
Visualizing Application Behavior on Superscalar Processors

Chris Stolte, Robert Bosch, Pat Hanrahan, and Mendel Rosenblum
Computer Science Department

Stanford University

Abstract
The advent of superscalar processors with out-of-order execution
makes it increasingly difficult to determine how well an applica-
tion is utilizing the processor and how to adapt the application to
improve its performance. In this paper, we describe a visualiza-
tion system for the analysis of application behavior on superscalar
processors. Our system provides an overview-plus-detail display
of the application’s execution. A timeline view of pipeline per-
formance data shows the overall utilization of the pipeline, indi-
cating regions of poor instruction throughput. This information is
displayed using multiple time scales, enabling the user to drill
down from a high-level application overview to a focus region of
hundreds of cycles. This region of interest is displayed in detail
using an animated cycle-by-cycle view of the execution. This
view shows how instructions are reordered and executed and how
functional units are being utilized. Additional context views
correlate instructions in this detailed view with the relevant source
code for the application. This allows the user to discover the root
cause of the poor pipeline utilization and make changes to the
application to improve its performance.

This visualization system can be easily configured to display a
variety of processor models and configurations. We demonstrate
it for both the MXS and MMIX processor models.

Keywords: Computer systems visualization, visualization sys-
tems, superscalar processors.

1 INTRODUCTION
The processing power of microprocessors has undergone un-
precedented growth in the last decade [5]. Desktop computers
produced today outperform supercomputers developed ten years
ago. To achieve these performance enhancements, mainstream
microprocessors such as the Intel Pentium Pro [11] and the MIPS
R10000 [15] employ complex pipelines with out-of-order execu-
tion, speculation and rename registers.

The implementation techniques used by these processors are
intended to be invisible to the programmer. This is true from the
standpoint of correctness: application writers need not know the
details of the processor implementation to write code that exe-
cutes correctly. In order to write code that runs well, however,
programmers need an understanding of their applications’ inter-
actions with the processor pipeline. While optimizing compilers

aid in producing compiled code that can take advantage of these
powerful processors, they are unable to leverage semantic knowl-
edge about the application in performing their optimizations.
Changes made to the code structure of an application by the pro-
grammer can increase the instruction-level parallelism that a proc-
essor can exploit, resulting in increased performance.

However, because of the complexity of these processors, few
software developers understand the interactions between their
applications and the processor pipeline. The analysis of applica-
tion behavior on superscalar processors is complicated by several
factors:

• Having to look at the details. Many different events can
cause poor utilization of the processor pipeline: contention
for functional units, data dependencies between instructions,
and branching are examples. High-level statistics can indi-
cate that these hazards exist within an application, but they
cannot indicate when, where, or why these events are occur-
ring. Understanding specific hazards requires a detailed ex-
amination of pipeline behavior at the granularity of individ-
ual instructions.

• Having to know where to look. Modern processors can
execute hundreds of millions of instructions in a single sec-
ond. Therefore, it is not feasible to browse through either a
trace file or detailed visualization of an application’s entire
execution searching for areas of poor performance. High-
level performance overviews of the execution are required to
identify regions of interest before detailed visualizations can
be used for analysis.

• Having to have context. Most programmers think in terms
of source code, not in terms of individual instructions. In or-
der to modify their applications to enhance performance,
programmers need to be able to correlate instructions in the
pipeline with the application’s source code.

We have developed a visualization system that addresses all of
these issues. Our system consists of three displays: a timeline
view of pipeline performance statistics, an animated cycle-by-
cycle view of instructions in the pipeline, and a source code view
that maps instructions back to lines of code. These views com-
bine to provide an overview-plus-detail [13] representation of the
pipeline, enabling the effective analysis of applications. A pro-
grammer can utilize the timeline view to observe the time-varying
behavior of the pipeline and identify regions of execution where
events of interest (such as poor pipeline utilization) occur. The
detailed pipeline view can then be used to display and animate the
flow of instructions through the pipeline, providing an under-
standing of why the pipeline is stalling. Finally, the source code
view can be used to correlate the problematic instruction se-
quences with source code, where changes may be made to im-
prove application performance. In addition to program analysis,
this visualization system is also useful for several other tasks,
including compiler analysis, hardware design, and processor
simulator development.

