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Abstract

We present a mathematical framework for solving rendering problems in computer graphics

that is based on scattering as its basic theoretical foundation, rather than the usual approach

of simulating light transport and equilibrium. This framework can lead to more efficient

solution methods than those based on previous methods as well as a number of new theoret-

ical tools for solving rendering problems. We demonstrate the applicability of this approach

to accurately and efficiently rendering subsurface scattering from geometric objects.

We first introduce a non-linear integral scattering equation that describes scattering

from complex objects directly in terms of the composition of their lower-level scattering

properties. This equation was first derived to solve scattering problems in astrophysics

and has gone on to revolutionize approaches to transport problems in a number of fields.

We derive this equation in a sufficiently general setting to be able to apply it to a variety

of problems in graphics, which typically has problems with higher-dimensionality, more

complexity, and less regularity than those in other fields. Methods to solve this equation

have a divide-and-conquer flavor to them, in contrast to previous iterative methods based

on the equation of transfer (i.e. the rendering equation). We apply Monte Carlo techniques

to solve this scattering equation efficiently; to our knowledge, this is the first application of

Monte Carlo to solving it in any field.

We next introduce Preisendorfer’s Interaction Principle, which subsumes both scatter-

ing and light transport based approaches to transfer problems. It leads to a derivation of a

set of adding equations that describe scattering from multiple objects in terms of how they

iv



scatter light individually. We show how Monte Carlo techniques can be applied to solve

these adding equations and apply them to the problem of rendering subsurface scattering.
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Chapter 1

Introduction

Realistic image synthesis has long been a fundamental component of computer graphics.

With applications ranging from entertainment (e.g. feature films, special effects, or video

games) to lighting design and architecture, the need to realistically model the propagation

and scattering of light in complex synthetic environments continues to challenge available

computational resources.

1.1 The Rendering Problem

One part of the rendering process that has received much attention is the global illumination

problem. It is based on the simulation of the inter-reflection of light in an environment in an

effort to accurately describe the appearance of objects, accounting for all of the paths that

light can take from light sources to objects in the scene. In recent years, global illumination

has been placed on a solid theoretical and mathematical foundation. Important steps in this

process include Kajiya’s introduction of the rendering equation [Kaj86] and Arvo’s work

connecting the rendering equation with the more general equation of transfer [Arv93b,

Arv95], thus solidifying connections with previous work in heat transfer, transport theory,

and neutron transport. A distinguishing feature of these approaches is a focus on light
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CHAPTER 1. INTRODUCTION 2

transport and equilibrium in the environment being modeled. In this thesis, we take a

complementary approach to rendering, focusing on computing the scattering properties of

the scene in order to describe how it reacts to an arbitrary incident illumination distribution.

This approach leads to a variety of new theoretical machinery to apply to the rendering

problem as well as a series of new efficient solution techniques.

The modeling problem is normally considered to be separate from the rendering prob-

lem. The set of surfaces that comprise the scene, the description of how they scatter light

individually, and the description of any participating media at each point in the scene is

usually considered to be given, such that the problems of modeling (e.g. how surfaces

are represented mathematically) are usually considered to be mostly orthogonal to those of

rendering.

One place where modeling and rendering do overlap is in computing scattering func-

tions that describe how light scatters from surfaces or volumetric media. For example, the

micro-scale structure of a surface may be modeled at a more detailed level than the global

illumination algorithm can manage; for example, metallic surfaces are often modeled as a

collection of randomly-oriented microfacets that reflect light like mirrors, or objects with

layered structure, like skin or other biological objects, are often described as a collection

of layers that individually scatter light in particular ways. In these sorts of situations, the

scattering at the object’s surface must either be approximated in some fashion, or a new

rendering problem must first be solved at a finer scale in order to describe the object’s

scattering behavior at a higher level.

Previous work in rendering has largely focused on light transport; simulating the prop-

agation of light from emitting sources to a sensor, such as an imaging system like a camera

or the eye. In this thesis, we describe a new formulation of the general rendering prob-

lem that has generic scattering as its main focus, rather than light transport per se. The

scattering function of an entire scene describes its generic response to illumination; if the

scattering function of a scene can be efficiently evaluated, the scene can thus be rendered
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directly. In general, the scattering function of a 3D scene is an eight-dimensional function

and thus is too large to be pre-computed at a reasonable sampling rate. However, if the

scattering function can be quickly evaluated for particular lighting and viewing directions,

rendering is straightforward. This is the approach we focus on in this thesis.

