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The future of digital photography

+ the megapixel wars are over (and it’s about time)

+ computational photography is the next battleground
in the camera industry (it’s already starting)




Premise: available computing power in
cameras 1s rising faster than megapixels
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[0 Avg megapixels in new cameras, CAGR = 1.2
O NVIDIA GTX texture fill rate, CAGR =1.8
(CAGR for Moore’s law = 1.5)

+ this “headroom” permits more computation per pixel,
or more frames per second, or less custom hardware




The future of digital photography

+ the megapixel wars are over (long overdue)

+ computational photography 1s the next battleground
in the camera industry (it’s already starting)

+ how will these features appear to consumers?
e standard and invisible

e standard and visible (and disable-able)

e aftermarket plugins and apps for your camera




The future of digital photography

+ the megapixel wars are over (long overdue)

+ computational photography is the next battleground
in the camera industry (it’s already starting)

+ how will these features appear to consumers?

e standard and invisible
e standard and visible (and disable-able)

e aftermarket plugins and apps for your camera

+ traditional camera makers won't get it right
e they'll bury it on page 120 of the manual (like Scene Modes)

e the mobile industry will get it right (indie developers will help)

© Marc Levoy




2)




e \\\\\\\\“\ e

W\ .
. .__'_\ 3 \\ <, -’ <
YRR (2 ‘{ r‘:, o




_—

—

\




Video explanation of SynthCam

If you're a first-time user of SynthCam, start with this video. It explains
what SynthCam does and how to use it. If the video below doesn't play
correctly on this web page, or if you want to view it at full resolution, you

can find it at http://www.youtube.com/watch?v=b0zLgCF42Vk. Note that

the video is based on version 1.0; the user interface has changed slightly
since then.

Explanation of SynthCam app

-

o= Watch later | YouffB) £ 2

Multi-point focusing in SynthCam Version 2.0

This additional video explains how to use the multi-point focusing
capabilities of Version 2.0, and how to use them to create a tilt-shift
photograph that makes the world look like a miniature model. If the video

doesn't play or if EOU want to see it at full resolution, go to
http://www.youtube.com/watch?v=S1tLoFVI6a8.

Multi-point focusing in SynthCam Version 2.0

;
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Computational

Camera

Smart Light

Image processing
applied to captured
images to produce
better images.

Examples:
Interpolation, Filtering,
Enhancement, Dynamig
Range Compression,
Color Management,
Morphing, Hole Filling,
Artistic Image Effects,
Image Compression,
Watermarking.

Processing of a set
of captured images
to create new
images.

Examples:
Mosaicing, Matting,
Super-Resolution,
Multi-Exposure HDR,
Light Field from
Mutiple View,
Structure from Motion
Shape from X.

Capture of optically
coded images and
computational
decoding to produce
new images.

Examples:

Coded Aperture,
Optical Tomography,
Diaphanography,

SA Microscopy,
Integral Imaging,
Assorted Pixels,
Catadioptric Imaging,
Holographic Imaging.

Detectors that
combine sensing
and processing to
create smart
pixels.

Examples:

Artificial Retina,
Retinex Sensors,
Adaptive Dynamic
Range Sensors,
Edge Detect Chips,
Focus of Expansion
Chips, Motion
Sensors.

Adapting and
Controlling
lllumination to
Create revealing
image

Examples:
Flash/no flash,
Lighting domes,
Multi-flash

for depth edges,
Dual Photos,
Polynomial texture
Maps, 4D light
source

[Nayar, Tumblin]




Content-aware 1mage resizing
[Avidan SIGGRAPH 2007]

insert pixels along seams th
in order, would yield the original 1mage




Content-aware 1mage resizing
[Avidan SIGGRAPH 2007]

remove pixels along lowest-energy seams,
ordered using dynamic programming

* {0 compress:

e to expand:  insert pix¢q.
in order, i

R, 5
N

e application to
object removal

e extendable to video




Computational

Camera

Smart Light

Image processing
applied to captured
images to produce
better images.