The flexibility of our system enables us to visualize several
different processor models, as well as a variety of configurations
of a particular processor model. In this paper, we include visuali-
zations of the MXS [1] simulator and two configurations of the
MMIX [8] processor model. While our current focus is on the
study of processor pipelines, this system could be extended to
display other types of pipelines, such as manufacturing assembly
lines and graphics pipelines.

2 RELATED WORK
Although there are many systems available for high-level analysis
of application performance, there are few systems available for
this detailed visualization of application execution on superscalar
processors. Existing systems include DLXview [3], VMW [2],
BRAT [12], and the Intel Pentium Pro tutorial [11].

DLXview [3], an interactive pipeline simulator for the DLX
instruction set architecture [5], provides a visual, interactive envi-
ronment that explains the detailed workings of a pipelined proces-
sor. Performance evaluation is a secondary goal of their system:
their focus is on the pedagogical nature of visualization. For per-
formance analysis purposes, the pipeline displays of DLXview
provide too much detail without enough overall context.

The Visualization-based Microarchitecture Workbench
(VMW) [2] is a more complete system for the visualization of
superscalar processors. This system was developed with the dual
goals of aiding processor designers and providing support to soft-
ware developers trying to quantify application performance.
However, there are several disadvantages to the visualizations and
animation techniques used by the system. VMW provides very
limited high-level information on application performance, and it
is difficult to correlate this information with the detailed views.
Animation is used to depict cycle-by-cycle execution, but the
animation is not continuous – it consists of sequential snapshots of
processor state. While we initially used this approach, we found
this animation technique was both difficult to follow and detri-
mental to understanding the instruction flow.

During the development of the PowerPC, IBM used a simula-
tion tool called the Basic RISC Architecture Timer (BRAT) [12]
to study design trade-offs. BRAT provides a graphical interface
that allows the user to step through trace files, displaying the
processor state at each cycle. BRAT provides only the single,
detailed view of the processor state and does not utilize animation
in the visualization. Like VMW, this visualization is tightly inte-
grated with the simulator and thus not a general-purpose tool.

Intel distributes an animated tutorial [11] that illustrates the
techniques the Pentium Pro processor utilizes to improve per-
formance. Similar to DLXview, the pedagogical intent of this
tutorial has resulted in a different design than our system. The
tutorial provides a limited cycle-by-cycle view of the instructions
in the pipeline with explanatory annotations. No contextual per-
formance data or source code displays are provided.

3 BACKGROUND
To provide a context for our visualization, we begin by describing
the salient characteristics of superscalar processors that impact
application performance. We first introduce the major techniques
that superscalar processors use to improve performance, and then
explain the types of events that can cause a processor pipeline to
be underutilized.

Given a fixed instruction set architecture, a reasonable meas-
ure of a processor’s performance is the throughput – that is, the
number of instructions that complete execution and exit the pipe-
line in a given period of time. Modern microprocessors utilize
several techniques to improve their throughput:

• Pipelining. Pipelining overlaps the execution of multiple
instructions within a functional unit, much like an assembly
line overlaps the steps in the construction of a product. For
example, a single-stage floating point unit might require 60
cycles to complete execution of a single divide instruction.
If this functional unit were pipelined into six stages of 10 cy-
cles apiece, the unit would be able to process multiple divide
instructions at once (with each stage working on a particular
piece of the computation). While it would still require 60
cycles to compute a single divide, the pipelined functional
unit would produce a result every 10 cycles when performing
a series of divide instructions.

• Multiple Functional Units. Superscalar processors include
multiple functional units, such as arithmetic logic units and
floating-point units. This enables the processor to exploit in-
struction-level parallelism (ILP), executing several inde-
pendent instructions concurrently. However, some instruc-
tions cannot be executed in parallel because one of the in-
structions produces a result that is used by the other. These
instructions are termed dependent.

