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Abstract

Recent progress in acquiring shape from range data permits the ac-
quisition of seamless million-polygon meshes from physical mod-
els. In this paper, we present an algorithm and system for convert-
ing dense irregular polygon meshes of arbitrary topology into ten-
sor product B-spline surface patches with accompanying displace-
ment maps. This choice of representation yields a coarse but effi-
cient model suitable for animation and a fine but more expensive
model suitable for rendering.

The first step in our process consists of interactively painting
patch boundaries over a rendering of the mesh. In many applica-
tions, interactive placement of patch boundaries is considered part
of the creative process and is not amenable to automation. The next
step is gridded resampling of each boundedsection of the mesh. Our
resampling algorithm lays a grid of springs across the polygon mesh,
then iterates between relaxing this grid and subdividing it. This grid
provides a parameterization for the mesh section, which is initially
unparameterized. Finally, we fit a tensor product B-spline surface to
the grid. We also output a displacement map for each mesh section,
which represents the error between our fitted surface and the spring
grid. These displacement maps are images; hence this representa-
tion facilitates the use of image processing operators for manipulat-
ing the geometric detail of an object. They are also compatible with
modern photo-realistic rendering systems.

Our resampling and fitting steps are fast enough to surface a mil-
lion polygon mesh in under 10 minutes - important for an interactive
system.
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1 Introduction
Advances in range image acquisition and integration allow us to
compute geometrical models from complex physical models [9, 36].
The output of these technologies is a dense, seamless (i.e. mani-
fold) irregular polygon mesh of arbitrary topology. For example,
the model in figure 12, generated from 75 scans of an action figure
using a Cyberware laser range scanner, contains 350,000 polygons.
Models like this offer new opportunities to modelers and animators
in the CAD and entertainment industries.

Dense polygon meshes are an adequate representation for some
applications. Several commercial animation houses employ poly-
gon meshes almost exclusively. However, for reasons of compact-
ness, control, manufacturability, or appearance, many users prefer
smooth surface representations. To satisfy these users, techniques
are needed for fitting surfaces to dense meshes of arbitrary topology.

A notable property of these new acquisition techniques is their
ability to capture fine surface detail. Whatever fitting technique we
employ should strive to retain this fine detail. Surprisingly, a unified
surface representation may not be the best approach. First, the heavy
machinery of most smooth surface representations (for example B-
splines) makes them an inefficient way to represent fine geometric
detail. Second and perhaps more important, although geometric de-
tail is useful at the rendering stage of an animation pipeline, it may
not be of interest to either the modeler or the animator. Moreover,
its presence may degrade the time or memory performance of the
modeling system. For these reasons, we believe it is advantageous
to separate the representations of coarse geometry and fine surface
detail.

Within this framework, we may choose from among many rep-
resentations for these two components. For representing coarse
geometry, modelers in the entertainment and CAD industry have
long used NURBS [14] and in particular uniform tensor product B-
splines. Such models typically consist of control meshes stitched
together to the level of continuity desired for an application. In or-
der to address their needs we have chosen uniform tensor product
B-splines as our surface representation.

For representing surface detail, we propose using displacement
maps. Each pixel in such a map gives an offset from a point on
a fitted surface to a point on a gridded resampling of the original
polygon mesh. The principal advantageof this representation is that
displacement maps are essentially images. As such, they can be
processed, retouched, compressed, and otherwise manipulated us-
ing simple image processing tools. Some of the effects shown in
figures 11 and 13 were achieved using Adobe Photoshop, a com-
mercial photo retouching program.

1.1 System overview

Figure 1 shows the pipeline for our system. We start with a con-
nected polygon mesh. The additional connectivity information of-
fered by a polygonal representation is used to advantage at every
stage of our pipeline. Our steps are as follows:
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Figure 1. Our surface fitting pipeline: the input to our system is a dense irregular polygon mesh. First, boundary curves for the desired spline patches
are painted on the surface of the unparameterized model. The output of this step is a set of boundedmesh regions. We call each such region a polygonal
patch. We next perform an automated resampling of this polygonal patch to form a regular grid that lies on the surface of the polygonal patch. We
call this regular grid a spring mesh. Finally, we fit surfaces to the spring mesh and output both a B-spline surface representation and a set of associated
displacement maps to capture the fine detail.

1. Our first step is an interactive boundary curve painting phase
wherein a modeler defines the boundaries of a number of
patches. This is accomplished with tools that allow the paint-
ing of curves directly on the surface of the unparameterized
polygonal model. Here, the connectivity of the polygon mesh
allows the use of local graph search algorithms to make curve
painting operations rapid. This property is useful when a
modeler wishes to experiment with different boundary curve
configurations for the same model. Each region of the mesh
that a B-spline surface must be fit to is called a polygonal
patch. Since patch boundaries have been placed for artistic
reasons, polygonal patches are not constrained to be height
fields. Our only assumptions about them are that each is a
rectangularly parameterizable piece of the surface that has no
holes.

2. In the next step we generate a gridded resampling for each
polygonal patch. This is accomplished by an automatic
coarse-to-fine resampling of the patch, producing a regular
grid that is constrained to lie on the polygonal surface. We
call this grid the spring mesh. Its purpose is to establish
a parameterization for the unparameterized surface. Our
resampling algorithm is a combination of relaxation and
subdivision steps that iteratively refine the spring mesh at a
given resolution to obtain a better sampling of the underlying
polygonal patch. This refinement is explicitly directed by
distortion metrics relevant to the spline fit. The output of this
step is a fine gridding of each polygonal patch in the model.

