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Three theses

Thesis #1: Many sciences lack good visualization tools.
Corollary: These are a good source for volume and point data.

Thesis #2: Computer scientists need to learn these sciences.
Corollary: Learning the science may lead to new visualizations.

Thesis #3: We also need to learn their data capture technologies.
Corollary: Visualizing the data capture process helps debug it.

Success story #1:
volume rendering of medical data

Karl-Heinz Hoehne Resolution Sciences

Success story #1:
volume rendering of medical data

Arie Kaufman et al.
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Success story #2:
point rendering of dense polygon meshes

Levoy and Whitted (1985) Szymon Rusinkiewicz’s QSplat (2000)
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Failure:
volume rendering in the biological sciences

• (a leading software package)
– limited control over opacity transfer function
– no control over surface appearance or lighting
– no quantitative 3D probes

• Photoshop
– converting 16-bit to 8-bit dithers the low-order bit
– PhotoMerge (image mosaicing) performs poorly
– no support for image stacks, volumes, n-D images
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What’s going on in the basic sciences? 

• new instruments  ⇒ scientific discoveries
• most important new instrument in the last 50 years:

the digital computer
• computers + digital sensors = computational imaging

Def: imaging methods in which computation
is inherent in image formation.

– B.K. Horn

• the revolution in medical imaging (CT, MR, PET, etc.) 
is now happening all across the basic sciences

(It’s also a great source for volume and point data!)
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Examples of
computational imaging in the sciences

• medical imaging
– rebinning
– transmission tomography
– reflection tomography (for ultrasound)

• geophysics
– borehole tomography
– seismic reflection surveying

• applied physics
– diffuse optical tomography
– diffraction tomography
– scattering and inverse scattering

inspiration for light field rendering

in this talk
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• biology
– confocal microscopy
– deconvolution microscopy

• astronomy
– coded-aperture imaging
– interferometric imaging

• airborne sensing
– multi-perspective panoramas
– synthetic aperture radar

applicable at macro scale too
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• optics
– holography
– wavefront coding
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Computational imaging technologies
used in neuroscience

• Magnetic Resonance Imaging (MRI)
• Positron Emission Tomography (PET)
• Magnetoencephalography (MEG)
• Electroencephalography (EEG)
• Intrinsic Optical Signal (IOS)
• In Vivo Two-Photon (IVTP) Microscopy
• Microendoscopy
• Luminescence Tomography
• New Neuroanatomical Methods (3DEM, 3DLM)
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The Fourier projection-slice theorem
(a.k.a. the central section theorem)   [Bracewell 1956]

• Pq(t) is the integral of g(x,y) in the direction q
• G(u,v) is the 2D Fourier transform of g(x,y)
• Gq(ω) is a 1D slice of this transform taken at q
• F-1 { Gq(ω) } = Pq(t) !

Pq(t) Gq(ω)

(from Kak)
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Reconstruction of g(x,y)
from its projections

• add slices Gq(ω) into u,v at all angles q and inverse 
transform to yield g(x,y), or

• add 2D backprojections Pq(t, s) into x,y at all angles q

Pq(t)

Pq(t, s)

Gq(ω)

(from Kak)dss)(t,P(t)P ∫
+∞

∞−
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The need for filtering before
(or after) backprojection

• sum of slices would create 1/ω hot spot at origin
• correct by multiplying each slice by |ω|, or
• convolve Pq(t) by F-1 { |ω| } before backprojecting
• this is called filtered backprojection

ω

1/ω

ω

|ω|

hot spot correction

u

v

Summing filtered 
backprojections

(from Kak)

Example of reconstruction by 
filtered backprojection

X-ray sinugram

filtered sinugram reconstruction
(from Herman)
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More examples

CT scan
of head

volume
renderings

the effect
of occlusions
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Limited-angle projections

[Olson 1990]
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Reconstruction using the Algebraic 
Reconstruction Technique (ART)

• applicable when projection angles are limited
or non-uniformly distributed around the object

