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Abstract
Recent advances in realtime image compression and

decompression hardware make it possible for a high-performance
graphics engine to operate as a rendering server in a networked
environment. If the client is a low-end workstation or set-top box,
then the rendering task can be split across the two devices. In this
paper, we explore one strategy for doing this. For each frame, the
server generates a high-quality rendering and a low-quality
rendering, subtracts the two, and sends the difference in
compressed form. The client generates a matching low quality
rendering, adds the decompressed difference image, and displays
the composite. Within this paradigm, there is wide latitude to
choose what constitutes a high-quality versus low-quality render-
ing. We have experimented with textured versus untextured sur-
faces, fine versus coarse tessellation of curved surfaces, Phong
versus Gouraud interpolated shading, and antialiased versus
nonantialiased edges. In all cases, our polygon-assisted compres-
sion looks subjectively better for a fixed network bandwidth than
compressing and sending the high-quality rendering. We describe
a software simulation that uses JPEG and MPEG-1 compression,
and we show results for a variety of scenes.

CR Categories: I.4.2 [Computer Graphics]: Compression —
Approximate methods I.3.2 [Computer Graphics]: Graphics Sys-
tems — Distributed/network graphics

Additional keywords: client-server graphics, JPEG, MPEG,
polygon-assisted compression

1. Introduction
In this era of open systems, it is common for multiple

graphics engines that are software compatible but have greatly
differing performance to reside on the same network. A research
group might have a dozen low-end workstations on desktops and
one high-performance workstation in a centralized laboratory.
Future multi-user video games may have hundreds of set-top
boxes connected by cable or phone lines to a centralized game
server. Recent advances in realtime image compression and
decompression hardware make it possible for the high-
performance machine to operate as a rendering server for the
low-end machines. This can be accomplished straightforwardly
by rendering on the server, then compressing and transmitting an
image stream to the client. The client decompresses and displays
the image stream in a window distinct from its own frame buffer.

Unfortunately, the standards for compressing images and
video - mainly JPEG [Wallace91] and MPEG [Le Gall91] - were
developed for use on natural scenes, and they are not well suited
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
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for compressing synthetic images. In particular, they perform
poorly at the edges of objects and in smoothly shaded areas.

In this paper, we consider an alternative solution that parti-
tions the rendering task between client and server. We use the
server to render those features that cannot be rendered in real time
on the client - typically textures and complex shading. These are
compressed using JPEG or MPEG and sent to the client. We use
the client to render those features that compress poorly using
JPEG or MPEG - typically edges and smooth shading. The two
renderings are combined in the client for display on its screen.
The resulting image is subjectively better for the same bandwidth
than can be obtained using JPEG or MPEG alone. Alternatively,
we can produce an image of comparable quality using less
bandwidth.

The remainder of the paper is organized as follows. In sec-
tion 2, we give an overview of our solution, and we suggest typi-
cal hardware realizations. In section 3, we describe a software
simulator we have built to test our idea, and we discuss several
implementation issues. In section 4, we explore ways to partition
the rendering task between client and server. Some partitionings
work well, and some do not, as we shall see. In sections 5 and 6,
we discuss related work, limitations, and extensions.

2. Client-server relationship
Figure 1 shows the flow of data in our proposed client-

server system. The hardware consists of a high-performance
workstation (henceforth called the server), a low-performance
workstation (henceforth called the client), and a network. To pro-
duce each frame of synthetic imagery, these two machines per-
form the following three steps:

(1) On the server, compute a high-quality and low-quality
rendering of the scene using one of the partitioning stra-
tegies described in section 4.

(2) Subtract the two renderings, apply lossy compression to
the difference image, and send it to the client.

(3) On the client, decompress the difference image, compute a
low-quality rendering that matches the low-quality render-
ing computed on the server, add the two images, and
display the resulting composite image.

Depending on the partitioning strategy, there may be two
geometric models describing the scene or one model with two
rendering options. The low-quality model may reside on both
machines, or it may be transmitted from server to client (or client
to server) for each frame. If the model resides on both machines,
this can be implemented using display lists or two cooperating
copies of the application program. The latter solution is com-
monly used in networked visual simulation applications.