Examples:
Interpolation, Filtering,
Enhancement, Dynamig
Range Compression,
Color Management,
Morphing, Hole Filling,
Artistic Image Effects,
Image Compression,
Watermarking.

Processing of a set
of captured images
to create new
images.

Examples:
Mosaicing, Matting,
Super-Resolution,
Multi-Exposure HDR,
Light Field from
Mutiple View,
Structure from Motion
Shape from X.

Capture of optically
coded images and
computational
decoding to produce
new images.

Examples:

Coded Aperture,
Optical Tomography,
Diaphanography,

SA Microscopy,
Integral Imaging,
Assorted Pixels,
Catadioptric Imaging,
Holographic Imaging.

Detectors that
combine sensing
and processing to
create smart
pixels.

Examples:

Artificial Retina,
Retinex Sensors,
Adaptive Dynamic
Range Sensors,
Edge Detect Chips,
Focus of Expansion
Chips, Motion
Sensors.

Adapting and
Controlling
lllumination to
Create revealing
image

Examples:
Flash/no flash,
Lighting domes,
Multi-flash

for depth edges,
Dual Photos,
Polynomial texture
Maps, 4D light
source

[Nayar, Tumblin]




High dynamic range (HDR) imaging

Too dark




High dynamic range (HDR) 1imaging

Too bright




High dynamic range (HDR) imaging
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worked well, but...

Tone mapped combination
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...this one looks
washed out;
tone mapping is
still hard to do

no cameras automatically
take HDR pictures
(How much to bracket?)




Aligning a burst of short-exposure, high-ISO
shots using the Casio EX-F1
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Aligning a burst of short-exposure, high-ISO
shots using the Casio EX-F1

burst
at 60fps




Aligning a burst of short-exposure, high-ISO
shots using the Casio EX-F1

burst
at 60fps
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SynthCam,
align & average
~30 frames

SNR increases as
sqrt(# of frames)
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IF WE SHALL SUPPOSE THAT AMERICAN
SLAVERY IS ONE OF THOSE OFFENSES
WHICH IN THE PROVIDENCE OF GOD MUST
NEEDS COME BUT WHICH HAVING CON-
[INUED THROUGH HIS APPOINTED TIME HE
NOW WILLS TO REMOVE AND THAT HE
GIVES TO BOTH NORTH AND SOUTH THIS
IERRIBLE WAR AS THE WOE DUE TO THOSE BY
WHOM THE OFFENSE CAME SHALL WE DIS-
CERN THEREIN ANY DEPARTURE FROM
THOSE DIVINE ATTRIBUTES WHICH THE
BELIEVERS IN A LIVING GOD ALWAYS ASCRIBE
TO HIM.FONDLY DO WE HOPE ~ FERVENTLY
DO WE PRAY - THAT THIS MIGHTY SCOURGE
OF WAR MAY SPEEDILY PASS AWAY - YET IF
GOD WILLS THAT IT CONTINUE UNTIL ALL
THE WEALTH PILED BY THE BONDSMAN'S
WO HUNDRED AND FIFTY YEARS OF UN-
REQUITED TOIL SHALL BE SUNK AND
UNTIL EVERY DROP OF BLOOD DRAWN WITH
HE LASH SHALL BE PAID BY ANOTHER
DRAWN WITH THE SWORD AS WAS SAID THREE
THOUSAND YEARS AGO SO STILL IT MUST
BE SAID "THE JUDGMENTS OF THE LORD
ARE TRUE AND RIGHTEOUS ALTOGETHER:
WITH MALICE TOWARD NONE WITH CHARITY
FOR ALL WITH FIRMNESS IN THE RIGHT AS
GOD GIVES US TO SEE THE RIGHT LET US
STRIVE ON TO FINISH THE WORK WE ARE IN
TO BIND UP THE NATION'S WOUNDS TO CARE
FOR HIM WHO SHALL HAVE BORNE THE BAT-
TLE AND FOR HIS WIDOW AND HIS ORPHA
TO DO ALL WHICH MAY ACHIEVE AND CHER

ISH A JUST AND LASTING PEACE AMONG S8 =

RSELVES AND WITH ALL NATIONS -




Removing foreground objects
by translating the camera

e align the shots
* match histograms
 apply median filter




Computational

Camera

Smart Light

Image processing
applied to captured
images to produce
better images.