We introduce new methods of computing the scattering behavior of complex objects

and describe a general framework for computing aggregate scattering functions that di-

rectly describe the scattering from a collection of objects. This leads to a new theoretical

framework for rendering problems in general. This kind of focus on scattering rather than

light transport goes back over fifty years to work done in the field of astrophysics; it has

since been applied to a variety of other areas. We apply it to a wider set of problems

than it has been used for previously, make new connections between it and previous work

in graphics, and develop new Monte Carlo methods for solving it that are applicable to a

wider set of difficult problems than previous solution methods have been able to handle.

This work has a number of specific applications to problems in rendering. The most

basic setting of interest is modeling subsurface reflection from layered objects. Given

descriptions of how individual layers scatter light, we can compute solutions to the more

general question of how light entering at the top or bottom of the stack of layers is reflected

(or transmitted) from the object as a whole. In some cases, we can compute this scattering

much more efficiently than previous approaches based on the rendering equation.

More generally, we derive a new method to compute scattering from volumetric media

(as might be used to model a cloud, for example) in terms of scattering from sub-regions of

the scene and the interactions between them. This approach can also lead to new methods

for rendering scenes with general three-dimensional scattering geometry, new techniques

for improved efficiency, and approximation methods that reduce computation time at some

cost in accuracy. This approach can also lead to a new theoretical basis for clustering:

approaches to rendering that try to increase efficiency by considering collections of objects

as a single unit, rather than processing each of them individually. Along similar lines, the
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level of detail problem involves choosing an appropriate representation for complex objects

based on their visual contribution to an image; the generalized scattering framework that

we describe applies to both of these directly.

1.2 Contributions

This thesis makes the following contributions:

• We introduce a pair of integral non-linear scattering equations to computer graphics

that lead to new efficient methods for computing scattering from complex objects

that are based on a divide-and-conquer approach rather than the iterative methods

used for light transport problems.

• We develop the resulting scattering framework in a very general ray space setting.

By deriving the theory in the most general three dimensional setting, we can easily

apply it to a range of problems in graphics, all of which only require specialization

of the ray space to a particular set of conditions.

• We apply the general solution technique of Monte Carlo sampling to solving the re-

sulting integral equations. This method scales well to computing solutions to the

equations in the general three dimensional setting, particularly in comparison to pre-

vious techniques which are intractable for the three-dimensional case.

• We introduce the adding equations to computer graphics; these describe scattering

from objects in terms of scattering interactions between parts of them. This gives the

correct theoretical foundation for computing scattering functions from the composi-

tion of objects.

• We also apply Monte Carlo to solving problems with the adding equations, which is

a new solution approach for them as well. The generality of this solution technique
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makes it possible to apply the adding equations to a wider variety of problems than

they have been used for in other fields.

1.3 Thesis Organization

In the remainder of this thesis, we will first provide relevant background information about

radiometry—a scientific (but phenomenological) description of light and its interactions

with matter. This culminates with the introduction of the equation of transfer, an integral

equation that describes light equilibrium in an environment with known scattering proper-

ties. We conclude with an introduction to scattering functions in a number of forms: they

provide an important level of abstraction for the theory we will be developing.

We then derive a non-linear scattering equation in a general setting, which allows us

to apply it to more complex scattering problems than it has been used for in other fields.

We solve this scattering in integral (rather than differential) form, which allows us to ap-

ply Monte Carlo solution techniques to it. This solution method is compared to previous

approaches, and we compare the efficiency of this approach to classic techniques from

graphics based on the equation of transfer.

We next present Preisendorfer’s interaction principle, which unifies the scattering and

transport-based approaches to rendering and provides new tools for deriving new rendering

algorithms. Furthermore, it solidifies the connection between these radiometric approaches

and Maxwell’s equations. We make connections between the interaction principle and

previous rendering algorithms used in graphics and show its utility by deriving the adding

equations, which describe overall scattering due to the composition of two objects with

known scattering functions. They have been widely used previously in astrophysics and

neutron transport and we show their utility for solving rendering problems in graphics. We

describe new Monte Carlo methods for solving the adding equations and demonstrate their

efficiency with a series of examples.
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Finally, we conclude by summarizing this work and its contributions. We make addi-

tional connections with previous work in graphics and suggest a number of new directions

for additional work.



Chapter 2

Background

We will first introduce background material necessary to the remainder of the chapters in

this thesis. This material starts with a brief overview of concepts in radiometry, a system

for describing and measuring light and electromagnetic radiation. We then describe basic

concepts in radiative transfer, the study of how light interacts with and is scattered by par-

ticipating media and surfaces in an environment. Finally, we introduce the general concept

of scattering functions and show how computing values of scattering functions for partic-

ular lighting and viewing rays is the fundamental step for rendering imagery, regardless of

the particular solution approach being taken.

