# Light field sensing

Marc Levoy



Computer Science Department Stanford University

# The scalar light field (in geometrical optics)

Radiance as a function of position and direction in a static scene with fixed illumination







5-dimensional function

### The vector light field

[Gershun 1936]



adding two light vectors



the vector light field produced by a luminous strip

- amplitude gives irradiance at that point
- direction tells which way to orient a surface for maximum brightness under uniform illumination

### Visualizing the vector irradiance field



scalar irradiance at each point

flatland scene with partially opaque blockers under uniform illumination

vector directions, visualized using line integral convolution (LIC) [Cabral 1993]

© 2008 Marc Levoy

# Dimensionality of the scalar light field

- for general scenes
  - ⇒ 5D function "plenoptic function"

$$L(x, y, z, \theta, \phi)$$

- in free space
  - ⇒ 4D function
  - "the (scalar) light field"



# Some candidate parameterizations for the 4D light field

Point-on-plane + direction (or point-on-surface + direction)



- convenient for measuring BRDFs
- restriction to line gives looming field



flight path through a flatland scene

corresponding looming light field (see also [Hasinoff 2006])

# The looming field



[Gibson]

### More parameterizations

#### Chords of a sphere



- convenient for spherical gantry
- facilitates uniform sampling





#### Two planes ("light slab")



L(u, v, s, t)

- uses projective geometry
  - one plane at infinity  $\Rightarrow$  array of orthographic images
  - fast incremental display algorithms

### The free-space assumption

- Where can you use free-space light fields?
  - the 3D space around a compact object
  - the 3D space inside an uncluttered environment
- stitching together light fields

[Chen, Levoy, Hanrahan (unpublished)]

- partition scene into disjoint cells
- links between cells are light fields
- hierarchy of cells, links, light fields
- # of light fields is linear in # of cells

# Light field rendering



flipbook animation (QuickTime VR)

rebinning the rays to create new views



# Alternative parameterizations for the <u>5D</u> plenoptic function

Two-plane ray field



- allows multiple colors, in sequence, along one line
- alternative to L (x, y, z,  $\theta$ ,  $\phi$ )
- inspired by Salesin's ZZ-buffer [1989]

#### Devices for recording light fields

big scenes

handheld camera

[Buehler 2001]

array of cameras

[Wilburn 2005]

• plenoptic camera

[Ng 2005]

small scenes • light field microscope

[Levoy 2006]









### Stanford Multi-Camera Array

[Wilburn SIGGRAPH 2005]

• 640 × 480 pixels × 30 fps × 128 cameras

- synchronized timing
- continuous streaming
- flexible arrangement



#### Ways to use large camera arrays

widely spaced

- light field capture





Manex's bullet time array



#### Ways to use large camera arrays

- widely spaced
- tightly packed

- ight field capture
- high-performance imaging



#### Ways to use large camera arrays

- widely spaced
- tightly packed
- intermediate spacing
- light field capture
- high-performance imaging
  - synthetic aperture photography



## Synthetic aperture photography



# Example using 45 cameras [Vaish CVPR 2004]







one camera's view



synthetic aperture view

# Light field photography using a handheld plenoptic camera

Ren Ng, Marc Levoy, Mathieu Brédif, Gene Duval, Mark Horowitz and Pat Hanrahan

(Proc. SIGGRAPH 2005 and TR 2005-02)





### Conventional versus light field camera





### Conventional versus light field camera





#### Prototype camera



Contax medium format camera



Adaptive Optics microlens array



Kodak 16-megapixel sensor



125µ square-sided microlenses

 $4000 \times 4000 \text{ pixels} \div 292 \times 292 \text{ lenses} = 14 \times 14 \text{ pixels per lens}$ 



## Digital refocusing



• refocusing = summing windows extracted from several microlenses

### A digital refocusing theorem

• an f/N light field camera, with  $P \times P$  pixels under each microlens, can produce views as sharp as an  $f/(N \times P)$  conventional camera

$$-or-$$

• it can produce views with a shallow depth of field (f/N) focused anywhere within the depth of field of an  $f/(N \times P)$  camera











## Refocusing portraits



(movie is available at http://refocusimaging.com)

#### Extending the depth of field













conventional photograph, main lens at f/4

conventional photograph, main lens at f/22

light field, main lens at f/4, after all-focus algorithm [Agarwala 2004]

#### Digitally moving the observer



• moving the observer = moving the window we extract from the microlenses

# Example of moving the observer





# Example of moving the observer





# Example of moving the observer





















# Lego gantry for capturing light fields

(built by Andrew Adams)

calibration point



plane + parallax [Vaish 2004]

# Flash-based viewer for light fields

(written by Andrew Adams)



(light field can be viewed at http://lightfield.stanford.edu/lfs.html)

#### Implications / commercialization

(see refocusimaging.com)

- cuts the unwanted link between exposure (due to the aperture) and depth of field
- trades off (excess) spatial resolution for ability to refocus and adjust the perspective
- sensor pixels should be made even smaller, subject to the diffraction limit

```
36mm × 24mm ÷ 2.5μ pixels = 266 Mpix
20K × 13K pixels
4000 × 2666 pixels × 20 × 20 rays per pixel
```

or

 $2000 \times 1500 \text{ pixels } \times 3 \times 3 \text{ rays per pixel} = 27 \text{ Mpix}$ 

# Light Field Microscopy

Marc Levoy, Ren Ng, Andrew Adams, Matthew Footer, and Mark Horowitz

(Proc. SIGGRAPH 2006)





# A traditional microscope



#### A light field microscope (LFM)





• 40x/0.95NA objective  $\downarrow$   $0.26\mu$  spot on specimen  $\times 40x = 10.4\mu$  on sensor  $\downarrow$ 2400 spots over 25mm field

125²-micron microlenses
 ↓
 200 × 200 microlenses with
 12 × 12 spots per microlens

 $\rightarrow$  reduced lateral resolution on specimen =  $0.26\mu \times 12$  spots =  $3.1\mu$ 

# A light field microscope (LFM)



#### Example light field micrograph

- orange fluorescent crayon
- mercury-arc source + blue dichroic filter
- 16x / 0.5NA (dry) objective
- f/20 microlens array
- 65mm f/2.8 macro lens at 1:1
- Canon 20D digital camera



ordinary microscope



light field microscope

# The geometry of the light field in a microscope



objective lenses are telecentric

- microscopes make orthographic views
- translating the stage in X or Y provides no parallax on the specimen
- out-of-plane features don't shift position when they come into focus
- front lens element size =
   aperture width + field width
- PSF for 3D deconvolution microscopy is shift-invariant (i.e. doesn't change across the field of view)

# Example light field micrograph



#### Real-time viewer



(movie is available at http://graphics.stanford.edu/projects/lfmicroscope/2007.html)

#### Other examples



fern spore (60x, autofluorescence)



Golgi-stained neurons (40x, transmitted light)



zebrafish optic tectum (calcium imaging of neural activity)

(movies are available at http://graphics.stanford.edu/projects/lfmicroscope)

#### 3D reconstruction

4D light field → digital refocusing →
 3D focal stack → deconvolution microscopy →

3D volume data



• 4D light field → tomographic reconstruction → 3D volume data



(from Kak & Slaney)

#### Silkworm mouth

(40x / 1.3NA oil immersion)





slice of focal stack

slice of volume

volume rendering

# GFP-labeled zebrafish neurons

(40x / 0.8NA water immersion)