• Out-of-Order Execution. In order to improve functional
unit utilization, many superscalar processors execute instruc-
tions out of order. This allows a larger set of instructions to
be considered for execution, and thus exposes more ILP.
Out-of-order execution can improve throughput if the next
instruction to be sequentially executed cannot utilize any of
the currently available functional units or is dependent on
another instruction. Although instructions may be executed
out of order, they must graduate (exit the pipeline) in their
original program order to preserve sequential execution se-
mantics. The reordering of instructions is accomplished in
the reorder buffer, where completed instructions must wait
for all preceding instructions to graduate before they may
exit the pipeline.

• Speculation. Rather than halting execution when a branch
instruction is encountered until the branch condition is com-
puted, most processors will continue to fetch and execute in-
structions by predicting the result of the branch. If the proc-
essor speculates correctly, throughput is maintained and exe-
cution continues normally. Otherwise, the speculated in-
structions are squashed and their results are discarded.

Despite the use of these techniques, superscalar processors are
often unable to achieve maximum throughput. There are many
possible causes for underutilization of the pipeline.

When there are not enough functional units to exploit the ILP
available in a code sequence, instructions must wait for a unit to
become available before they can execute. These structural haz-
ards often occur in code that is biased towards a particular type of
instruction, such as floating-point instructions. The functional
unit for those instructions will be consistently full, and the other
units will often remain empty for lack of instructions. Conse-
quently, the throughput of the processor is limited to the through-
put of the critical functional unit alone.

Dependencies prevent instructions from executing in parallel.
Out-of-order execution enables the pipeline to continue execution
in the face of individual dependencies; however, if a code se-

quence includes enough dependencies, the lack of ILP will limit
pipeline throughput.

Speculative execution can impact throughput in two ways.
First, most processors cannot speculate through more than four or
five branches at once. Once this deep speculation is reached, the
processor cannot speculate through subsequent branch instruc-
tions. This forces the pipeline to stop fetching instructions until
one of the pending branches is resolved. Second, processors do
not always predict the result of a branch correctly. When branch
misprediction occurs, throughput suffers since the incorrectly
speculated instructions must be squashed from the pipeline.

Because main memory accesses often require hundreds of cy-
cles to complete, memory stall can have a major impact on pipe-
line performance. When an instruction cache miss takes place, the
processor cannot fetch instructions into the pipeline until the next
sequence of instructions is retrieved from memory. The resulting
lack of instructions in the pipeline reduces the processor through-
put. Misses to the data cache increase the effective execution time
of load and store instructions, since they must wait for the mem-
ory access to complete before they can graduate. This delays the
execution of any dependent instructions, and eventually stalls the
pipeline by preventing subsequent instructions from graduating.

Finally, some instructions, such as traps and memory barrier
instructions, require sequential execution, forcing the pipeline to
be emptied of all other instructions before they can execute. This
has an obvious detrimental effect on throughput.

Although high-level visualizations can indicate that these
events are occurring during the execution of an application, only
detailed visualizations can reveal the instruction flow and depend-
encies that are responsible for these performance bottlenecks.
This detailed knowledge is critical for adapting the application to
improve the performance.

4 VISUALIZATION ENVIRONMENT
The pipeline visualization system discussed in this paper was
developed using Rivet. Rivet is a visualization environment we
are developing to support the rapid prototyping of visualizations
for the exploration and understanding of real world problems,
with an emphasis on the analysis and visualization of computer
systems. Several attributes of Rivet were particularly important
for the development of this visualization system.

Flexibility. Rivet provides flexibility through a compositional
architecture. Components such as data objects and visual primi-
tives, written in C++ and OpenGL, are designed to be composed
to form objects with greater functionality. Primitives and objects
also export an interface to a scripting language such as Tcl, which
allows them to be composed further to create sophisticated, inter-
active visualizations.

One of our design goals for the pipeline visualization system
was to make it easily adaptable to many processor models. To
support this, our processor pipeline display is composed from two
major classes of visual primitives, containers and pipes, both
written in C++. We use the Tcl scripting language to combine
these primitives into higher-level building blocks: the functional
units, stages, and data paths of the processor pipeline. We then
combine these objects according to the configuration of the par-
ticular processor model under study to represent the entire pipe-
line.