2.1 Radiometry

Radiometry is a system of units and ideas for describing how light and power (or, more

generally, electromagnetic radiation) are measured and how they propagate through an en-

vironment. See McCluney for a thorough introduction to the field [McC94]; our treatment

in this section largely follows his development. Careful developments of the theory for

application to computer graphics are available in Arvo [Arv95] and Veach [Vea97]. Alter-

natively, see Preisendorfer for an axiometric derivation of radiometric principles [Pre65,

7
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Chapter 15].

Radiation is the propagation of energy through space. We generally are interested in

the distribution of radiation over the electromagnetic spectrum; this is called the spectral

distribution. We can also talk about monochromatic radiation at a particular wavelength λ.

For applications in computer graphics, the portion of the electromagnetic spectrum from

roughly 380mm to 800mm is generally what is of interest, as that corresponds to the set of

visible wavelengths of light.

2.1.1 Basic radiometric quantities

There are four basic radiometric quantities relevant to rendering:

• Radiant flux, Φ, which has units of [watts]

• Irradiance, E [watts m−2]

• Radiant intensity, I [watts sr−1]

• Radiance, L[watts m−2 sr−1]

Steradians, the solid angle unit, are denoted by sr. The solid angle subtended by a curve

in space as viewed from some point x is equal to the area the curve covers when projected

onto the unit sphere centered around x (see Figure 2.1). Thus, any sphere that encompasses

x subtends a solid angle of 4πsr, since 4π is the area of the unit sphere. Similarly, the

hemisphere subtends a solid angle of 2πsr.

Similarly, the projected solid angle subtended by a curve is equal to the area of the

curve that results when the original curve is first projected onto the unit sphere around x

and that curve is then projected to the unit disk around x; the area covered on the unit disk

is the curves projected solid angle (Figure 2.2). The projected solid angle subtended by a

sphere around x is 2π and the projected solid angle subtended by a hemisphere is π.
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C

x

CS2

Figure 2.1: The solid angle subtended by a curve C in space with regard to a point x is
equal to the area of the curve C2

S when projected onto the unit sphere surrounding x.

When writing integrals over sets of directions ω, we will denote the measure defined

for the solid angle dµ(ω) by dω . For the projected solid angle measure, we write dω⊥ for

dµ⊥(ω). Given surface normal N, the Jacobian of the change of variables between the two

measures is given by
dω⊥

dω
= |ω ·N|.

Radiant energy, Q, is energy passing through a given surface area over a given period of

time. For the problems that we are interested in, the environment under consideration is in

steady-state—i.e. the energy distribution has reached equilibrium and isn’t changing over

time (see Section 2.2). Therefore, radiant flux, Φ, or power, which is defined as the amount

of energy passing through a surface per unit time, is a more generally useful quantity.

Φ =
dQ
dt

As Arvo points out, these kinds of radiometric definitions make the implicit assumption

that light transport can be represented in a continuous formulation as is done by the above

equation [Arv95, Kou69]. This assumption is necessary in that it allows us to use differ-

ential quantities and take their limits, but at some physical level, quantum physics means
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C

x

CS2

Cd

Figure 2.2: The projected solid angle is found by first projecting the curve C onto the sphere
around x and then projecting this curve onto the unit disk around x that is perpendicular to
the surface normal N.

that these limits can only be taken so far. Nonetheless, the accuracy of radiometry as a

framework for predictive modeling of light transport is not affected.

Irradiance, E, is the flux per unit area on a surface at a given point x with surface normal

N (see Figure 2.3). Note that a particular surface need not exist at x with normal N; it’s just

necessary that there be such a frame of reference in order to be able to define irradiance.

E =
dΦ
dA

This is usually used to describe the incident distribution of illumination at a point on a

surface, rather than a distribution of reflected light. Nevertheless, the concept is equally

valid for both uses. (Sometimes the term “radiant exitance” is used to describe “irradiance

leaving a surface” in order to differentiate it from irradiance arriving at a surface.) Irradi-

ance is the basic quantity for describing radiation at a surface when the particular angular

distribution is unimportant.
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N

dA

Figure 2.3: Irradiance is defined by the distribution of flux incident or exitent from a dif-
ferential area dA on a surface with given surface normal.

By taking the limit of flux over directions rather than over areas, we find radiant inten-

sity, I, flux per solid angle passing through a point in space.

