Computational photography & the Stanford Frankencamera

Marc Levoy

(for a more complete survey lecture on computational photography, but without the Frankencamera, see http://graphics.stanford.edu/talks/compphot-publictalk-may08.pdf)

Stanford Computer Graphics Laboratory http://graphics.stanford.edu

Executive summary

- faster computing + communications will revolutionize digital photography, creating new markets
 - computational photography points the way
- research & commercialization of computational photography is being hampered by the lack of programmable cameras
 - traditional cameras are closed platforms
- open-source cameras will benefit the research community and accelerate the revolution
 - 3rd party developers, plugins, apps

Some (tentative) definitions

- computational imaging
 - -any image formation method that requires a digital computer
- computational photography
 - -computational imaging techniques that enhance or extend the capabilities of digital photography
 - -output is an ordinary photograph, but one that could not have been taken by a traditional camera

Film-like Photography with bits

Computational Photography

Computational Camera

Smart Light

Digital Photography

Image processing applied to captured images to produce better images.

Examples:
Interpolation, Filtering,
Enhancement, Dynamic
Range Compression,
Color Management,
Morphing, Hole Filling,
Artistic Image Effects,
Image Compression,
Watermarking.

Computational Processing

Processing of a set of captured images to create new images.

Examples:
Mosaicing, Matting,
Super-Resolution,
Multi-Exposure HDR,
Light Field from
Mutiple View,
Structure from Motion,
Shape from X.

Computational Imaging/Optics

Capture of optically coded images and computational decoding to produce new images.

Examples: Coded Aperture, Optical Tomography, Diaphanography, SA Microscopy, Integral Imaging, Assorted Pixels, Catadioptric Imaging, Holographic Imaging.

Detectors that combine sensing and processing to create smart pixels.

Computational

Sensor

Examples:
Artificial Retina,
Retinex Sensors,
Adaptive Dynamic
Range Sensors,
Edge Detect Chips,
Focus of Expansion
Chips, Motion
Sensors.

Computational Illumination

Adapting and Controlling Illumination to Create revealing image

Examples: Flash/no flash, Lighting domes, Multi-flash for depth edges, Dual Photos, Polynomial texture Maps, 4D light source

Content-aware image resizing [Avidan SIGGRAPH 2007]

• <u>to expand</u>: insert pixels along seams that, if removed in order, would yield the original image

Content-aware image resizing [Avidan SIGGRAPH 2007]

• <u>to compress</u>: remove pixels along lowest-energy seams, ordered using dynamic programming

• to expand: insert pixes in order, v

application to object removal

NOW AVAILABLE IN PHOTOSHOP !!

Removing camera shake [Fergus SIGGRAPH 2006]

image with camera shake

Photoshop Unsharp Mask

deconvolution

blur kernel

Film-like Photography with bits

Computational Photography

Computational Camera

Smart Light

Digital Photography

Image processing applied to captured images to produce better images.

Examples: Interpolation, Filtering, Enhancement, Dynamic Range Compression, Color Management, Morphing, Hole Filling, Artistic Image Effects, Image Compression, Watermarking.

Computational Processing

Processing of a set of captured images to create new images.

Examples: Mosaicing, Matting, Super-Resolution, Multi-Exposure HDR, Light Field from Mutiple View, Structure from Motion, Shape from X.

Computational Imaging/Optics

Capture of optically coded images and computational decoding to produce new images.

Examples: Coded Aperture, Optical Tomography, Diaphanography, SA Microscopy, Integral Imaging, Assorted Pixels, Catadioptric Imaging, Holographic Imaging.

Computational Sensor

Detectors that combine sensing and processing to create smart pixels.

Examples: Artificial Retina, Retinex Sensors, Adaptive Dynamic Range Sensors, Edge Detect Chips, Focus of Expansion Chips, Motion Sensors.

Computational Illumination

Adapting and Controlling Illumination to Create revealing image

Examples: Flash/no flash, Lighting domes, Multi-flash for depth edges, Dual Photos, Polynomial texture Maps, 4D light source

High dynamic range (HDR) imaging

Too dark

High dynamic range (HDR) imaging

Too bright

High dynamic range (HDR) imaging

Tone mapped combination

Aligning a burst of short-exposure, high-ISO shots using the Casio EX-F1

1/3 sec

2010 Marc Levoy

Aligning a burst of short-exposure, high-ISO shots using the Casio EX-F1

burst at 60fps

2010 Marc Levo

Aligning a burst of short-exposure, high-ISO shots using the Casio EX-F1

Aligning on a foreground object using the Casio EX-F1

Aligning on a foreground object using the Casio EX-F1

© 2010 Marc Levoy

© 2010 Marc Levov

© 2010 Marc Levo

© 2010 Marc Levoy

allfocus

2010 Marc Levo

Removing foreground objects by translating the camera

- match histograms
- median filter

Stanford Multi-Camera Array [Wilburn SIGGRAPH 2005]