3. We now use standard gridded data fitting techniques to fit a B-
spline surface to the spring mesh corresponding to each polyg-
onal patch. The output of this step is a set of B-spline patches
that represent the coarse geometry of the polygonal model. To
represent fine detail, we also compute a displacement map for
each patch as a gridded resampling of the difference between
the spring mesh and the B-spline surface. This regular sam-
pling can conveniently be represented as a vector (rgb) image
which stores a 3-valued displacement at each sample location.
Each of these displacements represents a perturbation in the
local coordinate frame of the spline surface. This image repre-
sentation lends itself to a variety of interesting image process-
ing operations such as compositing, painting, edge detection
and compression. An issue in our technique, or in any tech-
nique for fitting multiple patches to data is ensuring continu-
ity between the patches. We use a combination of knot line
matching and a stitching post-process which together give us
G1 continuity everywhere. This solution is widely used in the
entertainment industry.

The remainder of this paper is organized as follows. Section
2 reviews relevant previous work. Section 3 describes our tech-
niques for painting boundary curves over polygonal meshes. Sec-
tion 4 presents our coarse-to-fine, polygonal patch resampling algo-
rithm and the surface fitting process. Section 5 describes our strat-
egy for extracting displacement maps and some interesting applica-
tions thereof. Section 6, discusses techniques for dealing with con-
tinuity across patch boundaries. Finally, section 7 concludes by dis-
cussing future work.

Throughout this paper we will draw on examples from the enter-
tainment industry. However, our techniques are generally applica-
ble.

2 Previous work
There is a large literature on surface fitting techniques in the CAD,
computer vision and approximation theory fields. We focus here on
only those techniques from these areas that use dense (scanned) data
of arbitrary topology to produce smooth surfaces. We can classify
such surface fitting techniques as manual, semi-automated and au-
tomated.

2.1 Manual techniques
Manual approachescan be divided into two categories. The first cat-
egory includes all methods for digitizing a physical model directly.
For example, using a touch probe, one can acquire only data that is
relevant to the final surface model. Catalogues of computer mod-
els published by ViewPoint Data Labs and the work of Pixar’s ani-
mation group [24, 28] exemplify these methods. These methods in-
volve human intervention throughout the data acquisition process
and are hence time-consuming, especially if the model is complex
or the data set required is large. In contrast, our pipeline employs
automatic data acquisition methods [9].

The second category uses scanned data as a template to assist
in the model construction process. Point cloud or triangulated data
is typically imported into a conventional modeling system. A user
then manually projects isolated points to this data as a means of de-
termining the locations of control points (or edit points [15]) for
smooth parametric surfaces. These methods require less human in-
tervention than those in the first category but complex models may
still require a lot of labour.

2.2 Semi-automated techniques
The approaches in this category take point cloud data sets as input.
Examples include commercial systems such as Imageware’s Sur-
facer [33], Delcam’s CopyCAD, and some research systems [20,
22]. These approaches begin by identifying a subset of points that



are to be approximated. Parameterization of data points is usu-
ally accomplished by a user-guided process such as projection of
the points to a manually constructed base plane or surface. A con-
strained, non-linear least squares problem is then solved on this sub-
set of the point cloud to obtain a B-spline surface for the specified
region. While point cloud techniques are widely applicable, they
fail to exploit topological information already present in the input
data. As demonstrated by Curless et al [9] and Turk et al [36], us-
ing this additional information can significantly improve quality of
reconstruction. In the context of our surface fitting algorithm, work-
ing with connectedpolygonal representations has also facilitated the
development of an automatic parameterization scheme.

2.3 Automated surface fitting techniques
Eck et al [12] describe a method for fitting irregular meshes with a
number of automatically placed bicubic Bezier patches. For the pa-
rameterization step, a piecewise linear approximation to harmonic
maps [11] is used, and the number of patches is adjusted to achieve
fitting tolerances. While this method produces high quality surfaces,
it includes a number of expensive optimization steps, making it too
slow for an interactive system. Further, their technique does not sep-
arate fine geometric detail from coarse geometry. Particularly for
very dense meshes, we find this separation both useful and prefer-
able, as already explained. We compare some other aspects of the
parameterization scheme of Eck et al [11] with ours in section 4.10.

We briefly mention some techniques [29, 31] that use hierarchi-
cal algorithms to fit parametric surfaces to scanned data sets. While
these approaches work well for regular data, they do not address
the problem of unparameterized, irregular polygon meshes. Finally,
Sclaroff et al [32] demonstrate the use of displacement maps in
the context of interpolating data with generalized implicit surfaces.
However, this method also works only on regular data sets.

2.4 Relevant work in texture mapping
A key aspect of our method is an automatic parameterization
scheme for irregular polygon meshes. As such, there are techniques
in the texture mapping literature that address similar problems, no-
tably the work of Bennis et al [6] and that of Maillot et al [21]. Both
of these papers present schemes to re-parameterize surfaces for tex-
ture mapping. These algorithms work well with regular data sets,
such as discretized splines. However, they can exhibit objection-
able parametric distortions in general [11]. Pedersen [25] describes
a method for texture mapping (and hence parameterizing) implicit
surfaces. While the methods work well with implicit surfaces, they
rely on smoothness properties of the surface and require the evalua-
tion of global surface derivatives. Irregular polygon meshes in gen-
eral, are neither smooth nor conducive to the evaluation of global
surface derivatives, as discussed by Welch et al [38].

3 Boundary curve specification
Our surface fitting pipeline starts with the user interactively seg-
menting the polygonal model into a number of regions that are to
be approximated by spline patches. A patch is specified by inter-
actively painting its boundary curves. This operation should be
fast and provide intuitive feedback to the user. We have found that
curves that lie on the surface of the model are easier to specify and
manipulate than unconstrained spacecurves. A polygonal (discrete)
geodesic [23] is one possible representation. Unfortunately, this is
expensive both to compute and to maintain. We instead represent
patch boundaries as sampled geodesics. We call these face-point
curves. The steps for painting a boundary curve are shown and de-
scribed in figure 3.

