse databases across
multiple, intermittently connected devices 1s still elusive

© Marc Levoy

26

Mobile devices are insanely complicated

+ heterogeneous mixture of computing resources
« CPU
sGRE increasingly hard to
. DSP program
e VLIW co-processor
e “programmable” ISP

© Marc Levoy

7

Mobile devices are insanely complicated

+ multiple vendors who barely talk to each other

e [P provider (face detection circuitry) -
e SOC Chipmaker (QU&ICOITIIII) unless all Of them
e phone maker (Motorola, if Nexus 6) are Apple

e OS writer (Google, if Android)

e app writer (including independent developers)

© Marc Levoy

28

Mobile devices are insanely complicated

+ the software stack 1s deeper than you think

e multiple languages
(in Android: Java, C++, assembler, microcode)

* 13 nested calls to lock the focusing lens on Nexus 6!

© Marc Levoy

29

Mobile devices are insanely complicated

+ many functions are implemented in hardware...

© Marc Levoy

30

Enabling hardware technologies for
burst-mode computational photography

+ fast sensor readout
e 13Mpix @ 30fps on Nexus 6

+ fast processing
«[13Mpix @ 30fps to YUV

+ live viewhinder consists of processing at full-res to YUV,
then downsizing to screen resolution

+ this processing i1s implemented in ASIC hardware on
most cameras

31

Texas Instruments OMAP4 SoC

(used in Nexus 5 and Google Glass)

Handset Ear
microphones x2 speaker

HF speakers
x2

Vibrator!

o actuator

x2

SD™/MMC

- soMMC 1

cc
OMAP4430
ULPIHSIC
MCBSP2

|UART3.—

WL1283 BT/FMIGPSIWLAN
12¢ cm] Audio |
SIPDIF
& - ool
Wicro USS | mcase| [mcPo omic | [keveoaro| | sumausi | SDMMC5
@ MCBSP2 || MCaSP1 MCSPI2
UART2 || 12c2
Crher flash
memory
eMMC™
(JCB4) | SDMMC2
{Nor, Nand,
OneNand, ...
— [(o
NVM LPDDR 2 2 or 4x
memory LPDDR2 | & g1 pPDDR21
SD
’ |- LPODR22

Mobile TV —\Y

1

IDA

NFC -8 12C4
Hom | [csizal| |2+:a | csize |
| (‘LgésoMM [—l—l
Fingerprint Touchscreen | | Main display| | Touchscreen | | Subdisplay Tvout Primary Secondary
/ Slide pad camera camera

! ’ PicoDLP®

© Marc Levoy

Major subsystems

8E
Q
(2]
=
(23
n
@

|
s

From Debug subsystem

- 32bits a
i IR me e — i ! i !
| | | L I_ = | |
- m—_ | foce) % T I
Detect | | | || |
Cortex-A9 | Cortex-A9 ! (FOIF) ! | t |
CPUO CPU { I ! HEDEBOTO
+Neon « VFPV3 | 4 Neon + VEPVE |) |3ylhl'nDMAl 'l 2x I
| o |13227dmmh | I|I-|S-IJJC|
| o | 127 ruests | . !
[1 |)]
| |
= L -
| I |

r
L

3

Ed
H ToHS,
2 § Systemn DMA,
] 3 HS USB OTG,
3
L
IDMM JNDEREEES
L= | -4x HS1’C o, B TR N R [E R —
| - 1x HDQ/1-Wire Ctaiatin. 1
| - 1x MCBSP : T e ————, c2¢c :- I'F;szsl
| - 4x MCSPI ey — = To CORE L3 || BsT |1 4
From 29 | -4x UART (ixmoa) | —_—_—_—_—_—_—_—_—_—_—_—_I instrumentation [} 1 :
c2C | - 6x GPTIMER |
I'-5x GPIO I L _
i) . $ 0B | — - ————=—
|
|

I [i

L4_PER interconnect

: EMIFAD : : EMl_;w : () (CEMECEO B = To FOIF (face detect) LT =
1 —————————
| | PSRAM | To DSP subsystem
LLPODRZ | LPODR? | | conoller | _ I[N - == - ———— | - 7 == SRR -

L4_CFG interconnect

To EMUL3
instrumentation

Lm+m —————————

T = = = R
|- GPTIMER |
|-GPIO I8

.mmﬂ l ____________
:-mmmm
|- SAR RAM (8KB 32-bit data) |

L4_WKUP interconnect

___________ intro_swpu141-001

82 © Marc Levoy

33

Imaging subsystem (ISS)

!