• 640 × 480 pixels × 30 fps × 128 cameras

- synchronized timing
- continuous streaming
- flexible arrangement

Synthetic aperture photography

Example using 45 cameras [Vaish CVPR 2004]

Removing camera shake (again)

• deconvolve long-exposure (blurred) image, using short-exposure (noisy) image as prior [Yuan SIGGRAPH 2007]

long exposure (blurry)

short exposure (dark)

same, scaled up (noisy)

joint deconvolution

Film-like Photography with bits

Computational Photography

Computational Camera

Smart Light

Digital ⊇hotography

Image processing applied to captured images to produce better images.

Examples:
Interpolation, Filtering,
Enhancement, Dynamic
Range Compression,
Color Management,
Morphing, Hole Filling,
Artistic Image Effects,
Image Compression,
Watermarking.

Computational Processing

Processing of a set of captured images to create new images.

Examples: Mosaicing, Matting, Super-Resolution, Multi-Exposure HDR, Light Field from Mutiple View, Structure from Motion, Shape from X.

Computational Imaging/Optics

Capture of optically coded images and computational decoding to produce new images.

Examples: Coded Aperture, Optical Tomography, Diaphanography, SA Microscopy, Integral Imaging, Assorted Pixels, Catadioptric Imaging,

Computational Sensor

Detectors that combine sensing and processing to create smart pixels.

Examples: Artificial Retina, Retinex Sensors, Adaptive Dynamic Range Sensors, Edge Detect Chips, Focus of Expansion Chips, Motion Sensors.

Computational Illumination

Adapting and Controlling Illumination to Create revealing image

Examples: Flash/no flash, Lighting domes, Multi-flash for depth edges, Dual Photos, Polynomial texture Maps, 4D light source

Holographic Imaging.

Light field photography [Ng SIGGRAPH 2005]

Prototype camera

Contax medium format camera

Adaptive Optics microlens array

Kodak 16-megapixel sensor

125µ square-sided microlenses

 $4000 \times 4000 \text{ pixels} \div 292 \times 292 \text{ lenses} = 14 \times 14 \text{ pixels per lens}$

Digital refocusing

Refocusing portraits

(movie is available at http://refocusimaging.com)

Application to sports photography

Application to sports photography

Application to sports photography

Photography:

Computational Photography

Computational Camera

Smart Light

Image processing applied to captured to create new mages to produce better images. images.

Examples: Interpolation, Filtering, Enhancement, Dynamic Range Compression, Color Management. Morphing, Hole Filling, Artistic Image Effects, Image Compression, Watermarking.

Computational Processing

Processing of a set of captured images

Examples: Mosaicing, Matting, Super-Resolution, Multi-Exposure HDR, Light Field from Mutiple View, Structure from Motion. Shape from X.

Computational Imaging/Optics

Capture of optically coded images and computational decoding to produce new images.

Examples: Coded Aperture, Optical Tomography, Diaphanography, SA Microscopy, Integral Imaging, Assorted Pixels. Catadioptric Imaging, Holographic Imaging. Computational Sensor

Detectors that combine sensing and processing to create smart pixels.

Examples: Artificial Retina, Retinex Sensors, Adaptive Dynamic Range Sensors, Edge Detect Chips, Focus of Expansion Chips, Motion Sensors.

Computational Illumination

Adapting and Controlling Illumination to Create revealing image

Examples: Flash/no flash. Lighting domes, Multi-flash for depth edges, Dual Photos. Polynomial texture Maps, 4D light source

Coded-exposure photography [Raskar SIGGRAPH 2006]

continuous shutter

Coded-exposure photography [Raskar SIGGRAPH 2006]

continuous shutter

fluttered shutter

Film-like Photography with bits

Computational Photography

Computational Camera

Smart Light

Digital ⊇hotography

Image processing applied to captured images to produce better images.

Examples:
Interpolation, Filtering,
Enhancement, Dynamic
Range Compression,
Color Management,
Morphing, Hole Filling,
Artistic Image Effects,
Image Compression,
Watermarking.

Computational Processing

Processing of a set of captured images to create new images.

Examples: Mosaicing, Matting, Super-Resolution, Multi-Exposure HDR, Light Field from Mutiple View, Structure from Motion, Shape from X.

Computational Imaging/Optics

Capture of optically coded images and computational decoding to produce new images.

Examples: Coded Aperture, Optical Tomography, Diaphanography, SA Microscopy, Integral Imaging, Assorted Pixels, Catadioptric Imaging, Holographic Imaging.

Detectors that combine sensing and processing to create smart pixels.