Examples:
Interpolation, Filtering,
Enhancement, Dynamig
Range Compression,
Color Management,
Morphing, Hole Filling,
Artistic Image Effects,
Image Compression,
Watermarking.

Processing of a set
of captured images
to create new
images.

Examples:
Mosaicing, Matting,
Super-Resolution,
Multi-Exposure HDR,
Light Field from
Mutiple View,
Structure from Motion
Shape from X.

Capture of optically
coded images and
computational
decoding to produce
new images.

Examples:

Coded Aperture,
Optical Tomography,
Diaphanography,

SA Microscopy,
Integral Imaging,
Assorted Pixels,
Catadioptric Imaging,
Holographic Imaging.

Detectors that
combine sensing
and processing to
create smart
pixels.

Examples:

Artificial Retina,
Retinex Sensors,
Adaptive Dynamic
Range Sensors,
Edge Detect Chips,
Focus of Expansion
Chips, Motion
Sensors.

Adapting and
Controlling
lllumination to
Create revealing
image

Examples:
Flash/no flash,
Lighting domes,
Multi-flash

for depth edges,
Dual Photos,
Polynomial texture
Maps, 4D light
source

[Nayar, Tumblin]




Stanford Multi-Camera Array

[Wilburn SIGGRAPH 2005]

* 640 x 480 pixels X * synchronized timing
30 tps x 128 cameras e continuous streaming

» flexible arrangement
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Synthetic aperture photography




Example using 45 cameras
[Vaish CVPR 2004]




(movie is available at http://graphics.stanford.edu/projects/array)




Light field photography using a
handheld plenoptic camera

Ren Ng, Marc Levoy, Mathieu Brédif,
Gene Duval, Mark Horowitz and Pat Hanrahan

(Proc. SIGGRAPH 2005
and TR 2005-02)




Light field photography

[Ng SIGGRAPH 2005]

Subject

Main lens

Main lens

Photosensor

Microlens
array

V

Photosensor




Prototype camera

Contax medium format camera
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Adaptive Optics microlens array 125 square-sided microlenses

4000 x 4000 pixels ~ 292 x 292 lenses = 1[4 %X 14 pixels per lens




Typical image captured by camera (show h
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Digital refocusing




Example of digital refocusing




Example of digital refocusing
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Example of digital refocusing




Example of digital refocusing




Example of digital refocusing




Refocusing portraits

(movie is available at http://refocusimaging.com)




Application to sports photography




Application to sports photography




Application to sports photography
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Smart Light

Image processing
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images to produce
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to create new
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coded images and
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decoding to produce
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Coded Aperture,
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Catadioptric Imaging,
Holographic Imaging.

Detectors that
combine sensing
and processing to
create smart
pixels.

Examples:

Artificial Retina,
Retinex Sensors,
Adaptive Dynamic
Range Sensors,
Edge Detect Chips,
Focus of Expansion
Chips, Motion
Sensors.

Adapting and
Controlling
lllumination to
Create revealing
image

Examples:
Flash/no flash,
Lighting domes,
Multi-flash

for depth edges,
Dual Photos,
Polynomial texture
Maps, 4D light
source

[Nayat| Tumblin]




Flash-noflash photography

[Agrawal SIGGRAPH 2005]

e compute ambient + flash — features in sum that don’t appear in
ambient alone (as determined from 1image gradients) (except
where ambient 1mage 1s nearly black)




What’s wrong with this picture?