!

!

Imaging subsystem

TCTRL

CsSI2
protocol engine

Csl2
protocol engine

CCP2
protocol engine

Cortex-M3

Slave interface

SIMCOP _ : B
I I
D } |
NSF2 ROT |
.
I
- ISP I
2x coerrn | || Wi~ """~~~ ° N 1 [
e AMAC iMX 1;' ! |
CMD b | I
J Lo IPIPEIF | : !
ocT VLCD §| rooerra I S
§ 16KB X : g |
L L | rows ISIF |> H3A IPIPE ! & |
- - : = |
I 2 o~ |
| IBUFF n | IBUFF n Bitstream : 2 % :
4x512x16b 4x512x16b it T = i) sl 18y
T St bt et 1
uffman %) DI g TS |
[Fee"] ARL: 1NN
DMA HW SEQ Quant : Z 2 :
|| 512 bytes v v \ A / 3 % |
Buffer logic |
T |
I Master port I |Slave portI VBUSZOCP :
A 4 v AAAA :
ISS interconnect (128b) :
v |
Burst translation engine ISS top-level resources :
Circular bufferand BW control |- — — — — — — — — — — — — [
Bridge Bridge

l Master interface

Slave interface

© Marc Levoy

Image and signal processor (ISP)

bits

+‘

and clip

data gain

RSz

IPIPEIF_CFG1[3:2) INPSRC2

IPIPEIF_CFG1[15:14] INPSRC1
16 bi \E
Video port 6 bits L 4 0
2
16
O, »
Dark
@ frame .@‘
subtraction 3/
1
16 bits DCPM
\E IPIPEIF_CFG1[3:2] INPSRC2
. > Read
Buffer logic |_32 bits buffer I® 3
interface
» 1 (1.2,1) Horizontal
32-bit RAW/YCDbCr data —»| Averaging || pixel
» 2 filter decimator
16 bit
its ° o o
|~
10 bits (1,2,1) Horizontal
Averaging [~*| pixel
filter decimator

Timing generator

10 bits

Image processing pipeline (IPIPE)

(public version of documentation)

+—> RAM 1024 data x 20 bits G—l VAM 960 x 32 bits x 2
Boxcar Histogram |« A A
2176 x 12 bits
From x 4 lines
IPIPEIF u8 x3
. Input H Line Line X
Video port q:» i 4 7P] memory —»| LuTDPC 4 memory
I 198 x 30 bits x4 I
2176 x 12 bits A
x4 lines Line 2176 x 6 bits 512x20
128 x 29 bits x 2 memory x 1lines RAM:512x20x3
s
§ 3 ui0
= 12x3
33 A g
> 8 . . RGB | RGB RGB us,
) bzvlahrlfe m:::ry P coor 8 to P to .
correction | RGB YCbCr
ffer logi -
—pf Buffer logic 2176 x 12 bits RGB2RGB blending L’ ug
O , 2176 x 12 bits 10x3 10x3 10x3
RAW data Line x 2 lines 4:4:4
memory 16 to 24
\ 4 L 4:2:2 e
4 7/
RAM:512x18
5 x5 taps
Y Y Ed Y
O—b> L[> ge .
s Line 8 enhancer 1 i ’
memory
CGs (Y8+C8)
Cb/Cr
8 8
eagr cwer
2176 x 8 bits x 4 lines
2176 x 8 bits x 3 lines I -
mage pipe

© Marc Levoy

=

Iem)

[

e

votea [oact
i COORDINATES

B Lighing Ecution

5ok

o £ve
COORONATES

popsn

gl (or Gr.) prefix.

Commands (and constants) are shown without the

The following commands o not appear in this

diagram: glAccum, giClearAccum, glHint,

display list commands, texture object commands,

commands for obtaining OpenGL state
(glGet commands and glisEnabled), and

glPushAttrib and glPopAttrib. Utilty library

routines are not shown.