This painting process yields a piecewise linear face-point curve
on the surface through a sequence of picked vertices. We now
smooth this face-point curve on the surface using a fitted B-spline
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Figure 2. A glossary of common terms we use through this paper.
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Figure 3. Boundary curve painting. The user picks a sequence of
points with a mouse on a 2-D projection (rendering) of the polygon
mesh. The program automatically associates the nearest vertex of
the mesh to each of these points. Two such vertices (v1 and v2) are
shown in (a). Between each successivepair of such vertices from (a),
we compute the projection on the surface, of a straight line connect-
ing the two. This is performed in two steps. First, the greedy graph
path between these two vertices is computed as shown in (b) (as a
thick polyline). This path is then sampled into a face-point curve and
smoothed into a straight line as illustrated in (c). Filled circles rep-
resent individual face points. The face-point curve now represents a
sampling of the projection on the polygonal surface, of a line from
v1 to v2.

curve [30]. The resolution of the B-spline for the fit is set interac-
tively by the user. The smoothing operation consists of attracting
a face-point curve, which is constrained to lie on the surface of the
polygon mesh, to a curve in space. This is a fast technique for ob-
taining the projection of a space curve to a sampled curve on the
polygon mesh. Figure 4 sums up this procedure.

This smoothing process yields a face-point curve that is a sam-
pled representation of the projection of a spline curve on the polygon
mesh; the spline determines how much the constructed face-point
curve will be smoothed. Since both the painting and smoothing pro-
cesses use local graph search techniques, they are efficient.

Figures 12b and 12c show two examples of complex sets of
curves painted on the object of figure 12a. Each configuration has
about 220 curves and took about 2 hours to specify; most of that time
was spent actively painting the curves. The next section describes
how tensor product B-spline surfaces are fit to each of the delineated
patches.
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Figure 4. Sliding a face-point curvealong a polygonmesh to smooth
it. (a) shows an attractor Ar on the space curve and an attractee Ae
on the polygon mesh. (b) shows a 1-D version and the rest position
of Ae.

4 Fitting B-spline patches
4.1 B-spline fitting theory: overview
In general, parametric curve and surface fitting to irregular data
can be formulated as a non-linear least squares problem [10, 30].
The following discussion assumes uniform cubic (order 4) tensor
product B-spline surfaces but holds for other kinds of parametric
surfaces as well. The equation for a B-spline surface ~P (u; v) can
be written as:

~P (u; v) =
Pn

i=0

Pm

j=0
Xi;jBi(u)Bj(v) (1)

where ~P is a point in 3-space, u and v are parameter values in the
two parametric directions of the surface, Xi;j’s are control points
of the B-spline surface and the Bi are fourth order B-spline basis
functions [4] .

Given some set of points f ~pl(x, y, z), l=1 ...Mg to which a B-
spline surface must be fit, we must first make an association of pa-
rameter values u and v to each of these data points. Given these
associations, an over-constrained system of linear equations can be
generated from (1), where theXi;j are unknowns. Each linear equa-
tion in this system corresponds to a point ~pl satisfying (1). There-
fore, a least squares solution [19] can be performed to obtain the
Xi;j .

In our application, we are not given parameter associations for
our data points. Because the B-spline basis functions are non-linear
in the parameter values, the problem of parametric surface fitting re-
quires a non-linear optimization process. This is usually solved by
starting with an initial guess for each pl’s u and v values and subse-
quently iterating between refining these values and re-fitting the sur-
face with the improved parameter associations until some tolerance
of fit is achieved [30]. This process is expensivesince it requires cal-
culation of spline surface partial derivatives at each of the original
data points at every step of the iteration. Furthermore, the conver-
gence of this iteration (and hence the quality of the fitted spline sur-
face) is strongly dependant on the initial parameter values. If these
are not good, convergence can be slow and in general is not guaran-
teed [18, 20].

4.2 Our surface fitting strategy
To avoid the complexity and cost of the non-linear optimization pro-
cess described above, we first resample each irregular polygonal
patch into a regular grid of points (the spring mesh). We can then ap-
ply gridded data fitting techniques [29] to this spring mesh to obtain
a spline approximation. The advantage of these techniques is that
they avoid the parameter re-estimation step described earlier and are

hence significantly faster. It is worth pointing out that in our appli-
cation there is nothing sacrosanct about the original mesh vertices.
In particular, the vertices produced by our range image integration
method [9] are at a scale that approaches the noise-limited resolution
of our sensor. As long as the grid is a reasonably careful sampling
of the polygon mesh, surface quality is not compromised. We use a
piecewise linear reconstruction for this sampling, which we find to
be satisfactory. If in other applications it is required to fit the origi-
nal mesh vertices, this can be accomplished by first parameterizing
the mesh vertices using our regular spring grid and then running the
standard non-linear optimization process described above.

The following subsections describe how to perform a gridded re-
sampling of each polygonal patch and discuss some of its advan-
tages and drawbacks. For the discussion, patches are assumed to be
four sided; cylindrical, toroidal and triangular patches are all mod-
eled as special cases of four-sided patches.

4.3 Gridded resampling of each polygonal patch
Each polygonal patch can be an arbitrary four-sided region of the
polygon mesh. The only constraints are that it must be rectangu-
larly parameterizable and must not have holes. These are reasonable
assumptions since the models input to our system are seamless or
can easily be made so by acquiring and integrating more scans and
by recent hole-filling techniques [9]. Our goal is to generate a uni-
form grid of points over the polygonal surface that samples the sur-
face well. Finite element literature [34] describes a number of tech-
niques for generating grids over smooth surfaces. Unfortunately,
these techniques rely on the existence of higher order global deriva-
tives (i.e. a smooth surface definition already exists). While it is
possible to make local approximations to surface curvature for irreg-
ular polygonal surfaces [37], there is no scheme to evaluate global
derivatives at arbitrary surface positions.