To provide interactive performance, the server in such a
system would normally be a graphics workstation with hardware-
accelerated rendering. The client might be a lower-end
hardware-accelerated workstation, or it might be a PC performing
rendering in software, or it might be a set-top box utilizing a
1



Figure 1: Flow of data in proposed client-server rendering system. High and low-quality renderings may differ in shading, geometric
detail, or other aspects. Transmission of the low-quality geometric model is optional, so it is drawn dashed in the figure.
combination of software and hardware. Differencing and
compression on the server, and decompression and addition on the
client, would most likely be performed in hardware, although
real-time software implementations are also beginning to appear.

One important caveat regarding the selection of client and
server is that there are often slight differences in pixel values
between equivalent-quality renderings computed by high-
performance and low-performance machines, even if manufac-
tured by the same vendor. If both renderings are antialiased, these
differences are likely to be small. Nevertheless, they may
adversely affect the reconstruction in step three.

3. Software simulation
Since no commercially available workstation yet offers

both high-performance rendering and real-time
compression/decompression, we have built a software simulation.
Rendering is performed using the REYES rendering system
[Cook87] or the SoftImage Creative Environment, and compres-
sion is performed using the Independent JPEG Group’s codec
[Lane] or the Berkeley MPEG-1 codec [Rowe].

Images in our simulations are represented as 24-bit RGB
pixels with two exceptions. First, the codecs performs compres-
sion in YCrCb using 4:1:1 subsampling - 4 pixels of Y to 1 each
of Cr and Cb. Second, pixels in the difference image D are com-
puted from pixels in the high and low quality images H and L
using the formula D = 127+(H −L)/2. This formula maps zero-
difference pixels to gray and maps positive and negative differ-
ences to lighter and darker colors, respectively (see figure 2c).
Following this division by 2, features in the difference image are
represented by pixel excursions (from the mean) half as large as
corresponding features in the high-quality rendering. To prevent
these features from being quantized twice as severely during
compression, we adjust the quantization tables to compensate.
The effect is to match the feature degradation (and code size) that
would have resulted had we not divided the difference pixels by 2.

Our experiments using the JPEG codec are presented in
figures 2 through 5. Selected statistics for figures 2 and 3 are
summarized in table I. The table gives statistics for image-based
compression, for polygon-assisted compression using resident
geometric models, and for polygon-assisted compression using a
transmitted low-quality model.

Whenever a model is transmitted, it should be compressed.
We have not implemented compression of geometric models, and
little research has been done on the subject, but we can estimate
the performance of a simple lossless scheme as follows. We
2

assume a polygon mesh, which contains on average one vertex per
polygon. In our application, vertices can be transformed from
object space to screen space prior to transmission, after which a
two-byte fixed point representation suffices for each coordinate.
Thus, we need 10 bytes per vertex (6 bytes for XYZ + 4 bytes for
RGBA). One can then difference the coordinates and colors of
successive vertices and encode the differences using Huffman or
arithmetic coding. If successive vertices are spatially adjacent as
they would be in a mesh, this technique should perform well.
Danskin has used a similar method to compress sequences of
mouse events in X, obtaining 3:1 compression [Danskin94]. We
thus estimate that each polygon in a compressed model requires
3.3 bytes.

To help us understand the performance of polygon-assisted
compression, we have computed the entropies of the high-quality
renderings and difference images. As expected, the latter con-
sistently have less entropy than the former. We have also com-
puted the root mean square errors in the polygon-assisted
compressions and image-based compressions, relative in each
case to the high-quality renderings. Unfortunately, root mean
square error is a poor measure of subjective image quality. In our
opinion, the only meaningful way to evaluate the performance of
our method is to look at the images.

We have also computed several animations using motion
JPEG and MPEG-1. Our conclusions match those for still
images: polygon-assisted compression yields subjectively better
imagery than image-based compression for the same bandwidth.
MPEG-1 looks better than motion JPEG even at higher compres-
sion rates due to its use of motion compensation, but neither looks
as good as polygon-assisted compression. Unfortunately, still
images or analog videotape recordings do not capture the full
quality difference, which is only evident by looking at a worksta-
tion screen.