©

indeterminate.

IS

After their exectution, glDrawArrays and
glDrawElements leave affected current values

This diagram is schematic; it may not directly
correspond to any actual OpenGL implementation.

e e
B Py
ASTER PGS ——

The OpenGL Machine

The OpenGL"” graphics system diagram, Version 1.1. Copyright © 1996 Silicon Graphics, Inc. All rights reserved.

Verte}

Coordinate,
eration

B Texture:
S

Sélection

Key to OpenGL Operations

57

Typical pipeline

+ dark frame subtraction
+ lens shading correction
+ sensor linearization

+ gain and offset controls
+ statistics gathering

+ pixel defect correction
+ 1nitial denoising

+ demosaicking

+ color correction

+ tone mapping

+ edge sharpening/denoising

1 O S
DN —
NN

Bayer mosaic

+ warping / resizing

\ 4

YUV

© Marc Levoy

38

What if we could reconhgure 1t?

+ dark frame subtraction
+ lens shading correction
+ sensor linearization

+ gain and offset controls

+ statistics gathering /tap-out of Bayer mosaic

+ pixel defect correctiN

< initﬁ denoising

< der%aicking

+ color correction

+ tone mapping

+ edge sharpening/denoising

+ warping / resizing

re-injection of Bayer mosaic

Using handshake to avoid demosaicking

1. read frames, process to Bayer mosaic
2. align features with pixel precision

3. hope for an R,G,B in every pixel

4. re-inject but suppress demosaicking

© Marc Levoy

Mobile devices are insanely complicated

+ key 1s finding the right points of abstraction

e for computer graphics:

Jim Clark’s Geometry Engine —

OpenGL — GPU 5|

hading languages

e for computational photography:

Frankencamera arc!

hitecture —

Camera2 API — camera shading languages?

39

e for computer vision: ??

© Marc Levoy

Stanford Frankencamera architecture
and FCam API [Adams SIGGRAPH 2010]

Sensor sensor;
Flash flash;
vector<Shot> burst(2);

Mage Sencor

Shot Requests _ [Image Sensor

L

Configure

Application Devices 1

Processor
Actions Expose
2

Readout
3

Imaging Processor N
Images and
[Statistics ‘ Image Statistics 4
Processing Collection
J

L2005
§ o2 OB

burst[0O] .exposure
burst[1l].exposure

J

Metadata

Flash::FireAction fire(&flash) ;
EEe-rtime ==pties k0] 7expostres2:
burst[0] .actions.insert(fire);

sensor.stream(burst) ;

whizLe==Cl)-=F
Frame flashFrame =
sensor-.getFramel);
Frame noflashFrame =
S SR 0] oy o W i 2| o B

40 © Marc Levoy

41

Demonstration applications

strobed continuously

Canon 580EX (larger flash)

ﬁred once at end Of exposure

Canon 430EX (smaller flash)

© Marc Levoy

Stanford Frankencamera architecture
and FCam API [Adams SIGGRAPH 2010]

Sensor sensor;
Flash flash;
vector<Shot> burst(2);

Mage Sencor

Shot Requests _ [Image Sensor

L

Configure

Application Devices 1

Processor
Actions Expose
2

Readout
3

Imaging Processor N
Images and
[Statistics ‘ Image Statistics 4
Processing Collection
J

L2005
§ o2 OB

burst[0O] .exposure
burst[1l].exposure

J

Metadata

Flash::FireAction fire(&flash) ;
EEe-rtime ==pties k0] 7expostres2:
burst[0] .actions.insert(fire);

sensor.stream(burst) ;

whizLe==Cl)-=F
Frame flashFrame =
sensor-.getFramel);
Frame noflashFrame =
S SR 0] oy o W i 2| o B

42 © Marc Levoy

Android Camera HAL 3 architecture
and Camaira 2 ol (Eddy Talvala and others)

Sensor sensor;
Flash flash;
vector<Shot> burst(2);

Mage Sencor

Shot Requests _ [Image Sensor

L

Configure

Application Devices 1

Processor
Actions Expose
2

Readout
3

Imaging Processor N
Images and
[Statistics ‘ Image Statistics 4
Processing Collection
J