4.4 What is a good gridding of a surface?
Although we cannot utilize the finite element literature directly, it
offers useful insight on objective functions one might minimize to
produce different surface parameterizations.

Since each polygonal patch is resampled into a regular grid in or-
der to fit a smooth surface, it is important that the grid not lose any
geometric detail present in the original data. We have chosen three
criteria for our surface grids: (In the following, a grid line along ei-
ther direction is referred to as an iso-curve; the two directions are
called u and v.)

1) Arc length uniformity: the grid spacing along a particular iso-
curve should be uniform.

2) Aspect ratio uniformity: the grid spacing along a u iso-curve
should be the same as the grid spacing along a v iso-curve.

3) Parametric fairness: Every u and v iso-curve should be of the
minimum possible length given the first two criteria.

An obvious criterion we have omitted above is that iso-curves
should always lie within the polygonal patch they are supposed to
sample.

Our intuitions for the above criteria are based on sampling the-
ory. Since our triangulations come from real models that have been
sampled uniformly over their surfaces, our triangle meshes tend to
be uniformly dense across different parts of the polygonal model.
For a resampling of such a mesh to be faithful, it should give equal
importance to equal areas of the surface.

With this intuition in mind, the arc-length criterion accounts for
the fact that geometrically interesting detail is equally likely along
any given section of an iso-curve on the surface. The aspect-ratio
criterion captures the fact that detail is equally likely in either di-
rection of a gridding. Finally, the parametric fairness term, mini-
mizes “wiggles” along the spring iso-curves. This is important since



Figure 5. This figure explores the three sampling criteria on part of the right leg of the model in figure 12a. Each of the above images represents a
triangulated and smooth shaded spring mesh at a very low resolution. In each case, the number of spring points sampling the polygon mesh was kept the
same. The differences arise from their redistribution over the surface. The spring edges are shown in red. (a) shows what happens when the aspect ratio
criterion is left out. Notice how a lot of detail is captured in the vertical direction, but not in the horizontal. (b) shows the effect of leaving out the arc
length criterion. Notice how the kneecap looks slightly bloated and that detail above and around the knee region is missed. This is because few samples
were distributed over the knee resulting in a bad sampling of this region. (c) shows a missing fairness criterion. The iso-curves exhibit many “wiggles”.
Finally (d) shows the result when all three criteria are met. See figure 8a for the original model and 8e for a full resampling of the leg.

the spline surface follows the spring mesh closely. The fairness cri-
terion thus indirectly minimizes unnecessary wiggles in the spline
iso-curves. Note that this term bears some similarities to the idea of
fairness in the parametric interpolation literature [16].

4.5 A fast gridding algorithm
Our algorithm is a coarse-to-fine procedure that for each polygonal
patch, incrementally builds a successively refined sampling of the
patch into a spring mesh. At each subdivision level, the spring mesh
points included in the procedure are a subset of face points of the
polygonal patch. Here are the steps of the gridding algorithm:

1) Perform a seed fill of the patch. This restricts graph searches
to vertices of this patch only.

2) Compute an initial guess for the iso-curves using Dijkstra’s
shortest-path algorithm, with an appropriate aspect ratio for
this patch.

3) Refine the spring mesh using the arc length and fairness crite-
ria.

4) Subdivide the spring mesh.
5) Iterate between steps 3 and 4 until the number of spring mesh

points reaches a density close to that of the number of vertices
of the polygonal patch.

In our system, the user can stop the resampling at any stage to view
incremental results and fit a spline surface to the spring mesh points
at the current resolution. We consider some of these steps in detail
in the following subsections.

4.6 Initialization of iso-curves
To obtain an initial guess for each u and v iso-curve, we use Dijk-
stra’s single-source, single-destination, shortest-path algorithm [1]
to compute a path between corresponding pairs of points along op-
posing boundary curves. The initial number of iso-curves in each
direction are chosen to be proportional to the aspect ratio of the
patch. This is computed as the ratio of the longer of the two bound-
ary curves in either direction.

The starting spring mesh points are computed as intersections of
these initial iso-curves; the curves must intersect if the patch is rect-
angularly parameterizable. Dijkstra’s algorithm is O(n log(n)) in
the number of vertices to be searched. However, since the vertex set

is restricted to that of a single patch and we search for only a small
set of initial iso-curves, this procedure is rapid. Starting with a large
number of iso-curves is both slower and not guaranteed to produce
as good a final spring mesh as starting with a small number of iso-
curves and using a coarse-to-fine refinement. We return to this point
in section 4.10.

4.7 Refining the spring mesh: relaxation
The initial guess for the spring mesh, as obtained above, can be quite
poor. The next step in the algorithm is to refine the position of the
spring mesh points using a relaxation procedure. In our choice of the
number of spring mesh points to place along each boundary curve,
we have implemented criteria 2 (section 4.4): aspect ratio unifor-
mity. Subsequent subdivisions are all uniform. During our relax-
ation procedure, we apply the remaining two criteria of arc length
and fairness.

The relaxation procedure works as follows. Let Pup, Pdown,
Pleft and Pright represent the positions of the 4 neighboring spring
points in the u and v directions of the spring point P . The algorithm
computes a resultant force on each of these points and slides it along
the surface to a new position.

P

P

P
P

P

down

left

up

right

Figure 6. shows the neighbors of a face point P of the spring mesh.
The resultant force in a relaxation step is some linear combination of
these forces. See the text for details.