• can be under- or over-constrained, depending on N and M
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N  image cells along a ray
pi = projection along ray i
fj = value of image cell j   (n2 cells)
wij = contribution by cell j to ray i

(a.k.a. resampling filter) (from Kak) Procedure
• make an initial guess, e.g. assign zeros to all cells
• project onto p1 by increasing cells along ray 1 until Σ = p1

• project onto p2 by modifying cells along ray 2 until Σ = p2,  etc.
• to reduce noise, reduce by             for α < 1

i
ii

ii
k

kk w
ww

pwfff
•

−•−=
−

− )()1(
)1()(

cells all of estimate th)( kf k =
iwwww iNiii ray  along ),,,( weights 21 K=

)(kfΔα



Time = 6
Page 6

Procedure
• make an initial guess, e.g. assign zeros to all cells
• project onto p1 by increasing cells along ray 1 until Σ = p1

• project onto p2 by modifying cells along ray 2 until Σ = p2,  etc.
• to reduce noise, reduce by             for α < 1)(kfΔα

• linear system, but big, sparse, and noisy
• ART is solution by method of projections [Kaczmarz 1937]
• to increase angle between successive hyperplanes, jump by 90°
• SART modifies all cells using  f (k-1), then increments k
• overdetermined if M > N, underdetermined if missing rays
• optional additional constraints:

• f  > 0  everywhere (positivity)
• f  =  0  outside a certain area

• linear system, but big, sparse, and noisy
• ART is solution by method of projections [Kaczmarz 1937]
• to increase angle between successive hyperplanes, jump by 90°
• SART modifies all cells using  f (k-1), then increments k
• overdetermined if M > N, underdetermined if missing rays
• optional additional constraints:

• f  > 0  everywhere (positivity)
• f  =  0  outside a certain area

[Olson]

[Olson]
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Borehole tomography

• receivers measure end-to-end travel time
• reconstruct to find velocities in intervening cells
• must use limited-angle reconstruction methods (like ART)

(from Reynolds)
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Applications

mapping a seismosaurus in sandstone 
using microphones in 4 boreholes and 

explosions along radial lines

mapping ancient Rome using 
explosions in the subways and 
microphones along the streets?
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Optical diffraction tomography (ODT)

• for weakly refractive media and coherent plane illumination
• if you record amplitude and phase of forward scattered field
• then the Fourier Diffraction Theorem says F {scattered field} = arc in

F {object} as shown above, where radius of arc depends on wavelength λ
• repeat for multiple wavelengths, then take F -1 to create volume dataset
• equivalent to saying that a broadband hologram records 3D structure

(from Kak)

limit as λ → 0 (relative to 
object size) is Fourier 

projection-slice theorem

• for weakly refractive media and coherent plane illumination
• if you record amplitude and phase of forward scattered field
• then the Fourier Diffraction Theorem says F {scattered field} = arc in

F {object} as shown above, where radius of arc depends on wavelength λ
• repeat for multiple wavelengths, then take F -1 to create volume dataset
• equivalent to saying that a broadband hologram records 3D structure

(from Kak)

limit as λ → 0 (relative to 
object size) is Fourier 

projection-slice theorem

[Devaney 2005]

• for weakly refractive media and coherent plane illumination
• if you record amplitude and phase of forward scattered field
• then the Fourier Diffraction Theorem says F {scattered field} = arc in

F {object} as shown above, where radius of arc depends on wavelength λ
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• equivalent to saying that a broadband hologram records 3D structure

limit as λ → 0 (relative to 
object size) is Fourier 

projection-slice theorem

[Devaney 2005]
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Inversion by
filtered backpropagation

• depth-variant filter, so more expensive than tomographic 
backprojection, also more expensive than Fourier method

• applications in medical imaging, geophysics, optics

backprojection
backpropagation

[Jebali 2002]
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Diffuse optical tomography (DOT)

• assumes light propagation by multiple scattering
• model as diffusion process

[Arridge 2003]
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Diffuse optical tomography