L2005
§ o2 OB

burst[0O] .exposure
burst[1l].exposure

J

Metadata

Flash::FireAction fire(&flash) ;
EEe-rtime ==pties k0] 7expostres2:
burst[0] .actions.insert(fire);

sensor.stream(burst) ;

whizLe==Cl)-=F
Frame flashFrame =
sensor-.getFramel);
Frame noflashFrame =
S SR 0] oy o W i 2| o B

43 © Marc Levoy

Android Camera HAIL 3 architecture
and Camaira 2 ol (Eddy Talvala and others)

Sensor sensor;
Elash=ftLashs

Application Framework Request Queue

—_— o — | .
Camera Apps _J Requests vector<Shot> burst(2);
] | burst[0@] .exposure = 1/200. ;
burst[1] .exposure = 1/30.;
Camera HAL Implementation |
| Flash::FireAction fire(&flash) ;
Frame Metadata Queue Image Buffers f-lre-t-lme = burSt[e] eXposurE/Z,

D]———:L burst[0] .actions.insert(fire);
C) Image Buffers

sensor.stream(burst) ;

—

while (1) {
Frame flashFrame =
sensor-.getFramel);
Frame noflashFrame =
AR SO ey e B e R e

44 © Marc Levoy

// This is how to tell the camera to trigger.
mPrev1ewRequestBu1lder set 3EaptureRequest CONTROL AE_ PRECAPTURE TRIGGER,

[]
Android Camera HAL«=3architectire: "
I

re edu nc be set.
mState = ATE AIT PRECA
mCaptureSession. capture(mPrewewRequesthlder build(), mCaptureCallback,

and Camera’ API“MKBM& ndHandler)}vala and others)

}

[
. - * Capture a still picture. This method should be called when we get a response in
n \
Appication Framework _ Request OU9U~8 # {@link #mCaptureCallback} from both {@link #lockFocus()}.
E) i::‘/
— () private void captureStillPicture() {
Camera Apps ’J try {
Requests final Activity activity = getActivity();
if (null == activity Il null == mCameraDevice) {

retunn

}
‘—J // This is the CaptureRequest.Builder that we use to take a picture.
: final CaptureRequest.Builder captureBuilder =

mCameraDevice.createCaptureRequest(CameraDevice. TEMPLATE_STILL_CAPTURE);
Camera HAL Implementation captureBuilder.add Target(mImageReader.getSurface());

captureBuilder.set(CaptureRequest. CONTROL_AF_MODE,

CaptureRequest. CONTROL_AF_MODE_CONTINUOUS_PICTURE);
captureBuilder.set(CaptureRequest. CONTROL_AE_MODE,

CaptureRequest. CONTROL_AE_MODE_ON_AUTO_FLASH);

l l // Use the same AE and AF modes as the preview.

Frame Metadata Queue Image Buffers

U
s ssnsna] // Orientation
© O int rotation = activity.getWindowManager().getDefaultDisplay().getRotation();
L Metadata Image Buffers captureBuilder.set(CaptureRequest. JPEG_ORIENTATION, ORIENTATIONS.get(rotation));

CameraCaptureSession.CaptureCallback CaptureCallback
= new CameraCaptureSession.CaptureCallback() {

@Override

public void onCaptureCompleted (CameraCaptureSession session, CaptureRequest request,
TotalCaptureResult result) {
® all()ws control over the camera Toast.makeText(getActivity(), "Saved: " + mFile, Toast. LENGTH_SHORT).show();
unlockFocus();
’ . . }
® doesn’t accelerate image processing)

mCaptureSession.stopRepeating();

mCaptureSession.capture(captureBuilder.build(), CaptureCallback, null);
} catch (CameraAccessException e) {

e.printStack Trace();

e . ; SR e e ; } © Marc Levoy

46

Mobile devices are insanely complicated

+ we also need the right programming model
e library (API)

1de?
e general language / Halide?

e domain-specific language

e low-level language (machine instructions)

© Marc Levoy

Separating algorithms from schedules
[Ragan-Kelley 2012]