* many of these techniques require modifying
the camera

—digital refocusing

* some of these techniques could use help
from the camera

—metering for HDR

* none of these 1deas are finding their way
Into consumer cameras...




Why have traditional camera makers been so
slow to embrace computational photography?

(soapbox mode ON)

e the camera industry 1s secretive

— no flow of workers between companies and universities
— few publications, no open source software community

e camera companies sell hardware, not software
— many are not comfortable with Internet ecosystems

* some computational techniques are still not robust
— partly because researchers can’t test them 1n the field

(soapbox mode OFF)




Camera 2.0

Marc Levoy

Computer Science Department

Stanford University
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Marc Levoy
<A NVIDIA
L GO« )8[6

2

invent

Computer Science Department

S ONY I Stanford University

- A

TEXAS g
INSTRUMENTS |




The Stanford Frankencameras

Frankencamera F2 Nokia N900 “F”

+ facilitate research in experimental computational photography
+ for students in computational photography courses worldwide

e proving ground for plugins and apps for future cameras
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Frankencamera architecture
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Frankencamera software: the FCAM API

Sensor sensor;
Flash flash;
vector<Shot> burst(2);

burst[0].exposure = 1/200.;
pigEsSEE e oS EEe Sk /E3im

Flash::FireAction fire(&flash) ;
fire.time = burst[0].exposure/2;
burst[0] .actions.insert(fire);

sensor.stream(burst) ;

while (1) {
Frame flashFrame =
sensor.getFrame() ;
Frame noflashFrame =
sensor.getFrame() ;
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Demonstration applications

Canon 430EX (smaller flash)

strobed continuously

Canon 580EX (larger flash)

ﬁred once at end Of exposure
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Short-term roadmap

+ distribution to hobbynsts, 3rd party developers
e probably only N900s or equiv.
¢ plugins and apps
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Short-term roadmap

+ distribution to hobbyists, 3" party developers
e probably only N900s or equiv.
¢ plugins and apps

+ distribution to researchers and students
e Frankencamera F3 + N900s + courseware

= bootstrap open-source community
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Unretouched pictures from Nokia
(5 megapixels, Zeiss lens, auto-focus)
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Sensors for our Frankencameras

O

Micron MT9001

® 5 megapixel

® cell phone quality
® $150

1 i

(1 ARAMRTIOE RRE A

Cypress LUPA 4000
* $1500

® DSLR quality

® arbitrary ROIs and

non-destructive readout




64

Short-term roadmap

+ distribution to hobbyists, 3" party developers
e probably only N900s or equiv.
e plugins and apps

+ distribution to researchers and students
e courseware + Frankencameras/IN900s

° bootstrap open-source community

+ wish list for makers of camera hardware
e per-frame resolution switching at video rate
e fast path into GPU texture memory

e hardware feature detector

hardware
architects

=]
software
developers

©201T0Marc Levoy




LLong-term prospects

+ 1gh-speed burst-mode photography

e all still cameras should capture at (up to) 500 fps

e capture while aiming the camera - no shutter half-press

e frameless photography - ROIs, MOIs (“M” = Moment)

Time-Constrained Photography

Samuel W. Hasinoff ' Kiriakos N. Kutulakos *

'MIT CSAIL

Abstract

Capruring multiple photos at different focus settings is a
powerful approach for reducing optical blur, but how many
photos should we capture within a fived time budger? We
develop a framework to analyze optimal capture strate-
gies balancing the tradeoff berween defocus and sensor
noise. incorporating uncertainty in resolving scene depth.
We derive analytic formulas for restoration ernor and use
Monte Carlo intexration over depth to derive opiimal cap-
ture strategies for different camera designs, wnder a wide
range of photographic scenarios. We also derive a new up.
prer bound on how well spatial frequencies can be preserved
over the depth of field. Our results show that by captur-
ing the optimal number of photos, a standard camera can
achieve performance at the level of more complex compu-
tational cameras, in all but the most demanding of cases.
We also show hat compurasional cameras, althowgh specif-
ically designed to improve one-shot performance, gencrally
bencfit from capturing mudtiple photos as well.