I =
dΦ
dω

Intensity is most useful for describing the angular distribution of emission from an infinites-

imal point source; we will make only incidental use of this quantity in the remainder of this

thesis.

Finally, radiance, L, is the solid angle and projected area density of flux, defined by

L =
d2Φ

dω dA⊥
,

where dA⊥ is the projected area measure on a plane perpendicular to ω. When we are

considering radiance at a surface, we can equivalently write

L =
d2Φ

dω dA |ω ·N|
=

d2Φ
dω⊥ dA

Just as radiance can be expressed in terms of irradiance per differential solid angle,

irradiance at a point can be computed from an incident radiance function:

Z

Ω
L(x,ω′)dω′⊥,
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Ndω

Figure 2.4: Radiance is the solid angle and projected area density of incident flux at a point
x in a differential solid angle dω .

where Ω is the hemisphere above x and integration is with a projected solid angle measure.

Similarly, flux can be computed from a radiance function by

Φ =
Z

A

Z

Ω
L(x,ω′)dω′⊥dA,

and so forth.

2.1.2 Spectral issues

All of the quantities introduced thus far are spectral distributions that describe the distri-

bution of the quantity over the electromagnetic spectrum. By taking another limit, we can

define the spectral instances of each of them.

For example, spectral radiance at a given wavelength, Lλ, is just

Lλ =
dL
dλ

As such, L =
R ∞

0 Lλ(λ)dλ.

A variety of representations for spectral distributions have been used in computer graph-

ics; see e.g. Glassner [Gla95] for an overview. The two main approaches are to take point

samples of a continuous spectrum at particular wavelengths (e.g. at the wavelengths corre-

sponding to the red, green, and blue phosphors on a display), or to use a set of coefficients
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of basis functions to represent the spectrum. For the remainder of this thesis, we will only

consider monochromatic radiation and will therefore denote spectral radiance by L. For

more general spectral representations, our methods can either be applied multiple times,

once per sampled wavelength or basis function coefficient, or can be run once in parallel,

computing results for all coefficients simultaneously (see also [Pre76, Section 1.8]).

A specialization of radiometry is photometry: in this setting, measured quantities are

convolved with a standard response function V (λ) that models humans’ relative spectral

response by wavelength. For example, luminance, the photometric equivalent of the radio-

metric quantity radiance, is equal to

683
Z 770

380
V (λ)Lλ dλ,

where λ is expressed in nanometers. Other radiometric quantities are defined similarly.

Though photometry can be quite useful for practical applications where it is important to

be able to quantitatively compare the perceived “brightness” of illumination, we will work

entirely with radiometric quantities as they are more general and more fundamental.

2.1.3 The light field

An important operational concept is that of the light field. In a seminal paper from 1939,

Gershun developed photometric concepts on a vector analysis foundation [Ger39]. In this

work, we will make use of his development of the light field concept. In any environ-

ment (ignoring for now boundary conditions), radiance is defined at each point and in each

direction, giving radiance distribution function (the light field), which is written as L(x,ω).
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2.2 Radiative Transfer and Geometrical Optics

Radiative transfer is the phenomenological study of the transfer of radiant energy through

absorbing, scattering, and emitting media [Pre65]. Though it operates at the geometrical

optics level, where macroscopic properties of light suffice to describe how light interacts

with objects much larger than the wavelength of light, it is not at all uncommon to incor-

porate results from e.g. the wave optics level [HTSG91, Sta99]. These results just need

to be expressed in the language of radiative transfer’s basic abstractions.1 At an even finer

level of detail, quantum mechanics is needed to describe light’s interaction with atoms; as

direct simulation of quantum mechanical principles is unnecessary for solving rendering

problems in computer graphics, the problem of the intractability of such an approach is

avoided anyway.

In this geometrical optics framework, the assumption is made that light can be modeled

as a flow of particles. Arvo has investigated this connection and made connections between

previous work in transport theory, which applies classical physics to particles and their

interactions to predict their overall behavior and global illumination algorithms [Arv93b,

Arv95].

For the remainder of this thesis, we will assume that transport theory and geometrical

optics are an adequate basis for the description of light and light scattering. As such, we

will make following assumptions about the behavior of light:

• Linearity. The combined effect of two inputs to an optical system is always equal to

the sum of the effects of each of the inputs individually.

• Energy conservation. More energy is never produced by a scattering event than there

was to start with. This is in contrast to for example neutron transport problems where

critical nuclear reactions can increase the amount of energy in the system.