The decomposition of the pipeline into its constituent elements
enables us to easily adapt the layout to represent a variety of proc-
essor models with different pipeline organizations. It also enables

us to easily configure the visualization according to the parame-
ters of a particular processor model, such as the number of func-
tional units or the size of the reorder buffer.

Aggregation. The complexity of computer systems demands that
a visualization environment be able to efficiently manage and
display large data sets. To simplify this task, Rivet provides built-
in data management objects that support data aggregation. Data is
collected at a fine granularity over a long period; it is then built
into an aggregation structure that includes both the raw data and
smaller, less detailed aggregates. When displaying the data, Rivet
chooses the appropriate data resolution based on the time window
to be displayed and the available screen space.

The study of superscalar processors requires large volumes of
data be collected and visualized. Our experimental runs often
generate data for hundreds of thousands of execution cycles. For
each cycle, information about any instruction that changes state
must be collected. The use of Rivet aggregation structures en-
ables us to explore this data from a high-level overview down to
individual data elements.

Animation. Animation is a core service provided by Rivet. This
support includes the ability to request timed callbacks to visual
primitives and path interpolation for a variety of animation paths.
The Rivet redraw mechanism supports incremental redraw of
visual primitives, important for efficient animation of objects.

Animation is crucial for understanding the cycle-by-cycle be-
havior of the pipeline. Our original pipeline implementation sim-
ply displayed the state of the pipeline at a particular cycle with no
visual transitions between cycles. Without the visual cues pro-
vided by animation, we found it very difficult to track instructions
as they advanced through the pipeline.

5 PIPELINE VISUALIZATION SYSTEM
Our pipeline visualization combines three major components to
provide an overview-plus-detail display of application execution.
We first describe each of the components of the system, and then
present an example showing how the system is used to understand
application behavior.

5.1 Timeline View: Finding Problems
The first task in understanding the behavior of an application on a
processor is to examine an overview of the application’s execu-
tion to locate regions of interest. The timeline view, shown in
Figure 1, utilizes a multi-tiered strip chart to display overall pipe-
line performance information at multiple levels of detail. The
bottom tier shows data collected over the entire execution of the
application. The user interactively selects regions of interest in
each tier, which are expanded and displayed in the next tier. This
visualization exploits the aggregation mechanism described in
Section 4: the data in each tier is displayed at the highest resolu-
tion possible, determined by the number of horizontal pixels
available for display.

The multi-tiered strip chart is used to indicate the reasons that
the pipeline was unable to achieve full throughput on a particular
cycle (or range of cycles in the aggregated displays). In a super-
scalar processor, throughput is lost whenever the pipeline fails to
graduate a full complement of instructions from the pipeline in a
given cycle. Because instructions must graduate in order, we
attribute this pipeline graduation stall to the instruction at the head
of the graduation queue (i.e. the oldest instruction in the pipeline).
The reasons for failure to achieve full pipeline throughput can be
classified into the following categories:

• Empty/Icache. An instruction cache miss is preventing any
instructions from being fetched from memory, so the pipeline
is completely empty (and there is no head of the instruction
queue to blame for the stall).

• Exception/Flush. Either an exception occurred or an in-
struction in the pipeline requires sequential execution. In
either case, the pipeline must be flushed before continuing
execution, again leaving the pipeline empty until instruction
fetch resumes.

• Load/Store. The head of the graduation queue is a memory
load or store operation that is waiting for data to be retrieved
from the memory system.

• Issue/Functional Unit. The head of the graduation queue is
either waiting to be issued into a functional unit due to a
structural hazard or is still being processed by a functional
unit.

In addition to the pipeline stall information, the timeline view
includes a second chart that displays the mix of instructions in the
pipeline. This chart classifies instructions by functional unit and
shows the instruction mix during the same time window as the top
tier of the multi-tiered strip chart. By relating the reasons for
pipeline stall to the instructions in the pipeline, this display serves
as a ‘bridge’ between the timeline view and the pipeline view.

5.2 Pipeline View: Identifying Problems
The pipeline view is illustrated in Figure 2. This visualization
shows the state of all instructions in the pipeline at a particular
cycle and animates instructions as they progress through the pipe-
line. The animation techniques used in this view are similar to
those used for program debugging in [10] and algorithm anima-
tion in [14].