Minimizing arc length distortion along one of P ’s iso-curves
is achieved by moving P towards whichever neighbor (on the
same iso-curve) is farther away from it. Consider the two forces
Force(Pup, P ) and Force(Pdown, P ). We make the direction of the
larger of these two the direction of a new force Fud. The magnitude



ofFud is set to be the difference of the two magnitudes. We perform
a similar computation in the other direction (left-right) as well to get
a forceFlr . Let us denote the resultant of Flr andFud byFarc. This
resultant becomes one of the two terms in equation (2) below.

Fairness distortion is minimized by moving the point P to a po-
sition that minimizes the energy corresponding to the set of springs
consisting of P andP ’s immediate neighbors along both iso-curves.
This corresponds to computing a force Ffair equal to the resultant
of the forces acting on P by its four neighbors: Force(Pup, P ),
Force(Pdown, P ), Force(Pleft, P ) and Force(Pright, P ).

The point P is moved according to a force given by a weighted
sum of Ffair and Farc:

Fresult = � � Ffair + � � Farc (2)

The relaxation iteration starts with � = 0 and � = 1 and ends with
� = 1, � = 0. This strategy has proved to produce satisfactory
results.

Note that we have used Euclidean forces in the previous step, i.e.
forces that represent the vector joining two spring points. A relax-
ation step based on Euclidean forces alone is fast but not guaranteed
to generate good results in all cases. Figure 7a shows an example
where Euclidean forces alone fail to produce the desired effect.

In contrast to Euclidean forces, geodesic forces are forces along
the surface of the mesh. These would produce the correct motion
for the spring points in the above case. One approach to solving the
problem exemplified by Figure 7a, would be to use geodesic forces,
or approximations thereof, as substitutes for Euclidean forces in the
relaxation step. However this is an expensive proposition since the
fastest algorithm for point to point geodesics is O(n2) in the size of
the patch [7]. Even approximations to geodesics such as local graph
searches are O(n) and would be too expensive to perform at every
relaxation step.

A solution to the problem is motivated by figure 7b; create a new
spring point Pmid�point that lies on the surface halfway between
P1 and P2. This point generates new Euclidean forces acting on
the original points, moving them towards each other on the surface.
We call this process spring mesh subdivision.

4.8 Subdividing the spring mesh
Spring mesh subdivision is based on a graph search and refinement
algorithm. Given two spring pointsP1 and P2 our algorithm com-
putes a new face point P that is the mid-point of the two spring
points and that lies on the graph represented by the patch. The pro-
cedure is:

1.) Find the two closest vertices v1 and v2 on P1 and P2’s faces.
2.) Compute a breadth first graph path from v1 to v2. The mid-

point of this path serves as a first approximation to P ’s loca-
tion.

3.) Refine this location by letting the forces given by Force(P1,
P ) and Force(P2,P ) act onP , moving it to a new position on
the surface. This process is distinct from the relaxation pro-
cess. It is used only to obtain a better approximation for P .

Subdivision along boundary curves is based on a static resam-
pling of the face point curve representation; these points are never
moved during the relaxation and subdivision steps. We terminate
subdivision when the number of spring points increases to within a
certain range of the polygonal patch’s vertices.

4.9 B-spline fitting to gridded data
The techniques described above minimize parametric distortion in
the spring mesh. In particular, they enforce minimal distortion with
respect to aspect ratio and edge lengths while ensuring parametric

P1

P2

F
P1

P2

P

F

(a) (b) 

V

V
mid−point

Figure 7. shows a case where relaxation alone fails to move a spring
mesh point in the desired direction. In each case F represents the
force on P1 from its right neighbor and V represents the resulting di-
rection of motion. The desired motion of the point P1 is into the cav-
ity. In (a) just the opposite occurs; the points move apart. (b) shows
how this case is handled by subdividing the spring mesh along the
surface. See the text for details.

fairness. The resulting spring meshes have low area distortion as
well, as evidenced by the example shown in figure 5.

The final step in our algorithm is to perform an unconstrained,
gridded data fit of a B-spline surface to each spring mesh. As
pointed out earlier, fitting to a good resampling of the data does not
compromise surface quality. We refer the reader to [29] for an ex-
cellent tutorial on the subject of gridded data fitting. Figure 8 sum-
marizes the sampling and fitting processes on a cylindrical patch of
the model from figure 12.

4.10 Discussion

Our two-step approach of gridding and then fitting has several de-
sirable characteristics. First, it is fast. This can be understood as
follows. At each level of subdivision, each spring mesh point must
traverse some fraction of the polygons as it relaxes. The cost of this
relaxation thus depends linearly on size of the polygon mesh. It ob-
viously also depends on the size of the spring mesh. If these two
were equal, as would occur if we immediately subdivided the spring
mesh to the finest level, then the cost of running the relaxation would
be O(n2). If, however, we employ the coarse-to-fine strategy de-
scribed in the foregoing sections, then at each subdivision level, four
times as many spring mesh points move as on the previous (coarser)
level, but they move on average half as far. Thus, the cost of relax-
ation at each subdivision level is linear in the number of spring mesh
points, and the total cost due to relaxation is O(n log n). This argu-
ment breaks down if we start with a large initial set of iso-curves.
Similar arguments apply to the cost of subdivision.

A second advantage of our overall strategy is that it allows a user
to pause the iteration at an intermediate stage and still obtain good
quality previews of the model. This is a useful property for an inter-
active system, specially when dealing with large meshes. In partic-
ular, subdivision to higher levels can be postponed until the model
designer is satisfied with a patch configuration.