1Preisendorfer has connected radiative transfer theory to Maxwell’s classical equations describing electro-
magnetic fields [Pre65, Chapter 14]; his framework both demonstrates their equivalence and makes it easier
to apply results from one world-view to the other. More recent work was done in this area by Fante [Fan81].
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• No polarization. We will ignore polarization of the electromagnetic field; as such,

the only property of light particles is their wavelength (or frequency). While most of

the theory that we build this work upon has previously been extended to include the

effects of polarization, we will ignore this effect for simplicity.

• No fluorescence or phosphorescence. In other words, we make the assumption that

the behavior of light at one wavelength is completely independent of light’s behavior

at other wavelengths. As with polarization, it is relatively straightforward to include

these effects in this work, but largely would serve to make the presentation more

complex, with little practical advantage. More generally, we assume no “crossover”

between wavelengths, which also rules out black body emission.

• Steady state. The environment has reached equilibrium, such that its radiance dis-

tribution isn’t changing with time. This usually happens nearly instantaneously with

light in realistic environments.

The most significant loss from assuming geometrical optics is that diffraction and in-

terference effects cannot easily be accounted for. As noted by Preisendorfer, it is hard to

fix this problem given these assumptions because, for example, in the presence of those

effects the total flux over two areas isn’t necessarily equal to sum of flux over each individ-

ually [Pre65, p. 24], thus breaking the linearity assumption.

2.3 Interactions

Given the radiative transfer and particle transport frameworks for reasoning about the be-

havior of light, we will now introduce the three main processes that affect the distribution

of radiance in an environment. The first is absorption, which describes the reduction in

radiance along a beam due to the absorption of energy (i.e. its conversion to another form

of energy, such as heat) by a participating medium. Next is scattering, which describes how
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light along a beam is scattered to different directions due to collisions with particles in the

medium. Finally is emission, which describes the distribution of energy that is added to the

environment from luminaires, etc. See Chandrasekhar, Preisendorfer, and Arvo for a more

detailed introduction to these concepts [Cha60, Pre65, Arv93b].

All of the following properties may be homogeneous or inhomogeneous. Homogeneous

properties are constant throughout the medium being considered, while inhomogeneous

properties may vary arbitrarily throughout it.

2.3.1 Absorption

The first type of interaction that we will discuss is absorption. We start by defining the

beam transmittance Tr, which is the fractional amount of radiance of a beam transmitted

along a path from one point to another. It only accounts for radiance absorbed in the

medium (sometimes called true absorption—radiance along other paths that is scattered

into the beam that is being considered is handled separately). Given a beam starting at

location x, going in direction ω and with length r, the volume attenuation function at a

point x′ along the beam is defined as

ar(x,ω) =
1−Tr(x,x + rω)

r
,

where Tr(x,x + rω) is the fraction of the original radiance at x + rω that has been trans-

mitted to x. In the limit, as r → 0, we have the absorption coefficient at x in direction

ω,

σa(x,ω) = lim
r→0

ar(x,ω),

which has units m−1.

In most applications, σa is only a function of position and has the same value for all

directions. Whichever form it takes will not make a difference for the remainder of this



CHAPTER 2. BACKGROUND 17

discussion.

It can easily be shown that
dTr

dr
=−σaTr,

from which it follows that

Tr = e−
R r

0 σa(x)dx .

For constant σa, Beer’s law,

Tr = e−σar,

follows directly. (See [Pre65, Section 17] for more detailed discussion of these ideas.)

2.3.2 Emission

Some emission processes are necessary for there to be any energy in an environment and

thus for anything in it to be visible. Various chemical and thermal processes (or nuclear

processes, e.g. in the case of the sun), convert energy into visible wavelengths of light

which illuminate an environment. We will denoted emitted radiance at a point in a volume

x, in a direction ω by Le(x,ω). We will assume that emission is a given property of the

scene description and can be evaluated directly.

2.3.3 Scattering at a point

The third basic light interaction is scattering. As a beam of radiance propagates through

a medium, it may collide with particles in the medium and be scattered into different di-

rections (see Figure 2.5). This type of scattering is typically called single scattering to

differentiate it from multiple scattering, which is the aggregate result of all radiance that

goes through multiple single scattering events. A very closely related type of scattering is

scattering at a surface; this will be described in Section 2.5.

Under the assumption that the individual particles that cause these scattering events
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are separated by a few times the lengths of their radii, it is possible to ignore interactions

between these particles when describing scattering at some location [van81]. The phase

function, p, describes the angular distribution of scattered radiation at a point. A variety of

phase functions that describe a variety of scattering media have been developed, ranging

from parameterized models, which are used to fit a function with a small number of pa-

rameters to observed data, to analytic, which are derived by directly deriving the radiance

distribution that results from scattering from, for example, spherical particles.