Pipeline stages and functional units appear as large rectangular
regions with numerous instruction slots. Each stage is represented
as a single container, with the number of slots indicating the ca-
pacity of the container. Functional units are composed of one or
more containers, since these units may themselves be composed
of multiple pipeline stages. The functional units are color-coded
using the same color scheme as the instruction mix strip chart.
The layout of the pipeline is interactively configurable. At any
time, the user can reorder the layout of the functional units or
resize the stages and functional units to focus on a portion of the
processor pipeline.

Instructions in the pipeline are depicted as rectangular glyphs.
The glyphs encode several pieces of information about the in-
structions in their visual representation. The fill color of the rec-
tangle matches the color of functional unit responsible for execu-
tion of the instruction. The glyph contains text identifying the
instruction; depending on the space available, either the opcode
mnemonic or the full instruction disassembly (including both the
mnemonic and the arguments) is displayed. The border color of
the instruction conveys additional information. If the instruction
has been issued speculatively and the branch condition is still
unresolved, the border of the instruction is orange. If the instruc-
tion was issued as a result of incorrect speculation and will subse-
quently be squashed, it is drawn with a red border. The head of
the graduation queue always has a yellow border, and a red trian-
gle appears next to the text of this instruction.

Dependencies between instructions in the pipeline are dis-
played as yellow lines appearing between the two instructions.
Since a large number of dependencies may be present in the pipe-
line, the user can selectively filter or disable this feature. To filter
this display, the user selects with the mouse the instruction for
which dependencies should be drawn.

Figure 1: Investigation of an application’s processor pipeline behavior typically begins by examining high-level performance
characteristics. The timeline view provides a multi-tiered strip chart for the exploration of this data. Pipeline throughput statistics
for the entire execution are shown on the bottom tier of the strip chart, with pipeline stall time classified by cause (as shown in the
legend at the bottom of the window). The yellow panes are used to select time intervals of interest in each tier, which are displayed
in more detail in the next tier. Directly above the multi-tiered chart is a simple strip chart that shows the instruction mix in the
pipeline during the time region of interest: load/store (green), floating-point (pink), branch (yellow) and integer (cyan). This strip
chart serves to relate this high-level view to the detailed pipeline view.

With the exception of the reorder buffer, the pipeline stages
order instructions by age: instructions enter at the bottom of the
stage and move upward to replace instructions that have exited the
stage. In the reorder buffer, instructions are shown in graduation
order, with the head of the graduation queue at the top of the
buffer. The reorder buffer leaves empty slots for instructions that
are executing in the pipeline but have not yet completed. These
slots contain a grayed-out text label of the instruction, enabling
the slots to be correlated with the instructions in the pipeline.

The user controls the pipeline animation using controls similar
to those used to control a VCR. The controls enable the user to
single-step, animate, or jump through the animation. The anima-
tion may be run either forward or backward, and the speed is vari-
able and under user control. The user can also use a vernier on
the instruction mix strip chart to jump directly to a particular cy-
cle.

This visualization can be used to understand the precise nature
of the observed pipeline hazards. The user can animate through
cycles of interest and visually identify for each cycle the hazards
that are occurring. Figure C-1 (color plate) illustrates the visual
characteristics of several of the major types of hazards. By inter-
acting with the pipeline view, the user can observe the instruction
sequences that are responsible for underutilizing the pipeline and
understand the reasons for their poor performance. In order for
this information to be useful, however, it must be related back to
the source code of the application.

5.3 Source Code View: Providing Context
Once the major regions of poor performance and their causes have
been discovered, the user must determine if the application can be
altered to improve pipeline utilization. The final component of
our system, the source code view, allows the user to correlate the
high-level performance data and detailed animation views with
the application’s source code. This view is shown in Figure 3.

This visualization, modeled on the SeeSoft system [4], displays
“bird’s-eye” overview representations of the source files in the
application. Each line of source code is represented by a single-
pixel horizontal bar; the length and indentation of each bar is pro-
portional to the actual indentation and length of the line in the
source. The user can select a region of a source file in the over-
view to be displayed as full source code text in a separate win-
dow, as shown on the right side of the figure.