A third advantage of our approach is that once the resampling is
done, the spline resolution can be changed interactively, since no
further parameter re-estimation is necessary. We have found this to
be a useful interactive tool for a modeler, specially when making the
tradeoff between explicitly represented geometry and displacement
mapped detail as explained in section 5.

As mentioned earlier, there are other schemes that may be used to
parameterize irregular polygon meshes. In particular, the harmonic
maps of Eck et al[11] produce parameterizations with low edge and
aspect ratio distortions. However, the scheme has two main draw-
backs for our purposes. First, it can cause excessive area distortions
in parameter space. Second, the algorithm employs an O(n2) itera-
tion to generate final parameter values for vertices of the mesh and
no usable intermediate parameterizations are produced. As pointed



Figure 8. The above represents a summary of our strategy for resampling a polygonal patch into a regular grid. (a) shows the original polygonal patch
(the right leg from the model in figure 12a. This particular patch is cylindrical and has over 25000 vertices. (b), (c), (d) and (e)show a triangulated and
smooth shaded reconstruction of the spring mesh at various stages of our re-sampling algorithm. We omit the lines from (e) to prevent clutter. (b) shows
the initial guess for u and v iso-curves (under 4 seconds). Notice that the guess is of a poor quality. (c) shows the mesh after the first relaxation step
(under 1 second). (d) shows the spring mesh at an intermediate stage, after a few relaxation and subdivision steps (under 3 seconds). (e) shows the final
spring mesh without the spring iso-curves. Notice how the fine detail on the leg was accurately captured by the resampled grid. This resampling took
23 seconds. All times are on a 250 Mhz Mips R4400 processor. (f) shows a spline fit that captures the coarse geometry of the patch. This surface has
27x36 control points. It took under 1 second to perform a gridded data fit to the spring mesh of (e).

out in the discussion above, we have found intermediate parameter-
izations useful in an interactive system.

Our fitting technique is capable of capturing both fine and coarse
geometry. However, we typically use it only to capture the coarse
geometry. Consider for example the polygonal patch from figure 8a.
We find that most of its coarse geometry has been captured by the
spline surface of figure 8e. Although the remaining surface detail
might be of little use to an animator, it is desirable to retain and use
this information as well, if only for rendering.

While there are a variety of multi-resolution techniques that can
be applied to capture these details in a unified surface representa-
tion [13, 15], for reasons discussed earlier, we represent the fine de-
tail in our models as displacement maps. In the next section we first
describe how to extract displacement maps from a polygonal patch
and then demonstrate some of the operations that are enabled by this
representation.

5 Capturing fine detail with displacement
maps

A displacement map perturbs the position of a surface based on a
displacement function defined over the surface [8]. Displacement
maps are usually applied during rendering and are available in a
number of commercial renderers. A typical formulation for a bivari-
ate parametric surface, such as a B-spline is: given a point P (u; v)
on the surface, a displacement map is a function d(u; v) giving a
perturbation of the point P in space. In general d can be a vector or
a scalar. In the first case, the new position of the point is P + ~d. In
the second case, the new position of the point is usually interpreted
as P + N̂d, where N̂ represents the surface normal at (u, v).

5.1 Vector displacement maps
In the context of our fitting system, the obvious displacement func-
tion relates points on the spline surface to points on triangles of the

: spring mesh point  
: iso−curve of spli ne surface
: piecewise linear reconstruction of  spring iso−curve
: normal to spline 

N̂

N̂

Figure 9. A vector displacement map over a curve. Displacement
vectors are shown from an iso-curve S of the spline surface to an iso-
curve P of the spring mesh. This map recreates the spring mesh (with
a bilinear reconstruction).

original polygon mesh. However, computing such a function re-
quires projecting perpendicularly from the spline surface to the orig-
inal unparameterized mesh - an expensive operation. Furthermore,
our fitting procedure is premised on the assumption that the spring
mesh is a faithful representation of the original mesh. Therefore, we
define a displacement function that relates points on the spline sur-
face to points on the parameterized spring mesh surface.

Even given this simplification, computing a displacement func-
tion using perpendicular projection is difficult. In particular, the
method may fail if the spring mesh curves sharply away from the
spline surface. We can avoid this difficulty by defining displace-
ments as offsets to vertices of the spring mesh from corresponding
points on the spline surface. Recall that there is a natural associ-
ation of the spring mesh points to parameter values: these are the
same parameters that were used for the surface fitting step. We thus
obtain a regular grid of displacement vectors at the resolution of the
spring mesh. These are represented in the local coordinate frame of
the spline surface. For applications that modify the underlying sur-
face (such as animation), this choice of coordinate frame allows the
displacements to move and deform relative to the surface. The dis-



placement function d(u; v) is then given by a reconstruction from
this grid of samples. We have used a bilinear filter for the images
shown in this paper.

Note that the displacement map is essentially a resampled error
function since it represents the difference of the positions of the
spring points from the spline surface.

Since the displacement map, as computed, is a regular grid of 3-
vectors, it can conveniently be represented as an rgb image. This
representation permits the use of a variety of image-processing op-
erations such as painting, compression, scaling and compositing to
manipulate fine surface detail. Figure 11 and Figure 13 explore
these and other games one can play with displacement maps.

5.2 Scalar displacement maps
While vector displacement maps are useful for a variety of effects,
some operations such as (displacement image) painting are more in-
tuitive on grayscale images. There are several methods of arriving
at a scalar displacement image. One method is to compute a nor-
mal offset from the spline surface to the spring mesh. However, as
discussed earlier, this method is both expensive and prone to non-
robustness in the presence of high curvature in the spring mesh.