4. Partitioning strategies
Image-based compression (e.g. JPEG) of synthetic images

fails most severely at the silhouette edges of objects and in
smoothly shaded areas. What these two features have in common
is spatial coherence. In other words, they both exhibit relatively
large-scale structure. In choosing how to partition a synthetic
image into a polygon rendering and a compressed difference
image, we should therefore strive to incorporate into the rendering
as much of the coherent structure of the synthetic image as possi-
ble. In the following paragraphs, we describe three partitioning
strategies - two that work well and one that does not.
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4.1. Textured versus untextured surfaces
High-end graphics workstations (such as the Silicon

Graphics RealityEngine) are typically optimized for the display of
textured surfaces, while low-end workstations (such as the Silicon
Graphics Indy) are typically optimized for the display of untex-
tured surfaces. Given these capabilities, the most obvious way to
partition rendering between a high-end server and a low-end client
is to omit surface texture on the client.

To demonstrate this, we consider a room composed of flat
surfaces that exhibit smooth shading and texture (see figure 2).
The model contains 1131 polygons with a fixed color at each ver-
tex. This color was calculated using a hierarchical radiosity algo-
rithm that approximates the diffuse interreflection among textured
surfaces [Gershbein94]. The high-quality rendering (figure 2a)
employs antialiasing, Gouraud-interpolated shading, and textur-
ing. The low-quality rendering (figure 2b) employs antialiasing
and Gouraud-interpolated shading but no texturing. The differ-
ence between the two renderings is shown in figure 2c.†

Figures 2d through 2g show image-based compression of
the high-quality rendering using varying JPEG quality factors.
Figures 2h through 2k show polygon-assisted compression using
quality factors selected to match as closely as possible the code
sizes in figures 2d through 2g, assuming that the geometric model
resides on both machines. The quality factors, code sizes, and
compression rates are given below each image. Figures 2l and 2m
(on the next page of figures) give one more pair, enlarged so that
details may be seen. The statistics for these two figures also
appear in table I.

In every case, polygon-assisted compression is superior to
image-based compression. There are two distinct reasons for this:

g The polygon-assisted rendering contains undegraded edges and
smoothly shaded areas - precisely those features that fare
poorly in JPEG compression.

g The difference image contains less information than the high-
quality rendering, so it can be compressed using a higher JPEG
quality factor without increasing code size - even higher than
is required to compensate for the division by 2 in the differ-
ence image representation. Thus, texture features, which are
present only in the difference image, fare better using our
method.

As an alternative to comparing images at matching code
sizes, we can compare the code sizes of images of equal quality.
Unfortunately, such comparisons are difficult because the degra-
dations of the two methods are different - polygon-assisted
compression always produces perfect edges and smooth shading,
while JPEG never does. If one allows that figure 2j generated
using polygon-assisted compression is comparable in quality to
figure 2d generated using image-based compression, then our
method gives an additional 3x compression for this scene.

Table I also estimates the number of bytes required to gen-
erate figure 2m if the model is transmitted from server to client
using the lossless compression method proposed in section 3.
This size (13529 bytes) lies between the code sizes of figures 2e
and 2f. Even in this case, polygon-assisted compression is supe-
rior in image quality to image-based compression, both in terms
of its edges and smooth shading and in terms of the JPEG quality
factor used to transmit the texture information.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

†If rendered on a Silicon Graphics RealityEngine, both renderings
can be performed - and the difference image computed - in a single pass
through the data by remicrocoding the fragment generators.
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4.2. Fine versus coarse tessellation of
curved surfaces

Many algorithms for displaying curved surfaces operate by
subdividing (tessellating) each surface into a mesh of small
polygons. The shading applied at each polygon vertex is typically
expensive - possibly including a sophisticated reflection model
and texture, but the shading across a polygon is typically simple -
constant or linearly interpolated. This suggests a partitioning stra-
tegy in which the client renders a surface using a coarse tessella-
tion, and the server renders the surface twice - once using a coarse
tessellation and once using a fine tessellation.

To demonstrate this, we consider a bowling pin modeled as
a bicubic patch mesh (see figure 3). The geometry and surface
properties are modeled in the RenderMan scene description
language [Hanrahan90]. Using the REYES rendering system
[Cook87], we tessellate the patch mesh twice, generating two
micropolygon models with associated vertex colors.