Both windows in the source code view highlight relevant lines
of code. Lines that are executed at some point during the time
window of interest in the timeline view are drawn in black, and
lines that are being executed in the pipeline view are highlighted
in red. As in the pipeline view, a red arrow is displayed next to
the line of source code that contains the instruction at the head of
the graduation queue.

Figure 2: The pipeline view shows all instructions in the pipeline at a particular point in time. Pipeline stages and functional units
appear as large rectangular regions with numerous instruction slots. This processor has a four-stage pipeline – fetch, decode, exe-
cute and reorder – arranged from left to right in the figure. Instructions are portrayed as rectangular glyphs, color-coded to indi-
cate their functional unit and labeled to identify their opcode. Additional information about the state of the instruction is encoded
in the border color of the glyph. User-controlled animation is used to show the behavior of instructions as they advance through
the pipeline. This figure illustrates the animated transition between two cycles of execution of a graphics application executing on
the MXS processor model. The pipeline can fetch and graduate up to four instructions per cycle. However, in this case the proc-
essor was unable to graduate any instructions because the head of the graduation queue is still being executed in the floating-point
functional unit.

5.4 Visualizing the MXS Pipeline
We now provide an example of how the three components of the
system can be used together to understand the behavior of an ap-
plication. For data collection, we use the MXS [1] superscalar
processor model. This model implements the instruction set ar-
chitecture used in the MIPS R10000 [15] processor. MXS has
been incorporated into the SimOS complete machine simula-
tor [6], enabling us to study the pipeline utilization of realistic
workloads. In this example, we describe the analysis and visuali-
zation of a graphics application executing for one million cycles.
Figure 4 and Figure C-2 (color plate) show a snapshot of the visu-
alization of this data.

We begin the analysis by looking at the timeline view of the
execution. The bottom tier of the multi-tiered strip chart shows a
periodic execution pattern. Of interest are the phases where we
see a significant increase in processor stall time. The chart shows
that throughput is limited in these phases because the head of the
graduation queue is still executing in a functional unit. There are
several reasons why this might occur, such as an unbalanced mix
of instructions or a large number of dependencies.

We use the multi-tiered strip chart to zoom in on the transition
from high throughput to low throughput. As we zoom to a view
of 50,000 cycles, the high-level pattern becomes less apparent but
we can still see the two distinct phases of execution. We zoom
further to a window of 2000 cycles centered on the phase transi-
tion. By comparing the throughput chart with the instruction mix
chart, we discover that the bulk of the processor stall time corre-
sponds to periods of heavy floating-point activity in the pipeline.

We investigate this further using the pipeline view. We ani-
mate this region of the execution and observe the instructions as
they travel through the pipeline. The pipeline view shows a repre-
sentative stage of the animation. By observing the animation, we
are quickly able to see why the pipeline is suffering from poor
throughput: there is a cascading dependency chain between nearly
all of the instructions in the decode unit. This complete lack of
instruction-level parallelism forces the pipeline to process in-
structions in a sequential fashion. Even worse, the instruction
window is dominated by floating-point instructions, including

operations with long execution latencies like the divide (the in-
struction in the floating-point unit in the figure). As a result, there
are few (if any) instructions available to graduate per cycle.

We can use the source code view to correlate this pipeline be-
havior with the application’s source code. We see in the source
code that the application is executing a tight loop of floating point
arithmetic. With this information, the programmer can now at-
tempt to restructure the code to reduce the number of dependen-
cies or interleave other code into the loop to better utilize the
processor.

6 DISCUSSION
We have presented the pipeline visualization system in the context
of one specific use – the understanding of application behavior on
a superscalar processor. However, there are several other impor-
tant uses for this visualization system.

Compiler Design. One of the major research areas in compiler
design is code optimization. Research is being done to study the
effectiveness of the code optimization techniques that have been
developed and to discover and implement additional optimiza-
tions. In particular, with the popularity of superscalar processors,
compiler writers are striving to maximize the amount of instruc-
tion-level parallelism in compiled code in order to make full use
of processor resources. By exposing the detailed behavior of the
processor pipeline, our visualization system can be used to study
the effectiveness of compiler optimizations and suggest code se-
quences that would benefit from further optimization.