Instead we have used two alternative formulations. The first
computes and stores at each sample location (or pixel) the magni-
tude of the corresponding vector displacement. In this case, mod-
ifying the scalar image scales the associated vector displacements
along their existing directions. A second alternative, stores at each
sample location the component of the displacement vector normal
to the spline surface. Modifying the scalar image therfore changes
only the normal component of the vector displacement.

Both of these last two options offer different interactions with
the displacement map. Figure 11 employs the third option - normal
component editing.

5.3 Bump maps
A bump map is defined as a function that performs perturbations on
the direction of the surface normal before using it in lighting calcu-
lations [5]. In general, a bump map is less expensive to render than
a displacement map since it does not change the geometry (and oc-
clusion properties) within a scene but instead changesonly the shad-
ing. Bump maps can achieve visual effects similar to displacement
maps except in situations where the cues provided by displaced ge-
ometry become evident such as along silhouette edges. We compute
and store bump maps using techniques very similar to those used
for displacement maps; at each sample location instead of storing
the displacement we store the normal of the corresponding spring
mesh point. Figures 13d and e show a comparison of a displace-
ment mapped spline and a bump mapped spline, both of which are
based on the same underlying spring mesh. Notice how, differences
are visible at the silhouette edges.

6 Continuity across patch boundaries
Thus far we have addressed the sampling and fitting issues con-
nected with a single polygonal patch. In the presence of multiple
patches, we are faced with the problem of keeping patches continu-
ous across shared boundaries and corners. If displacement maps are
used, it is essential to keep the displacement mapped spline surface
continuous.

The extent of inter-patch continuity desired in a multi-patch B-
spline (or more generally, NURBS) model depends on the domain
of application. For example, in the construction of the exterior of a
car body, curvature plots and reflection lines [14] are frequently used
to verify the quality of surfaces. In this context, even curvature con-
tinuous (C2) surfaces might be inadequate. Furthermore, workers in
the automotive industry often use trimmed NURBS and do not nec-
essarily match knot lines at shared patch boundaries during model

construction. Therefore it is not always possible to enforce math-
ematical continuity across patch boundaries. Instead, statistical or
visual continuity is enforced based on user specified tolerances for
position and normal deviation. These are either enforced as linear
constraints to the fitting process[2, 33], or they are achieved through
an iterative optimization process [22].

In the animation industry, by contrast, curvature continuity is
seldom required and tangent continuity (G1) usually suffices. To
achieve this the number of knots are usually forced to be the same
for patches sharing a boundary. This has several advantages. In the
first place, control point deformations are easily propagated across
patch boundaries. Secondly, there is minimal distortion at bound-
aries in the process of texture mapping. Finally, the process of
maintaining patch continuity during an animation becomes easier;
continuity is either made part of the model definition [24] or is re-
established on a frame by frame basis using a stitching post-process.

Our system can be adapted to either of the above paradigms (i.e.
either statistical or geometric continuity). Since our focus in this pa-
per is on the entertainment industry, we enforce geometrical conti-
nuity, and for this purpose we use a stitching post-process. Specif-
ically, we allow an animator to specify the level of continuity re-
quired for each boundary curve (C0 orG1). Unconstrained, gridded
data fitting to each patch leaves us with C�1 spline boundaries. We
use end-point interpolating, uniform, cubic B-splines. To maintain
mathematical continuity we constrain adjacent patches to have the
same number of control points along a shared boundary. Following
boundary conditions for these surfaces as defined by Barsky [3], C0

continuity across a shared boundary curve is obtained by averaging
end control points between adjacent patches. Alternatively, G1 con-
tinuity can be obtained by modifying the end control points such that
the tangent control points (last two rows) “line up” in a fixed ratio
over the length of the boundary.

Patch corners pose a harder problem. We refer the reader to [27]
for a detailed account of this problem. For the kinds of basis func-
tions we use, projecting the 4 corner control points of each of the
patches meeting at that corner to an average plane guarantees G1

continuity.
For the case of displacement mapped splines, continuity may be

defined on the basis of the reconstruction filter used for the displace-
ment maps. Recall that we generate these from the spring meshes
and that we use bilinear reconstruction. Displacement mapped
splines will therefore exactly recreate the spring mesh. Also adja-
cent patches can at most be position continuous with a bilinear re-
construction filter. Therefore, if the spring resolutions are the same
at a shared boundary of two patches, they will be continuous by
virtue of the reconstruction. However, spring mesh resolutions can
differ across shared boundaries. This can result in occasional T-joint
discontinuities. The problem is solved by averaging bordering rows
of displacement maps in adjacent patches. This ensures that there is
no cracking at patch boundaries.

Figure 12 shows a case study of the use of our system to fit spline
surfaces, with associated displacement maps, to a large and detailed
polygonal mesh of an action figure.

7 Conclusions and future work
In conclusion, we have presented fast techniques for fitting smooth
parametric surfaces, in particular tensor product B-splines, to dense,
irregular polygon meshes. A useful feature of our system is that it
allows incremental previewing of large patch configurations. This
feature is enabled by our coarse-to-fine gridded resampling scheme
and proves invaluable when modelers wish to experiment with dif-
ferent patch configurations of the same model. We also provide a
useful method for storing and manipulating fine surface detail in the
form of displacement map images. We have found that this repre-
sentation empowers users to manipulate geometry using tools out-
side our modeling system.



Our system has several limitations. First, becauseit relies on sur-
face walking strategies and mesh connectivity to resample polygo-
nal patches, it breaks down in the presence of holes in the polygon
mesh. However, new range image integration techniques include
methods for filling holes.

Another limitation is that B-spline surface patches, our choice to
represent coarse geometry, perform poorly for very complex sur-
faces such as draped cloth. B-splines have other disadvantages as
well, such as the inability to model triangular patches without ex-
cessive parametric distortion. Despite these limitations, B-splines
(and NURBS in general) are widely used in the modeling industry.
This has been our motivation for choosing this over other represen-
tations.