(a) Clean C++ : 9.94 ms per megapixel

void blur (const Image &in, Image &blurred) {
Image tmp(in.width (), in.height());

for (int y = 0; y < in.height(); y++)
for (int x = 0; x < in.width(); x++)
tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+1l, y))/3;
for (int y = 0; y < in.height(); y++)
for (int x = 0; x < in.width(); x++)
) blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;

47 © Marc Levoy

48

Separating algorithms from schedules

[Ragan-Kelley 2012]

— (b) Fast C++ (for x86) : 0.90 ms per megapixel ——

void fast_blur (const Image &in, Image &blurred) {
-ml28i one_third = mm setl epil6(21846);
#pragma omp parallel for
for (int yTile = 0; yTile < in.height(); yTile += 32) {
-ml28i a, b, ¢, sum, avg;
~.ml28i tmp[(256/8) % (32+2)1];
for (int xTile = 0; xTile < in.width(); xTile += 256) {
.ml28i *tmpPtr = tmp;
for (int y = -1; y < 32+41; y++)
const uintlé _t »inPtr = & (in(xTile, yTile+y));
for (int x = 0; x < 256; x += 8)
a _mm_loadu sil28((..ml28ix%) (inPtr-1));
b _mm_loadu sil28((-ml28ix) (inPtr+l));
c mm load sil28 ((..ml28ix) (inPtr));
s _mm_add_epil6(_mm_add epil6(a, b), c);
avg _mm_mulhi_epil6 (sum, one_third);
_mm_store_sil28 (tmpPtr++, avg);
inPtr += 8;

g nnn
|

tmpPtr = tmp;
for (int y = 0; y < 32; y++) {
- ml28i xoutPtr = (_.ml28i) (& (blurred(xTile, yTile+y)));
for (int x = 0; x < 256; x += 8) {
a _mm_load_sil28 (tmpPtr+(2x256)/8);
b _mm_load_sil28 (tmpPtr+256/8);
= mm_load_sil28 (tmpPtr++) ;
s _mm_add_epil6(mm _add epil6(a, b), c);
avg _mm_mulhi_epil6 (sum, one_third);
mm_store_sil28 (outPtr++, avg);

133333

g nun
nonj

© Marc Levoy

49

Separating algorithms from schedules
[Ragan-Kelley 2012]

(c) Halide : 0.90 ms per megapixel

Func halide_blur (Func in) {
Func tmp, blurred;
Var x, y, xi, yi;

// The algorithm
tmp(x, y) = (in(x-1, y) + in(x, y) + in(x+1l, y))/3;
blurred(x, y) = (tmp(x, y-1) + tmp(x, y) + tmp(x, y+1))/3;

// The schedule
blurred.tile(x, y, xi, yi, 256, 32) .vectorize(xi, 8) .parallel(y);
tmp.chunk (x) .vectorize (x, 8);

return blurred;

}

© Marc Levoy

50

Why 1s Halide spreading so fast?

+ because with a bit of portable code you can write
e faster matrix multiply than Eigen
e faster Gaussian blur than Intel Performance Primitives

e faster Fourier transform than fftw

+ or maybe because it...
e runs on device and in the cloud
e 1s supported on Linux, Windows, OSX, 10S, Android

e compiles to x86, ARM, MIPS, native client, OpenCL, OpenGL,
CUDA, JavaScript, RenderScript (ISPs soon)

+ companies writing Halide code

e Apple, Intel, Adobe, Microsoft, Nvidia, Google, Facebook,
Qualcomm, Sony, Datexim, Algolux, ContextVision, Leap Motion,
Nodasys, Nikon, Vicomtech, Ubisoft, Idruna, Imgtec, Lytro

© Marc Levoy

51

Action 1items for researchers

4. need architectures for accelerating image processing and

computer vision, and good ways to program them

© Marc Levoy

52

CS’s biggest successes in 25 years

+ deep learning + big data 1s replacing hand-built

algorithms for many tasks, including photography

© Marc Levoy

Auto White Balancing (AWB)

(J. Barron, Convolutional Color Constancy, To appear in Proc. ICCV 2015)

Input Image

Auto White Balancing (AWB)