Hardware Design. When designing new processors, hardware
architects need to understand the demands that applications used
by their target markets will place on the processor. By using
visualization to study the behavior of important commercial appli-
cations on existing processors, they can identify where architec-
tural changes such as additional functional units or pipelining
would be beneficial.

As a simple example of this use of our system, Figure 5 shows
two visualizations of a prime number generator running on
MMIX [8], an architecture being developed by Donald Knuth for
his series of books, The Art of Computer Programming [9]. The

Figure 3: The source code view, which relates the instructions in the timeline’s region of interest to the source code corresponding
to these instructions. The left panel provides a bird’s eye view of the source, and the right panel shows a portion of one of the
source files (indicated by the vertical bar in the left panel). Both views are color-coded to highlight instructions in the region of
interest. Black indicates that the line of code is executed somewhere in the timeline region and red indicates that the line is being
executed in the detailed pipeline view. A red arrow indicates the instruction at the head of the graduation queue.

example shows how pipelining the divide functional unit can im-
prove the performance of this application.

Simulator Development. Simulation is a powerful technique for
the understanding of computer systems such as microprocessors.
During the design of new processors, simulators are developed to
explore the processor design space and validate architectural deci-
sions. Simulators are also used for performance analysis of ex-
isting applications and processors. However, because of their
complexity, the development of processor simulators is a chal-
lenging and error-prone task.

While developing the pipeline visualization system, we uncov-
ered several errors in the MXS and MMIX processor models,
many of them timing related. For example, in the original imple-
mentation of MXS, it was possible for instructions to advance
through all the stages of the processor pipeline in a single cycle.
Timing bugs such as these did not affect correctness – simulated
programs would still execute correctly – but resulted in timing
behavior that was not faithful to the processor model. While the
aggregate pipeline statistics obscured these problems, which had
existed for some time in the simulators, examination of the time-
line view and observation of the pipeline animation made them
prominent and enabled us to correct them.

7 CONCLUSION
We have presented a system for the visualization of a particularly
complex system – superscalar processors. The main goal of our
system is the analysis and optimization of application perform-
ance on this class of processors. By providing overview-plus-
detail displays, the visualization system allows the user to see
both high-level performance characteristics and the intricate de-
tails of out-of-order execution, speculation and pipelining. We
have also described three other uses for our system: hardware
design, compiler design and simulator development.

Our future work will build on this system in several ways.
First, there are several other attributes of the processor state that
we will incorporate into our visualizations, such as register files
and write buffers, in order to provide a more complete picture of
the pipeline’s behavior.

Second, while superscalar architectures currently dominate the
market, processors with alternate designs are also being developed
in an attempt to maximize performance. For example, the Intel
IA-64 architecture [7] uses a “very long instruction word”
(VLIW) style of architecture. We intend to extend our visualiza-
tion system to model these alternate architectures, enabling the
exploration of trade-offs between different processor styles.

Figure 4: The complete processor pipeline visualization system displaying one million cycles of execution. The timeline view
shows a periodic behavior, with alternating sections of high and low processor stall. The chart is zoomed in on the region of low
utilization. The pipeline view shows that the instruction sequences in this window are highly dependent on one another, with very
little instruction-level parallelism available to be exploited. The source code view shows the code segment corresponding to this
phase of execution – a tight floating-point loop with dependencies both within the loop and across iterations.

Finally, although our pipeline visualization system has focused
on the study of microprocessors, we would like to explore the
application of this system to generalized pipeline systems such as
assembly lines and organizational work flow. We expect the
overall approach of overview-plus-detail will apply equally well
in these areas, and our compositional architecture will enable us to
adapt our visualizations to apply to these problem domains.

Acknowledgments
The authors thank John Gerth for his signficant contributions to
the design and development of the Rivet system, and Donald
Knuth for working with us to develop the visualization of the
MMIX processor. We also thank Tamara Munzner, Diane Tang
and David Ofelt for both their work reviewing this manuscript and
for useful discussions.