L. Introduction

Rocent years have scen many proposals for tightly integrat-
ing sensing, optics and computation in order to extend the
capabilitics of the traditional camera. Already. numerous
“computational camera” designs exist for capturing pbotos
with reduced motion blur (30, 20]. post-capture refocus-
ing capabilities [17. 33

(DOF) (4.11.23.17,
in many respects, they all adhere to the principle of one-
shot capture: the camera records a single image with a DOF
constrained by the oplics and an exposure time constrained
by the avilable time budget (or by pixel saturation).

In this paper we show that oee-shot capture is usually nor
optimal for extended-DOF photography, i.e.. it does not
produce o well-focused image with the highest signal-to-
noise ratio (SNR) for a desired DOF and time budget
Moreover, we show that this result applics 0 standard and
computational cameras [4, 23, 17, 19] alike: image qual-
ity in both cases can often be improved by capluring many
shots within a given time budget. rather than just one.

Our analysis is based on a key insight illustrated in
Fig. 1: by specading the time bodget acrass several “under-
exposed” shots with different focus scttings we can oblain
reduced worst-cas blur. at the expense of higher sensoe
noise. In pasticular, read noise leads to a penalty for cach
photo we capture, but Poissan-distributed photon noise does
not penalize maltiple shots. Since photon soise dominates

Frédo Durand’  William T. Freeman

* University of Toronto

- 7T 4 e TT 0 e T
Figure 1. The timse-slice advastage for a desired DOF and time
budget T'. One-shot capeure gives the brightest image. but depehs
far from the less’ DOF (red rectangle) are blurred significamly. A
standard focal stack “spass” the desired DOF: pleeas aec exposed
Jess but every depth is effectively blur-free in one of them. In this
way. the smmber of shots acts as a balancing factor between under-
exposure and woest<ase blur. When photoa soise dominates, the
optimal-SNR capbare strasegy tits even further 10 the right

read noise under normal photographic conditions, the over-
all SNR usually tips in favor of sphitting the time budget. We
call this the time-slice advantage. By contrast, single-shot
photography is only optimal for very limited tinse budgets,
i.e.. when read noise becomes significant. or for cameras
with high per-shot overhead

In this paper we provide a detailed study of the time-slice
advantage and use it for optimal time constrained photogra-
phy—creating an all-in-focus image with the highest SNR
for a given camera design, time budget, target DOF. and av-
erage sceme brightness. Working from finst principics, we
formulate all-in-focus photography as a frequency-based
restoration problem that takes noisy and optically-blusred
photos as input. and outputs a single, all-in-focus image for
the target DOF. This leads to three basic questions:

+ camera-specific optimal time allocation: given &
camera’s noise model and optical transfer function
[29). how should we allocate the time budget 1o maxi-
mize the expected SNR of the all-in-focus image?

 optics-independent performance bound: what is the
maximum attainable expected SNR for a given sensor
across all possible optical transfer functions”

* camera performance characterization: how do the
existing extended-DOF camera designs compare in
terms of their attainable expected SNR. and how do
they fare against the traditional camera?

Our answer to these questions can be viewed as comple-
menting and generalizing several lines of recent work

Closest 1o our work, Hasinoff and Kutulakos [10] studied
a related problem in extended-DOF photography: minimiz-
ing the time it takes 10 capture a given DOF while maintain-
ing ideal exposare, Their work considers multiple photos,
but it ignores the effect of noise and uses a basic view of