Phase functions are typically defined so that they are normalized—for all directions ω,

1
4π

Z

S2
p(ω→ ω′)dω′ = 1. (2.1)

In most naturally-occurring media, the phase function is a function of the angle between

the two directions ω and ω′; such media are called isotropic and these phase functions are

often written as p(cosθ). In an anisotropic medium, such as one with crystalline-type

structure, the phase function is a function of the values of each of the two angles. An

important property of naturally-occurring phase functions is that they are reciprocal: the

two directions can be interchanged and the phase function’s value remains unchanged.

Phase functions can be isotropic or anisotropic as well. The isotropic phase function

is independent of either of the two angles and always has a value of 1 (in order to satisfy

Equation 2.1. An anisotropic phase function depends on either the angle between the two

directions or the two directions themselves, depending on if the medium is isotropic or

anisotropic, respectively.

Phase functions are often described by an asymmetry parameter, g, that is the average

value of the product of the phase function with the cosine of the angle between ω′ and

ω. The range of g is from −1 to 1, corresponding to total back-scattering to total forward
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ω

ω'

Figure 2.5: The phase function describes the distribution of scattered radiance in directions
ω′ at a point, given incident radiance along the direction ω. Here we have plotted the
Henyey-Greenstein phase function with an asymmetry parameter g equal to 0.5.

scattering, respectively. For any ω,

g =
1
2

Z

S2
p(ω→ ω′)(ω ·ω′)dω′ (2.2)

Thus, isotropic scattering corresponds to a g of zero. Any number of phase functions can

satisfy Equation 2.2; the g value alone is not enough to uniquely describe a scattering

distribution. Nevertheless, the convenience of being able to easily convert a complex scat-

tering distribution into a simple parameterized model often outweighs the loss in accuracy.

Our examples in Chapter 3.4 are based on a phase function due to Henyey and Green-

stein [HG41]; it has been widely used and is both computationally efficient and fits many

observed phase functions well.2

p(ω→ ω′) =
1−g2

(1+g2−2g(−ω ·ω′))3/2
(2.3)

However, none of the theory that we develop depends on the particular expression of a

phase function being used. More complex phase functions that aren’t described well with

a single asymmetry parameter are often modeled with a weighted sum of phase functions

2This equation is slightly different than many other authors’ since we use the convention that both direc-
tions are pointing outward from the point where scattering happens.
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like Henyey-Greenstein with different parameter values:

p(ω→ ω′) =
n

∑
i=1

wi pi(ω→ ω′) (2.4)

where the weights, wi necessarily sum to one so that the normalization condition, Equa-

tion 2.1, holds.

Detailed discussion of scattering and phase functions and derivations of phase functions

that describe scattering from independent spheres, cylinders, and other simple shapes can

be found in van de Hulst [van81]. In particular, extensive discussion of the commonly-used

Mie and Rayleigh scattering models (which describe scattering from particles approxi-

mately the size of or larger than the wavelength of incident radiation and particles much

smaller than the wavelength of incident radiation, respectively) is available there. Hansen

and Travis’s survey article is also a good introduction to the variety of commonly-used

phase functions [HT74].

2.3.4 Scattering coefficient

In addition to the the phase function, we need to know how often scattering events take

place. The scattering coefficient σs describes the probability of a scattering event per unit

distance traveled in the medium. When added to the absorption coefficient, we have the

attenuation coefficient, or interaction coefficient,

σt = σa +σs,

which gives the total reduction in energy due to out-scattering and absorption.

A useful quantity based on the absorption coefficient is the optical thickness between

two points. It is just the integral over the line between the two points of the absorption
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coefficient at each point.
Z x′

x
σt(x

′′)dx′′

The albedo is a useful quantity based on the scattering and attenuation coefficients; it

gives the fraction of the incident radiance that is re-scattered at a scattering event:

α =
σs

σt
.

High-albedo media, with α close to one, re-scatter most of the incident light at each scat-

tering interaction, while low-albedo media, with α close to zero, absorb most of it.

2.4 The Equation of Transfer

The equation of transfer is the fundamental equation that governs the behavior of light in

some medium that absorbs, emits, and scatters radiation [Cha60]. It describes the equi-

librium distribution of radiance in terms of the incident radiance in the medium and the

medium’s scattering properties. Most rendering algorithms in computer graphics focus

on solving the equation of transfer in order to compute the radiance leaving the scattering

medium or geometric objects and arriving at a sensor (e.g. the virtual film plane of a camera

model.)