Computational

Sensor

Examples: Artificial Retina, Retinex Sensors, Adaptive Dynamic Range Sensors, Edge Detect Chips, Focus of Expansion Chips, Motion Sensors.

Computational Illumination

Adapting and Controlling Illumination to Create revealing image

Examples: Flash/no flash, Lighting domes, Multi-flash for depth edges, Dual Photos, Polynomial texture Maps, 4D light source

Flash-noflash photography [Agrawal SIGGRAPH 2005]

• compute ambient + flash – features in sum that don't appear in ambient alone (as determined from image gradients) (except where ambient image is nearly black)

Large online photo collections

- Facebook
 - –3 billion photos
- Flickr
 - −9 billion photos
- Google Library Project
 - -50 million books \times 300 pages = 15 billion images
- Google Earth
- Google StreetView Project
 - -formerly the Stanford CityBlock Project

Scene completion using millions of photographs [Hays & Efros SIGGRAPH 2007]

- search for matches from a <u>large</u> database
- Find least visible seams using graph-cut algorithm
- blend gradients & integrate to create image

Scene completion using millions of photographs [Hays & Efros SIGGRAPH 2007]

What's wrong with this picture?

- many of these techniques require modifying the camera
 - -coded-exposure
- some of these techniques could use help from the camera
 - -metering for HDR
- none of these ideas are finding their way into consumer cameras...

Why are traditional camera makers not embracing computational photography?

(soapbox mode ON)

- the camera industry is secretive
 - no flow of workers between companies and universities
 - few publications or open source standards
- camera companies sell hardware, not software
 - many are not comfortable with Internet ecosystems
- some computational techniques are still not robust
 - partly because researchers can't test them in the field

(soapbox mode OFF)

Stanford Camera 2.0 Project

Programmable cameras

Canon 5D Mark II

- → SLR camera SDKs
 - treats camera as black box
- → scriptable cameras
 - Kodak DC2XX
 - HP PhotoSmart CXX
 - Canon Hack Development Kit (CHDK) & Magic Lantern
 - still treats metering, focusing, post-processing as black boxes
- Elphel
 - runs Linux
 - limited power & extensibility
- → machine vision cameras
 - like Elphel, these are not a complete photographic camera

Unretouched pictures from Nokia N95 (5 megapixels, Zeiss lens, auto-focus)

The Stanford Frankencamera(s)

[Adams SIGGRAPH 2010]

Frankencamera F2

Nokia N900 "F"

- ♦ facilitate research in experimental computational photography
- ♦ for students in computational photography courses worldwide
- proving ground for plugins and apps for future cameras

What should an open-source camera do?

- ♦ handheld and self-powered
 - not tethered to a laptop in a backpack

Example app: re-photography (courtesy of Fredo Durand)

What should an open-source camera do?

- handheld and self-powered
 - not tethered to a laptop in a backpack
- ♦ a photographer's camera
 - SLR-quality sensor and lenses
 - LCD viewfinder with multi-touch screen
- ♦ ability to manipulate sensor, lens, and camera settings
 - with synchronization, so we know settings for each frame
 - no interruption of video stream, even if settings changes
- fully programmable
 - register/instruction-level access to all hardware at usec granularity
 - access to raw pixels (before demosaicing or compression)
 - easy to program

(continued)

- enough memory to store a burst in the camera
- enough computing power to process a burst quickly using algorithms from the computational photography literature
- connectivity
 - wired to desktop
 - wireless to Internet
 - peer-to-peer (to other cameras)
- physical extensibility
 - multiple flash units, GPS
 - filters, masks, microlens arrays, at aperture or field planes
 - additional user interface widgets
- roadmap that includes existing or feasible commercial products

Frankencamera architecture

- image sensor is stateless and inaccessible
- → instead, a pipeline converts requests into frames
- * a request includes all settings (exposure, ISO, zoom, focus, white balance, resolution, region of interest, flash) for one frame
- ♦ a returned frame contains an image, some statistics (histogram, sharpness map), and the settings used to capture that frame

2010 Marc Levox

Imaging processor

- demosaicking, white balancing, tone mapping, denoising, sharpening, resizing, gamma correction, compression, etc.
- may or may not be implemented using fixed-function hardware
- must be capable of producing
 - a raw sensor image
 - an image suitable for display on a live viewfinder

Application processor

- ♦ general-purpose CPU
- ◆ auto-focusing, auto-exposure, white balance determination
- synchronization of flash and other devices
- computational photography applications

Two reference implementations

Frankencamera F2

- off-the shelf parts
- open-source Linux platform
- interchangeable SLR-quality lenses
- currently building SLR-sized sensor

Nokia N900 "F"

- also runs Linux (partly open source)
- retail hardware + our software stack
- more I/O devices (GPS, radio, etc.)
- runs the same applications

Sensors for the F2

Micron MT9001

- 5 megapixel
- cell phone quality
- \$150

Cypress LUPA 4000

- \$1500
- DSLR quality
- arbitrary ROIs and non-destructive readout

Why do we need a new camera API?