Noise-Optimal Capture for High Dynamic Range Photography

Samuel W, Hasinoff

Frédo Durand
Massachusetts Institute of T¢

William T. Freeman

&)
Computer Science and Artificial Intelligence Laboratory

Abstract

Taking mudtiple exposwres is a well-established approach
both for capturing high dynamic range (HDR) scenes and
for noise reduction. But what is the optimal set of photos
1o capiure? The typical approach to HDR caprure uses a
set of photos with geometrically-spaced exposure times. at
a fixed 15O setting (typically 1SO 100 or 200). By contrast,
we show that the capture sequence with optimal worst-case
performance. in general, uses much higher and variable
18O settings, and spends longer capturing the dark parts of
the scene. Based on a detailed model of noise, we show that
optimal caprure can be formulated as a mixed integer pro-
gramming problem. Compared to typical HDR captire, our
method lets us achieve higher worst-case SNR in the same
capture time (for some cameras, up 10 19413 improvement
in the darkest regions). or much faster capture for the same
minimum acceptable level of SNR. Our exg s demon-
strate this advantage for both real and synthetic scemes.

1. Introduction

Taking multiple exposures is an effective solution 10 ex-
tend dynamic range and reduce boise in photographs. How-
ever, it raises a basic question: what should the set of expo-
sures be? Most users rely on a geometric progression where
the exposure times are spaced by factoes of 2 or 4 with the
number of images set 10 cover the range. The camera sensi-
tivity (ISO) is usually fixed to the nominal value (typically
100 01 200) to minimize poise. Given that poise is the main
factor that limits dynamic range in the dark range of val-
ues, it is critical 1o understand how noise can be minimized
in high dynamic range (HDR) imaging. In this paper, we
undertake 4 systematic study of noise and reconstruction in
HDR imaging and compute the optimal exposure sequence
as a function of camera and scene characteristics.

We present a model that predicts signal-to-noise ratio at
all intensity levels and allows us o optimize the set of ex-
posures to minimize worst-case SNR given a time budget,
0 10 achicve a given minimum SNR in the fastest time. To
do this, we use a detailed model of camera noise that takes
inlo account photon noise, as well as additive noise before
and after the 1SO gain, This allows us to optimize all pa-

rameters of an exposure sequence, and we show that this
reduces 1o solving a mixed integer programming problem.
In particular, we show that. contrary to suggested practice
(€8, [°]). using high ISO values is desirable and can enable
significant gains in signal-to-noise ratio.

The most important feature of our noise model is its ex-
plicit decomposition of additive noise into pre- and post-
amplifier sources (Fig. 1), which constitutes the basis for
the high 1SO advantage. The same model has been used
in several unpublished studics characterizing the noise per-
formance of digital SLR cameras [/, 1), supported by ex-
tensive empirical validation. Although all the components
in our model are well-established. previous treatments of
noise in the vision literature | ] do not model the de-
pendence of noise on ISO setting (i.e.. sensor gain).

To the best of our knowledge. varying the ISO setting
has pot previously been exploited to optimize SNR for high
dynamic range capture. However, in the much simpler coa-
text of single-shot photography, the expose 20 the right tech-
nigue [, ] coasiders the ISO sctting 10 optimize SNR.
This technigue advocates using the lowest 1SO setting pos-
sible. but increasing ISO when the exposure time is tightly
constrained. Another related idea is the dual-amplificr sen-
sor proposed by Martinec. which would capture expasures
at1SO 100 and 1600 simultancously and then combine them
10 extend dynamic range [ ). Our method can be thought
of as formalizing these ideas, generalizing them to a multi-
shot setting, and showing how to opimize the caplure se-
quence for a given camera and scene.