As radiance travels along a beam, a number of processes contribute to change its distri-

bution. Radiance can be increased due to emission and in-scattering, radiance along other

beams that is scattered into the path of the beam under consideration. Conversely, radiance

can be decreased due to absorption and out-scattering, radiance that is scattered into other

beams.

The equation of transfer describes this process. In its most basic form, it is an integro-

differential equation that describes how the radiance along a beam changes at a point. It can

be derived by subtracting the effects of the scattering processes that reduce energy along
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the beam (absorption and out-scattering) from the processes that increase energy along the

beam (emission and in-scattering). Here we will assume that the medium has a constant

index of refraction—i.e. a beam follows a straight line path; see Preisendorfer [Pre65,

Section 21] for the derivation in the more general setting.

The source function is the amount of new light at a point in a direction due to emission

and in-scattered light from other points in the medium:

J(x,ω) = Le(x,ω)+
1

4π

Z

S2
p(x,ω′→ ω)Li(x,ω′)dω′

Consider now a differential volume along a beam of radiation. The beam is parame-

terized along its direction by a variable t ≥ 0 such that points on the beam are given by

x + tω. Now by combining the source function with an expression for the loss in radiation

due to attenuation and out-scattering, we have the integro-differential form of the equation

of transfer [Cha60, Arv93b]:

d
dt

L(x′) =−σtL(x′)+ J(x′) (2.5)

With suitable boundary conditions, this can be transformed to a purely integral equa-

tion. If we assume that there are no surfaces in the scene, we have:

L(x,ω) =
Z ∞

0
e−

R t′
0 σt(x′′)dt ′′J(x′,ω)dt ′, (2.6)

where x′ = x + t ′ω and similarly for x′′ and t ′′.

More generally, if there are reflecting and/or emitting surfaces in the scene, we have:

L(x,ω) = e−
R t

0 σt(x′)dt ′Lo(x0,−ω)+

Z t

0
e−

R t′
0 σt(x′′)dt ′′J(x′,ω)dt ′ (2.7)

where t is the distance along the ray to the first surface, and Lois the radiance leaving the
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surface, accounting for both emission and reflected incident radiance (see Equation 2.8.)

The equation of transfer was first introduced to graphics by Kajiya and von Herzen

[KV84]; Rushmeier was the first to compute solutions of it in a general setting [Rus88].

Arvo was the first to make the essential connections between previous formalizations of

light transport in graphics and the equation of transfer and radiative transfer in general

[Arv93b].

2.4.1 The rendering equation

As explained by Arvo [Arv93b], Kajiya’s rendering equation [Kaj86] is a particular in-

stance of the equation of transfer with particular boundary conditions. However, we will

generally distinguish between the two equations, using the term “rendering equation” to

describe the equation of transfer applied to rendering scattering from surfaces.3

The rendering equation says that, assuming all surfaces are opaque, the radiance leaving

a surface from a point in a given direction is given by the sum of the emitted radiance (if

the surface is emissive) and the incident radiance scattered by the surface,

Lo(x,ω) = Le(x,ω)+
Z

Ω
fr(ω′→ ω)Li(x,ω′)dω′⊥, (2.8)

where fr is the bidirectional reflectance distribution function; it describes scattering from

surfaces in a manner similar to the phase function and is explained in detail in Section 2.5.

Here we have written the integral in the rendering equation over incident radiance over the

hemisphere at x; Kajiya’s original formulation was an integral over all surfaces in the scene.

As the two are equivalent, we used this expression in order to match our nomenclature for

the equation of transfer.

3Authors in graphics have often used the term volume rendering equation to describe the equation of
transfer [Kru90].



CHAPTER 2. BACKGROUND 24

The second term of the rendering equation is often known as the the reflectance equa-

tion [CW93, Chapter 2]; it describes the reflected radiance distribution at a surface due to

a given distribution of incident radiance Li.

Lo(x,ω) =
Z

Ω
fr(ω′→ ω)Li(x,ω′)dω′⊥ (2.9)

2.5 General Scattering Functions

While most previous work on rendering algorithms for computer graphics has focused on

solving the equation of transfer, typically by simulating the propagation of incident illu-

mination through the environment, this thesis is based on a different approach, computing

the scattering function of the scene being rendered, which describes how an incident radi-

ance function that represents the illumination of the scene is transformed into an outgoing

radiance function describing the distribution of illumination leaving the scene.