Figure 3d shows image-based compression of the high-
quality rendering using a JPEG quality factor of 15. Figure 3e
shows polygon-based compression using a quality factor selected
to match the code size in figure 3d, assuming that the low-quality
model resides on both machines. Again, the superiority of
polygon-assisted compression over image-based compression is
evident, particularly along edges and in smoothly shaded areas.

4.3. Antialiased Phong-shaded versus
nonantialiased Gouraud-shaded

We now demonstrate a partitioning strategy that does not
work well. Our model is an extruded letter defined using a few
large polygons (see figure 4) and rendered using SoftImage. The
high-quality rendering uses texturing, antialiasing, Phong lighting,
and Phong interpolated shading. (Although Phong shading is not
supported on current high-performance workstations, it can be
approximated using an environmental reflectance map.) The
low-quality rendering uses Phong lighting and Gouraud interpo-
lated shading, but no texturing or antialiasing.

Although polygon-assisted compression is still superior to
image-based compression, the difference is less pronounced than
in the previous demonstrations. The most obvious artifact in
figure 4j is that the edges are not well antialiased. Subtracting a
jagged edge (figure 4g) from an antialiased edge (figure 4f) yields
an edge-like structure in the difference image (figure 4h). This
structure fares poorly during JPEG compression, leaving the edge
jagged in the reconstruction. This degradation will also occur to
edges in textures in section 4.1, but in most applications important
edges are modeled as geometry, not as texture.

The other disturbing artifact in figure 4j is a blockiness on
the face of the letter. The Phong-shaded (figure 4f) and Gouraud-
shaded (figure 4g) pixels on the face are similar in color, but they
do not match exactly. These small differences are lost during
compression, leading to the appearance of 8x8 block artifacts.
These artifacts can be reduced somewhat through the application
of post-processing techniques [Luo94].

For comparison, figure 5 shows a more successful parti-
tioning of the same scene. In this case, the high and low-quality
renderings differ only by the omission of texture. This partition-
ing is less practical, however, because it requires antialiasing on
the client. An alternative partitioning would omit antialiasing on
both server and client. In this case, edges would have jaggies, but
these jaggies would not be compounded by JPEG artifacts.
3



iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Room Piniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

A. High-quality rendering fig2a fig3a
number of polygons 1131 75,467
number of pixels 512 x 512 320 x 800
entropy (bits/pixel) 5.8 3.0

B. Low-quality rendering fig 2b fig 3b
number of polygons 1131 3153

C. Difference image fig 2c fig 3c
entropy (bits/pixel) 3.0 1.3

D. Image-based compression fig 2l fig 3d
JPEG quality factor 15 15
JPEG code size (bytes/frame) 9836 6030
compression ratio 80:1 127:1
error versus uncompressed (rms) 6.1 4.1

E. Polygon-assisted compression
(resident model) fig 2m fig 3e

JPEG quality factor 41 55
JPEG code size (bytes/frame) 9759 5955
compression ratio 81:1 129:1
error versus uncompressed (rms) 7.5 2.9

F. Polygon-assisted compression
(transmitted model)

JPEG code size (from above) 9759 5955
Model size (est. bytes/frame) 3770 10510
Total size 13529 16465
compression ratio 58:1 47:1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
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Table I: Image-based compression versus polygon-assisted
compression, compared for the scenes pictured in figures 2 and 3.
In D, we select a quality factor that gives 20 frames per second
while requiring 2 Mbs or less of network bandwidth. In E, we
select a quality factor that matches as closely as possible the code
size obtained in D, assuming that the low-quality geometric model
resides on both client and server. In F, we estimate the number of
bytes required to generate D assuming that a losslessly compressed
low-quality model is transmitted from server to client.

5. Related work
The problem presented in this paper is a special case of two

general problems: compression of geometric models and
compression of synthetic images. Although these two problems
have been recognized for a long time, interest in them has risen
recently due to the growing synergy between digital video, com-
puter graphics, and networking technologies.