Most previous work in HDR imaging bas focused on
calibrating the response curve of the sensor [+, ), merg-
ing the input images [ 1, '], and tone mapping the merged
HDR result |17, /). Surprisingly little attention, however,
has been paid 1o the capture strategy itself, which is the fo-
cus of this paper. One notable exception is a method that
computes the optimal set of exposure times 1o reduce quan-
tization in the merged HDR result [ 1], This works by ef-
fectively dithering the exposure levels, but assumes that ex-
posure times can be coatrolled arbitrarily, and does not in-
corporate a detailed model of noise. Another recent method
[1) showed bow to minimize the number of photos span-
ning a given dynamic range, but takes a simplified geomet-
ric view of dynamic range, without any noise model

Denoising vs. Deblurring: HDR Imaging Techniques Using Moving Cameras

Li Zhang Alok Deshpande Xin Chen
University of Wisconsin, Madison ACM
Abstract Specifically, we compare the following HDR imaging choices:

New cameras such as the Canon EOS 7D and Pointgrey
Grasshopper have 14-bit sensors. We present a theoretical
amalysix and a procical approach that exploit these new cam-
eras with high-resolution quantization for reliable HDR imag-
ing from @ mening camera. Specifically, we propose a inified

b, that allows ux to ty com-
pare two HDR imaging alternatives: (1) deblurring a single
urry but clean image and (2) denoising a sequence of sharp
bwet moisy images. By analyzing the uncertainty in the estima-
tion of the HDR image. we conclude that multi-image denois-
ing offers a more reliable solution, Our theoretical analyzis
assumes translational motion and spatially-invariant blur. For
practice. we propose an approack that combines optical fiow
and image denotsing algorithms for HDR imaging. which en-
ables capturing sharp HDR images wsing handheld cameras
for complex scenes with large depth variarion. Quantitathe
evalwation on both synthetic and real images ix presented,

1. Introduction

High Dynamic Range (HDR) Imaging has been an active
topic in vision and graphics in the last decade. Debevec and
Malik 1) P widely-used apy h ban
multiphe photos with different exposure to create an HDR im-
age. This approsch is well suited to carly digital cameras,
which often have 8-but Analog-to-Digial coaversion (ADXC),
Today. many consumer SLRs or machine vision cameras have
higher resolution ADC; for example. Canoa EOS 7D and Point
Girey Grasshopper have 14-bit ADC, and many others have at
feast 12:bit ADC. In this paper, we present 2 effective ap-
peouch that exploits new cameras with high-resotution ADC
10 widen the operating range of HDR imaging.

The inconvenient requirement of {1 /] is that the camera
must remain still during the image acquisition and the scene
st be static. The requirements of a still camera and scene
are due 1o the need for loag-cxposure shots 1o record dark im-
age regions accurately. Any motion of the camera or of the
scene will introdoce blur in the image. This requirement will
not be simply relieved by using a 14-bit sensor, bocasse the
lower bits of each pixel only encode the noise accurately

To captire a good HDR image in a flexible setting, without
assuming stationary scenes o cameras, we have to either accu-
rulate more photoas esing a loag exposure and laser remove
the motion blur, or accumulate less photons using 4 short ex-
posure and later remove the noise. Since the second approach
takes fess tme, within a fixed time budget, we can take more
images for better noise reduction. In this paper, we present
a peobabilistic formalation that allows s to compare which
of denossing and deblurring can produce bester HDR images.

© Deblurring a singhe blurry but chean image captured with
a Jong exposure time A and a bow 1SO setting;

o Denoising a scries of sharp but noisy images. cach cap-

wred with a high 1SO, together captured within time A
We mote that a high-resobution ADC is exsential for both the
procedures 10 sucoced. in particular for denoising, because the
noise must be digitized accurately to be averaged out among
the multiple frames. Our contrbutsons incbade:

o We propose a novel probability fornwmlation tht unifies
both siagle-image deblurmng and multi-image desoising
These two problems arc formulated differently in the lit-
erature; comparing theis solutioas analytcally is difficult

 Using varistional inference with motion s hidden vari-
ables, we derive the approximate uncertainty in the ex-
timation of HDR images aaalytically for both imaging
procedures, Our conclusion s that descising i & betier
approsch for HDR imaging.

o To put our analytical insight to practical use, we present
4 novel upprosch that combines cxisting optical flow and
image denoising tochniques for HDR imaging. This ap-
proach enables capeuring sharp HDR images using hand-
beld cameras for comples scencs with large depth varia-
tion. Such scenes cause spatially-varying motion blur for
handheld cameras, which cannot be handled by the latest
HDR imaging method [ ]

Large depth-of-ficld. high dynamic range. and small mo-
tice blur are three of the major goubs of computational camera
research, Our work shows that, if a camera has high-resolution
ADC. high frame ratc, and high ISO. it is possible 10 achicve
all the three goals through compulation without resorting to
specialized optical designs. This feature makes our approach
suitable to micro-cameras with simple optics, such as those
found in celiphones or used in performing surgeries.