There are a number of fruitful directions for future research.
Straightforward extensions include developing tools to assist in
boundary curve painting and editing, improving robustness in the
presence of holes, adding further constraints to the the parameter-
ization process, allowing variable knot density at the fitting stage,
implementing other continuity solutions, and using adaptive spring
grids for sampling decimated meshes. An example of a boundary
painting tool is a “geometry-snapping” brush that attaches curves to
features as the user draws on the object. Examples of constraints to
the parameterization process include interactively placed curve and
point “attractors” within a patch.

An interesting application of the parameterization portion of our
system is the interactive texture mapping and texture placement [26]
for complex polygonal models. Related to this is the possibility
of applying procedural texture analysis/synthesis techniques [17] to
create synthetic displacement maps from real ones. Using our tech-
niques such maps can be applied to objects of arbitrary topology.
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Figure 10. Fig a.) shows a side view of a face point being pulledover
the surface. (b) and (c) show a top view of the two cases that arise
when P moves: it either intersects an edge or it intersects a vertex.

An operation we use often on face points is sliding them on the
surface. We call this procedure MovePointOnSurface. There are
a number of ways of implementing this on polygonal surfaces.
Turk [35] describesa scheme where points first leave the surface and
then are re-projected back. We use instead a scheme where points
never leave the surface but instead just slide along it. Our algo-
rithm projects the force on a face-point P to P’s plane. The point
P is moved along the surface, till it either meets an edge or a vertex.
In either case we determine the appropriate next triangle to move in
to using our adjacency structure (eg: a winged-edge representation).

Figure 11. This figure explores the possibility of multi-resolution
editing of geometry using multiple displacement map images. All
grayscale displacement images in this figure represent the normal
componentof their correspondingdisplacementmaps. Displacement
values are scaled such that a white pixel represents the maximum
displacement and black, the minimum displacement. (a) shows a B-
spline surface with 24x30 control points that has been fit to the patch
from figure 8a. (c) is its corresponding displacement image. (b)
showsa B-spline surface with 12x14control points that was also fit to
the same patch. Its displacement image is shown in (d). The combi-
nation of spline and displacement map in both cases reconstructs the
same surface (i.e. the original spring mesh of figure 8e). This surface
is shown in (f). We observe that (c) and (d) encodedifferent frequen-
cies in the original mesh. For example (d) encodes a lot of the coarse
geometry of the leg as part of the displacement image (for example
the knee), while (c) encodes only the fine geometric detail, such as
bumps and creases. As such, the two images allow editing of geom-
etry at different scales. For example, one can edit the geometry of the
knee using a simple paint program on (d). In this case, the resulting
edited displacement map is shown in (e) and the result of applying
this image to the spline of (b) gives us an armour plated knee that is
shown in (g). Operations such as these lead us to the issue of whether
multiple levels of displacement map can essentially provide a image
filter bank for geometry i.e. an alternative multi-resolution surface
representation based on images. Note however that the images from
(c) and (d) are offsets from different surfaces and the displacements
are in different directions, so they cannot be combined using simple
arithmetic operations.



Figure 12. Data fitting to a scanned model. (a) is the polygonalmodel (over 350,000polygons, 75 scans). (b) and (c) show two different sets of boundary
curves painted on the model. Each was specified interactively in under 2 hours. The patch boundaries for (d), (e), (f) and (g) are taken from (b). (d) is
a close up of the results of our gridded resampling algorithm at an intermediate stage. The spring mesh is reconstructed and rendered as triangles and
the spring edges are shown as red lines. The right half of the figure is the original polygon mesh. (e) shows u and v iso-curves for all the fitted and
stitched spline patches. (The control mesh resolution was chosen to be 8x8 for all the patches.) (f.) shows a split view of the B-spline surfaces smooth
shaded on the left with the polygon mesh on the right. A few interesting displacement maps are shown alongside their corresponding patches. (g) shows
a split view of the displacement mapped spline patches on the left with the polygon mesh on the right. Note that the fingers and toes of the model were
not patched. This is because insufficient data was acquired in the crevices of those regions. This can be easily remedied by using extra scans or hole
filling techniques [9]. The total number of patches for (b and d through g) were 104 (only the left half have been shown here). The gridding stage took
8 minutes and the gridded fitting with 8x8 control meshes per patch, took under 10 seconds for the entire set of 104 patches. All timings are on a 250
Mhz MIPS R4400 processor.



Figure 13. Games one can play with displacement maps: (a) shows a patch from the back of the model in 12a. The patch has over 25,000 vertices. We
obtained a spline fit (in 30 seconds) with a 15x20 control mesh, shown in (b) and a corresponding vector displacement map. The normal component of
the vector displacement map, is displayed as a grayscale image in (c). (d) and (e) show the correspondingdisplacement and bump mapped spline surface.
The differences between (d) and (e) are evident at the silhouette edges. The second row of images show a selection of image processing games on the
displacement map. (f) shows jpeg compression of the displacement image to a factor of 10 and (g) shows compression to a factor of 20. (h) represents a
scaling of the displacement image, to enhance bumps. (i) demonstrates a compositing operation, where an image with some words was alpha composited
with the displacement map. The result is an embossed effect for the lettering. Finally, the third row of images (j - l) show transferring of displacement
maps between different objects. (j) is a relatively small polygonal model of a wolf’s head (under 60,000 polygons). It was fit with 54 spline patches in
under 4 minutes. The splined model is shown in (k). (l) shows a close up view of a partially splined result, where we have mapped the displacement
map from (c) onto each of 4 spline patches around the eyes of the model.