(J. Barron, Convolutional Color Constancy, To appear in Proc. ICCV 2015)

Input Image Log-Chrominance Histogram

Auto White Balancing (AWB)

(J. Barron, Convolutional Color Constancy, To appear in Proc. ICCV 2015)

Input Image Log-Chrominance Histogram Learned Filter

Auto White Balancing (AWB)

(J. Barron, Convolutional Color Constancy, To appear in Proc. ICCV 2015)

Input Image Log-Chrominance Histogram Learned Filter

9
S
s
S
@)

r

| | Softmax

Heat Map

Auto White Balancing (AWB)

(J. Barron, Convolutional Color Constancy, To appear in Proc. ICCV 2015)

Input Image Log-Chrominance Histogram Learned Filter

.

9
S
S
S
@)

| | Softmax

'

Heat Map Arg max Heat Map

S
¥ o
7 (@)
T

Fin
q
.

Auto White Balancing (AWB)

(J. Barron, Convolutional Color Constancy, To appear in Proc. ICCV 2015)

Input Image Log-Chrominance Histogram Learned Filter

9
S
s
S
@)

r

| | Softmax

T

Fin
q
.

Output Image / llluminant Heat Map Arg max Heat Map

Auto White Balancing (AWB)

(J. Barron, Convolutional Color Constancy, To appear in Proc. ICCV 2015)

Input Image Log-Chrominance Histogram Learned Filter

| | Softmax

Fin
q
m.

Output Image / llluminant Heat Map Arg max Heat Map

Discriminatively learned weights

In properly white-balanced images,
lots of things are very close to white,
but sometimes things are sky-blue or

green like grass, but not pale green

and definitely not magenta, but
possible pale purple...

Experimental results

379 training Images with ground truth from Macbeth color checker

White-Patch

Gray-World

Edge-based Gamut
1st-order Gray-Edge
2nd-order Gray-Edge
Shades-of-Gray

Bayesian

General Gray-World
Natural Image Statistics
Spatio-spectral

Bright Pixels
Intersection-based Gamut
Pixel-based Gamut
Corrected-Moment (Color)
Cheng etal
Corrected-Moment (Edge)
Generative CCC

CCC

~35% Improvement

|

log(average error)

62

CS’s biggest successes in 25 years

+ computer vision 1s beginning to work
e Google image search no longer relies solely on text

e can estimate camera pose from sensed imagery
(“visual odometry”) in real-time

e can compute stereo (at low-res) in real time

© Marc Levoy

63

DTAM: dense tracking and mapping in real-time
[Newcombe, ICCV 2011]

Live incremental reconstruction of a large scene

Texture mapped model Inverse depth solution

+ becoming possible on a mobile device (Google Tango)

+ 1n the future, JPEG files will include depth (RGBZ)

© Marc Levoy

64

CS’s biggest successes in 25 years

e can build 3D models in real time

e lots of applications, including VR, AR

© Marc Levoy

Word Lens

(app for 10S and Android)

Word Lens

www.QuestVisual.com

+ mediocre translation, but clever user interface

+ recently bought by Google, part of Android Translate

65 © Marc Levoy

66

Google's JUMP project

© Marc Levoy

67

Google's JUMP project

© Marc Levoy

68

CS’s biggest successes in 25 years

e pressure on hardware, abstractions, languages

e brain drain from academia

© Marc Levoy

69

Action 1items for researchers

5. allow faculty to rotate through industry, or spend 50%

of their time 1n industry, without losing tenure

© Marc Levoy

70

Superhero vision

Extreme Imaging Workshop o gk

schedule submission

Appl

Invited Speakers

3 &
Bernhard Schoelkopf Wolfgang Heidrich
lanck | e Unive

umbia

Michael Cohen Ray Jones
M h)

Organizers

Bill Freem. Andreas Savakis
MIT/Goo RIT

7

Superhero vision

+ seeing 1n the dark

74

Digital photography

can easily exceed human vision

(Jesse Levinson Canon 10D, 28mm {/4, 3 min, ISO 100, 4 image pano)