- ♦ cell phone makers implement only <u>full-auto</u> camera apps
- ♦ so existing APIs are either:
 - Minimal: no API control over any settings (iPhone)
 - *Incomplete*: API allows control over many settings, but no implementation actually supports more than the minimum (Symbian CCamera)
 - Poorly Abstracted the camera is presented as either a:
 - *still camera*: only one image capture request can be active at once; frame rate limited to 1/(processing time)
 - *video camera*: full frame rate, but no way to know when a parameter change takes effect, and no way to make sure a parameter set gets applied to the right number of frames

Frankencamera software stack

- ♦ what is the right API?
 - choosing the right level of abstraction of the hardware
 - compiling to a heterogeneous computing platform
 - facilitating hardware experiments (LEGO camera)
- ◆ standard C++, cross-compiled for device, loaded using ssh, debugged using gdb, etc.
- → principle of least surprise

Example #1: capture an HDR stack

- Shot describes all parameters used to capture a Frame
- → Sensor transforms shots into frames
- multiple captures in progress at once to maximize frame rate (but programmer must keep the pipeline full)

```
Sensor sensor;
Shot low, med, high;
low.exposure = 1/80.;
med.exposure = 1/20.;
high.exposure = 1/5.;
sensor.capture(low);
sensor.capture(med);
sensor.capture(high);
Frame frames[3];
frames[0] = sensor.getFrame();
frames[1] = sensor.getFrame();
frames[2] = sensor.getFrame();
fused = mergeHDR(frames);
```

Application

Ex #2: strobing flash-noflash

- shots can be grouped into bursts, which makes their acquisition atomic, and as fast as possible
- a device Action can be slaved to a shot, then scheduled at a given time during the exposure
- shots and bursts can be streamed continuously

```
Sensor sensor;
Flash flash;
vector<Shot> burst(2);
burst[0].exposure = 1/200.;
burst[1].exposure = 1/30.;
Flash::FireAction fire(&flash);
fire.time = burst[0].exposure/2;
burst[0].actions.insert(fire);
sensor.stream(burst);
while (1) {
  Frame flashFrame =
    sensor.getFrame();
  Frame noflashFrame =
    sensor.getFrame();
```

Ex #3: basic auto-exposure

- Sensor sensor;
 Shot viewfinder:
- uses imaging processor to generate histograms
- updates shot exposure based on histogram and exposure data for latest received frame
- frame always tagged with exposure, etc, settings used for its capture

```
Shot viewfinder;
viewfinder.exposure = 1/200.;
viewfinder.histogram.regions =
viewfinder.histogram.region[0]
  Rect(0,0,640,480)
sensor.stream(viewfinder);
while (1) {
  Frame f = sensor.getFrame();
  if (f.histogram.valid) {
    viewfinder.exposure =
      autoExp(f.exposure,
              f.histogram);
    sensor.stream(viewfinder);
```


- cycles through three different exposure times at 40fps
- * moving 3-frame window merged to HDR and tone mapped
- * similar to [Kang 2003] and Stanford CityBlock Project

- cycles through three different exposure times at 40fps
- moving 3-frame window merged to HDR and tone mapped
- → similar to [Kang 2003] and Stanford CityBlock Project

- segmentation by looking for too-bright or too-dark pixels
- simple, global tone mapping curve
- all done with lookup tables

single exposure

3-exposure HDR

- cycles through three different exposure times at 40fps
- moving 3-frame window merged to HDR and tone mapped
- runs on both Frankencamera F2 and Nokia N900 F

Application #2: dual flash units

- Canon 430EX (smaller flash) strobed continuously
- Canon 580EX (larger flash)
 fired once at end of exposure

Application #3: lucky imaging

- 3-axis gyroscope on N900
- burst of 1/2-sec exposures
- save image if little motion

- future: deconvolve using IMU trace as initial guess of kernel
- → also: deconvolve from multiple lucky images

Rethinking the user interface

- → controlling the camera while shooting
- → Did I capture enough information?
- editing and sharing

Long-term roadmap

- ♦ distribution to researchers and students
 - courseware + Frankencameras/N900s
 - bootstrap open-source community

- ♦ distribution to hobbyists, 3rd party developers
 - probably only N900s or equiv.
 - plugins and apps

openSourceCamera.org

- wish list for makers of camera hardware
 - per-frame resolution switching at video rate
 - fast path into GPU texture memory
 - hardware feature detector

http://graphics.stanford.edu/projects/camera-2.0/