References
[1] James Bennett and Mike Flynn. “Performance Factors for Super-

scalar Processors.” Technical Report CSL-TR-95-661, Computer
Systems Laboratory, Stanford University, February 1995.

[2] Trung A. Diep and John Paul Shen. “VMW: A Visualization-
Based Microarchitecture Workbench.” IEEE Computer 28(12),
December 1995.

[3] DLXView. [online] Available: �KWWS���\DUD�HFQ�SXUGXH�HGX�
aWHDPDDD�GO[YLHZ�!, cited March 1999.

[4] Stephen G. Eick, Joseph L. Steffen and Eric E. Sumner, Jr. “See-
Soft – A Tool for Visualizing Line-Oriented Software Statistics.”
IEEE Transactions on Software Engineering, 18(11):957-968, No-
vember 1992.

[5] John L. Hennessy and David A. Patterson. Computer Architecture:
A Quantitative Approach. San Francisco: Morgan Kaufmann Pub-
lishers, 1996.

[6] Stephen A. Herrod. “Using Complete Machine Simulation to Un-
derstand Computer System Behavior.” Ph.D. Thesis, Stanford Uni-
versity, February 1998.

[7] Intel Corporation. Merced Processor and IA-64 Architecture. [on-
line] Available: �KWWS���GHYHORSHU�LQWHO�FRP�GHVLJQ�

,$���!, cited July 1999.

[8] Donald Knuth. MMIX 2009: A RISC Computer for the Third Mil-
lennium. [online] Available: �KWWS���6XQEXUQ�6WDQIRUG�('8�
aNQXWK�PPL[�KWPO!, cited March 1999.

[9] Donald Knuth. The Art of Computer Programming. 3 vols. Read-
ing, MA: Addison-Wesley, 1997-1998.

[10] Sougata Mukherjea and John T. Stasko. “Applying Algorithm
Animation Techniques for Program Tracing, Debugging, and Un-
derstanding.” Proceedings of the 15th International Conference on
Software Engineering, pp. 456-465, May 1993.

[11] Pentium® Pro Processor Microarchitecture Overview Tutorial.
[online] Available: �KWWS���GHYHORSHU�LQWHO�FRP�YWXQH�

FEWV�SSURDUFK�!, cited March 1999.

[12] Ali Poursepanj. “The PowerPC Performance Modeling Methodol-
ogy.” Communications of the ACM, 37(6):47-55, June 1994.

[13] Ben Shneiderman. “The Eyes Have It: A Task by Data Type Tax-
onomy for Information Visualization.” Proceedings of IEEE
Workshop on Visual Languages, pp. 336-343, 1996.

[14] John T. Stasko. “Animating Algorithms with XTANGO.” SIGACT
News, 23(2):67-71, Spring 1992.

[15] Kenneth Yeager. “The MIPS R10000 Superscalar Microproces-
sor.” IEEE Micro, 16(2):28-40, April 1996.

Figure 5: The pipeline visualization system can also be used to study the impact of changes to processor implementations. This
figure compares the first 2000 cycles of execution of an MMIX program that calculates the first 500 prime numbers. On the left,
an initial implementation of the program is executing on a pipeline with a simple 60-cycle functional unit for divide instructions.
On the right, a modified version is executing on a configuration with the divide unit pipelined into six 10-cycle stages. In the
modified version of the program, the main loop has been manually unrolled three times to better utilize the pipelined divide unit.
To aid the comparison, the system draws a thin gray line in the instruction mix chart when the program finds a prime number.
Examining the instruction mix chart for each processor, we can see that the second implementation consistently has more instruc-
tions in the pipeline and is progressing more rapidly. The increased amount of pink (floating-point instructions) in the instruction
mix chart reflects the fact that the pipelined divide unit is enabling the processor to work on several divide instructions at once.

Figure C-1: Snapshots of a program’s execution in the pipeline view, demonstrating a variety of reasons for poor pipeline utiliza-
tion. After using the visualization system for a short time, users can quickly identify these hazards as they occur in the animation.

Figure C-2: The complete processor pipeline visualization system displaying one million cycles of execution.