Schemes for compressing geometric models can be
categorized as lossy or lossless. Lossy schemes can be further
subdivided into methods that simplify the geometry and methods
that represent the full geometry using a quantized representation.
Geometric simplification methods include hand-generation of
hierarchical models [Clark76], automatic decimation of polygon
meshes [Hoppe93], and 3D scan conversion of geometry into mul-
tiresolution voxel arrays [Wang94]. A good survey of these
methods is given in [Heckbert94]. Quantized representations is
largely an unexplored area; a notable exception is [Deering95] in
these proceedings. Lossless compression of geometric models is
also largely unexplored. The prospect of a consumer market for
downloadable video games, in which the model is a significant
fraction of the total game size, makes this an attractive area for
future research.
2

Schemes for compressing synthetic images can be categor-
ized according to the role played by the underlying geometric
model. In the present paper, the model is used to partition the
synthetic image into a set of polygons and a difference image.
Alternatively, the model could be used to locally adapt the quanti-
zation table in a block-based compression scheme to match the
characteristics of commonly occurring blocks. Adaptation could
be based on block content hints from the model or importance
hints from the application program. Although there is a large
literature on adaptive quantization, we know of no results that
incorporate information from a 3D graphics pipeline. This seems
like a fruitful area for future research. Another possibility is to
augment a transform coding scheme by adding basis functions
that directly represent edges and bilinearly interpolated shading.
The screen axis aligned rectangles of Intel’s DVI PLV standard
offer some of this [Luther91]. The present paper can be viewed as
a generalization of this scheme to unconstrained overlapping tri-
angles.

For animation sequences, a geometric model can be used to
derive optical flow - the interframe movement of each pixel in an
image. Optical flow can in turn be used to compute block motion
vectors [Wallach94] or block image warps [Agrawala95]. Flow
can also be used to implement non-blocked predictive coding of
closely spaced views [Guenter93] or to derive an image morph
that interpolates between widely spaced views [Chen93]. Among
these, only [Guenter93] is lossless.

Textures and volumes provide another opportunity for
combining compression and image synthesis. A lossless compres-
sion scheme for volumes based on DPCM and Huffman coding is
described in [Fowler94]. Lossy schemes include vector quantiza-
tion [Ning93], multidimensional trees [Wilhelms94], differences
of Gaussians wavelets [Muraki94] and Haar and Daubechies
wavelets [Westermann94]. Also related are algorithms for apply-
ing texture manipulation operators (such as magnifying or minify-
ing) directly to JPEG representations of textures [Smith94].

6. Conclusions
We have described a method for using a high-performance

graphics workstation as a rendering server for a low-performance
workstation, and we have explored several strategies for partition-
ing the rendering task between client and server. Our method
improves image quality over compressing and transmitting a sin-
gle rendering because it removes from the transmitted image those
features that compress poorly - mainly edges and smooth shading.
These are instead rendered locally on the client.

Our method has several limitations. First, it will require a
careful implementation to avoid excessive latency. Second, it
requires either storing the low-quality geometric model on both
machines or transmitting it for each frame. The former solution
requires some memory in the client. The later solution depends
on our ability to compress the model. Some geometric models
will not compress well, and complex models will always be too
large to transmit. Third, our method is most useful on scenes of
moderate image complexity. For synthetic scenes whose com-
plexity approximates that of natural scenes, our method will con-
vey little or no advantage. Finally, our method is most useful at
high compression rates (more than 25:1). If the network can sup-
port transmission of the high-quality rendering at a low compres-
sion rate, both MPEG and motion JPEG perform well enough for
most interactive tasks.

Extensions to our work include investigating the compres-
sion of geometric models, employing an alternative coding tech-
nique such as wavelet-based compression, and exploring the use
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of polygon-assisted compression as a file format for archiving,
(non-realtime) image transmission, and printing. In addition, a
quantitative model of compression error that reliably captures sub-
jective image quality is sorely needed.

Regarding the longevity of our method, while it is true that
low-end machines are getting more powerful each year, there will
always be a high-end machine that costs more money and delivers
more performance. Thus, although the partitionings described in
this paper may become obsolete, there will probably always be
partitionings for which our method provides an advantage. In a
similar vein, an assumption underlying our method is that
compression, transmission, and decompression taken together are
less expensive than rendering the original model locally on the
client. Although the computational expense of compressing a
pixel using transform-based coding is largely independent of
image content and will probably remain constant for the forsee-
able future, the cost of rendering that pixel will rise as image syn-
thesis methods become more sophisticated. This points toward a
continuing niche for our method.
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