• assumes light propagation by multiple scattering
• model as diffusion process
• inversion is non-linear and ill-posed
• solve using optimization with regularization (smoothing)

female breast with
sources (red) and
detectors (blue)

[Arridge 2003]

absorption
(yellow is high)

scattering
(yellow is high)
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Computing vector light fields

adding two light vectors
(Gershun 1936)

the vector light field
produced by a luminous strip

field theory
(Maxwell 1873)
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Computing vector light fields

light field magnitude
(a.k.a. irradiance)

light field vector directionflatland scene with
partially opaque blockers

under uniform illumination
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From microscope light fields
to volumes

• 4D light field  → digital refocusing →
3D focal stack  → deconvolution microscopy →
3D volume data

(DeltaVision)
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3D deconvolution

• object * PSF → focus stack
• F {object} × F {PSF} → F {focus stack}
• F {focus stack} π F {PSF} → F {object}
• spectrum contains zeros, due to missing rays
• imaging noise is amplified by division by ~zeros
• reduce by regularization (smoothing) or completion of spectrum
• improve convergence using constraints, e.g. object > 0

focus stack of a point in 3-space is the 3D PSF of that imaging system

[McNally 1999]

F {PSF}
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Silkworm mouth
(40x / 1.3NA oil immersion)

slice of focal stack slice of volume volume rendering
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From microscope light fields
to volumes

• 4D light field  → digital refocusing →
3D focal stack  → deconvolution microscopy →
3D volume data

• 4D light field  → tomographic reconstruction →
3D volume data

(from Kak)

(DeltaVision)

Optical Projection Tomography (OPT)

[Sharpe 2002]
[Trifonov 2006]
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Confocal scanning microscopy

pinhole

light source
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Confocal scanning microscopy

pinhole

light source

photocell

pinhole

r
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Confocal scanning microscopy

pinhole

light source

photocell

pinhole
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Confocal scanning microscopy

pinhole

light source

photocell

pinhole

[UMIC SUNY/Stonybrook]
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Synthetic aperture confocal imaging
[Levoy et al., SIGGRAPH 2004]

light source

→ 5 beams
→ 0 or 1 beams
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Seeing through turbid water Seeing through turbid water

floodlit scanned tile
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Coded aperture imaging

• optics cannot bend X-rays, so they cannot be focused
• pinhole imaging needs no optics, but collects too little light
• use multiple pinholes and a single sensor
• produces superimposed shifted copies of source

(from Zand)
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Reconstruction
by backprojection

• backproject each detected pixel through each hole in mask
• superimposition of projections reconstructs source + a bias
• essentially a cross correlation of detected image with mask
• also works for non-infinite sources; use voxel grid
• assumes non-occluding source

(from Zand)
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Example using 2D images
(Paul Carlisle)

* =

New sources for point data

(Molecular Probes)

[Gustaffson 2005]
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Three theses

Thesis #1: Many sciences lack good visualization tools.
Corollary: These are a good source for volume and point data.

Thesis #2: Computer scientists need to learn these sciences.
Corollary: Learning the science may lead to new visualizations.

Thesis #3: We also need to learn their data capture technologies.
Corollary: Visualizing the data capture process helps debug it.

The best visualizations are often 
created by domain scientists

Andreas Vesalius (1543)
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Visualizing raw data
helps debug the capture process

hollow fluorescent 15-micron sphere,
manually captured Z-stack, 1-micron
increments, 40×/1.3NA oil objective

X-Z cross-sectional
slice of same stack
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...or may force improvements in the 
capture technology

Shinya Inoué at his
polarization microscope

crane fly spermatocyte undergoing meiosis,
image and video by Rudolf Oldenbourg
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Final thought:
the importance of building useful tools

“A toolmaker succeeds as, and only as, the users of his 
tool succeed with his aid.  However shining the blade, 
however jeweled the hilt, however perfect the heft, a 
sword is tested only by cutting.  That swordsmith is 
successful whose clients die of old age.”

– Fred Brooks,
Computer Scientist as Toolsmith – II,
Proc. CACM 1996
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