2. Related Work

Our work is related W the recent rescarch combining mult-
ple images of different exposure to produce a sharp and clean
inage. Yean eral. | ] and Tico and Vehvilainen [ ] com-
bined a noisy and blurry image pair. and Agrawal ef al. ]
combined multiple blurry image with differcnt exposure; all
this rescarch is mited to spatially-isvariant blur,

One approach 1o address this lmitabon is 1o wse video
denoising techniques on multiple noisy images. In particu-
lar, our work is inspired by Boracchi and Foi [ | who com-
bined a state-of-the-ant video denoising method, VBM3ID [ ],
and based alignment for malti-frame denoising

They compared debluring 2 poisy and blarry image pair and
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LLong-term prospects

+ high-speed burst-mode photography
e all still cameras should capture at 500 fps

e capture while aiming the camera - no shutter half-press

e frameless photography - ROIs, MOIs (“M” = Moment)

+ computational videography & cinematography
e stereo, view interpolation, free-viewpoint video

e stabilization

©2010Marc Levoy




3D wvideo stabilization

[Agarwala 2011]

© Marc Levoy
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LLong-term prospects

+ high-speed burst-mode photography
e all still cameras should capture at 500 fps

e capture while aiming the camera - no shutter half-press

e frameless photography - ROIs, MOIs (“M” = Moment)

+ computational videography & cinematography
e stereo, view interpolation, free-viewpoint video
e stabilization
 extending computational photography to video
- HDR, EDoF plenoptic refocusing
- retargeting (a.k.a. content-aware image resizing)

- perspective manipulation

©2010Marc Levoy




Image warps for Artistic Perspective Manipulation
[Carroll SIGGRAPH 2010]

IJII ‘tﬂ..;

"N

Input ' ' Result: Sharply converging lines )
— — D

Result: Weakly converging lines
e

+ specity vanishing points and line constraints manually
4+ 1mage 1s warped to optimaﬂy satisfy all constraints

+ resulting image 1s not a correct linear perspective
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LLong-term prospects

+ high-speed burst-mode photography
e all still cameras should capture at 500 fps

e capture while aiming the camera - no shutter half-press

e frameless photography - ROIs, MOlIs (“M” = Moment)

+ computational videography & cinematography
e stereo, view interpolation, free-viewpoint video
e stabilization
 extending computational photography to video
- HDR, EDoF plenoptic refocusing
- retargeting (a.k.a. content-aware image resizing)
- perspective manipulation

e style transfer, non-photorealistic video

©2010Marc Levoy
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The HDR

(Trey Ratchft, http://www.stuckincustoms.com)




The HDR “look”




73

The HDR “look”

(Trey Ratchtf, http://www.stuckincustoms.com
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Requests - J Image Sensor

L. Configure
Application
Processor

Expose

Readout

Sensor sensor;
Shot low, med, high;

Imaging Processor
Images and 9ing

Statistics Image Statistics
Processing Collection

4

N

low.exposure = 1/80.;
med.exposure 187940
high.exposure = 1/5.;

;sensor.capture(low);
sensor.capture(med) ;
sensor.capture(high);

Frame frames[3];

frames[0] sensor.getFrame() ;
frames[1l] = sensor.getFrame();
frames[2] = sensor.getFrame();

fused = mergeHDR(frames) ;

http://graphics.stanford.edu/projects/camera-2.0/