+ required a tripod

+ can't currently do this using a cell phone, but it's not impossible

e dark current (if one shot) or read noise (if a burst) must be very lo

arc

evoy

Low-light imaging using
burst-mode computational

photography

single frame

(iPhone 4)

Low-light imaging using
burst-mode computational

photography

SNR increases as

sqrt(# of frames)

average of
~30 frames

(SynthCam)

single frame

| %

DN

4

™

average of
~30 frames

single frame

average of
~30 frames

Typical approach to HDR

+ exposure bracketing
e capture images with varying exposure

e combine highlights from low exposures
with shadows from high exposures

+ hard to robustly handle camera shake or object motion
e noise level differs between exposures

e saturated areas cannot be aligned at all

85 © Marc Levoy

HDR+ in the Google camera app

(http://googleresearch.blogspot.com/2014/10/hdr-low-light-and-high-dynamic-range.html)

+ capture a burst of under-exposed 1mages
e same exposure on all images in burst!

e avold over-exposing highlights

+ align and merge
e all images look similar, so alignment 1s more robust

e reduces noise 1n shadows

+ tonemap — >
e boost shadows ' D .
 squeeze IN-bit merged image into 8- blt for display, N > 8

e preserve local contrast at the expense of global contrast

© Marc Levoy

93

Superhero vision

+ seeing in the dark

+ seeing through objects

© Marc Levoy

Removing foreground objects
by translating the camera

+ align the shots
+ match histograms

+ apply median fhlter

ST
sy >t)

,'\‘ ~ i
’t H
&

4]

@ A

7]
e .
.

94

95

Superhero vision

+ seeing in the dark
+ seeing through objects

+ magnifying glass, telescopic vision

© Marc Levoy

Camera-based magnifiers

+ optical zoom

e requires a long optical path

+ digital zoom (cropping)

e requires a high pixel count, -
hence a thick camera

......

Nokia 808

+ super-resolution
e results typicaﬂy look oversharpened

96 © Marc Levoy

97

Beyond SLLRs: Superhero vision

+ seeing in the dark
+ seeing through objects
+ magnifying glass, telescopic vision

+ slowing down motion, speeding up motion

© Marc Levoy

(Dogs in Slow Motion, Devin Graham)

(First Person Hyperlapse, Johannes Kopf et al., Proc 2014)

100

Superhero vision

seeing 1n the dark
seeing through objects
magnifying glass, telescopic vision

slowing down motion, speeding up motion

el e SR R

motion magnification, change magnification

© Marc Levoy

101

Motion magniﬁcation
[Liu, SIGGRAPH 2005]

+ can this be done using a (shaky) handheld camera?

+ can it be computed on a (slow) mobile device?

102

Change magniﬁcation
[Wu, SIGGRAPH 2012]

Source Color-amplified (x100)

+ how much SNR is needed to detect this signal?

+ 1s 1t socially acceptable to run this on Glass?

103

Superhero vision

seeing 1n the dark

seeing through objects

magnifying glass, telescopic vision
slowing down motion, speeding up motion

motion magnification, change magnification

Silitg il e

face recognition

© Marc Levoy

[f you met this man at a party...

name: Jack Sparrow
address: Black Pearl

profession: pirate
net worth: Zero
spouse: many

»criminal record: long

104 © Marc Levoy

105

Face recognition

+ recognition from uncontrolled photos 1s still sci-h

+ Google pro-actively prohibited it on Glass

+ 1t could eventually work

+ 1f it does, someone will build a device to do it

+ anonymity 1s so...20th century; get over it

4+ gIiving up anonymity # giving up privacy

© Marc Levoy

From Debug subsystem

- Sys O, Acc. engines.|
- Fiters, Msg IF (16 bis)

- wiint i, Maibox

AW __W |}
IDMM (spitter and TILER) ||
Ce— |8

Sensor sensor;
Shot low, med, high;

W4 Low.exposure = 1/80. ;
. med.exposure 1/20.;
9/ high.exposure = 1/5.;

sensor.capture(low);
sensor.capture(med) ;
sensor.capture(high);

~

Frame frames[3];

frames[O] = sensor.getFrame();
frames[1l] = sensor.getFrame();
frames[2] sensor.getFrame() ;

fused = mergeHDR(frames);