Consider a scene to be rendered inside a convex volume illuminated by an incident

radiance function Li. The radiance leaving the scene at some point x on the boundary of

the volume in a direction ω can be written in terms of the integral of incident radiance over

the volume

Lo(x,ω) =

Z

A

Z

Ω
S(xi,ωi→ xo,ωo)Li(xi,ωi)dxidωi.

The scattering function, S, characterizes how incident radiance is transformed into exitant

radiance by the scene. Under the radiometry assumptions, it fully characterizes the light

scattering properties of the scene. In its most general form, as described here, it is an eight

dimensional function, which indicates that precomputing it or representing it in a tabular-

ized form is likely to be impractical in general. However, if more efficient algorithms can

be found to evaluate S for given pairs of incident and exitant rays than using the equation

of transfer to compute exitant radiance, the scattering function-based approach can be a
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preferable approach for rendering. General scattering functions of this form were intro-

duced to computer graphics simultaneously by Pharr and Hanrahan [PH00] and Debevec

et al [DHT+00].

Just as the phase functions defined in Section 2.3.3 abstract away low-level particle scat-

tering processes at the wave optics level, general scattering functions describe the scattering

behavior of a surface or general object. Such scattering functions are similarly important

abstractions in that they describe scattering behavior phenomenologically such that lower-

level scattering processes are hidden. The remainder of this section covers the background

necessary to show how being able to efficiently evaluate the scattering function for objects

is essentially the goal of physically-based rendering algorithms.

2.5.1 Previous Work: Scattering from Surfaces

Limited cases of general scattering functions have been widely used in graphics to describe

scattering from surfaces. Most of this work is based on the framework of Nicodemus et al.,

who introduced the bidirectional subsurface reflectance distribution function (BSSRDF)

which describes light reflection from surfaces in a very general fashion [NRH+77]. Given

a beam of incident radiation dΦ from direction ωi that irradiates a differential surface area

dAi at point xi, the amount of reflected radiance at point xo in direction ωo due to dΦ is

denoted by dLo. Due to the linearity of light reflection, dΦ and dLo are proportional.

This factor of proportionality was defined to be the BSSRDF. Denoting it by fss, we

have a function of two positions on the surface and two directions, fss(xi,ωi→ xo,ωo) (see

Figure 2.6). This is a scattering function that accounts for inhomogeneity in all dimensions

underneath the surface; it gives reflectance along an outgoing ray due to illumination along

an incoming ray.

If we have a surface with a given BSSRDF that is illuminated by a given incident radi-

ance distribution, rendering an image of that surface requires that we compute the radiance
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Figure 2.6: The BSSRDF at a point on a surface (xo,yo) is given by the ratio of reflected
radiance in the direction ωo to incident radiation dΦ at the point (xi,yi) from the direction
ωi.

leaving it at a set of points x in directions ω. For a BSSRDF, the integral that must be

evaluated for each such (x,ω) is

Lo(x,ω) =
Z

A

Z

Ω
fss(xi,ωi→ xo,ωo)Li(xi,ωi)dxidω⊥.

In other words, we must consider the hemispherical distribution of incident radiance at

all points xi on the surface’s boundary and compute the product of the radiance with the

BSSRDF’s value.

In practice, this integral is approximated with a numeric integration technique (e.g.

Monte Carlo integration). The Li term can usually be evaluated efficiently, and most of the

computational expense is in computing fss(xi,ωi → xo,ωo) for many pairs of points and

directions.

An often-useful set of simplifying assumptions transforms the BSSRDF to the BRDF

(bidirectional reflectance distribution function). The BRDF has been widely used in graph-

ics as the basic abstraction that describes scattering at a surface (e.g. [CW93, Chapter 2]).

Given the simplifying assumption that the surface is homogeneous and uniformly illumi-

nated over a reasonably large area (or, equivalently, that light exits the surface at the same

point it enters), the BSSRDF doesn’t depend on the location of xo, but only on the distance

between xi and xo. Writing this distance as r, we can reduce the reflection function to a
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four-dimensional function over pairs of angles [NRH+77]:

fr(ωi→ ωo) =
Z

Ai

fss(r;ωi→ ωo)dAi

and

fr(ω′→ ω) =
dLo(ω)

dE(ω′)
=

Lo(ω)

dLi(ω′)dω′⊥
. (2.10)

Given the BRDF, the radiance leaving a point on a surface in a given direction only requires

an integral over the hemisphere, as given by the reflection equation, 2.9.

2.5.2 Formal Inversion of the Equation of Transfer

One approach to computing values of scattering functions is via the formal solution of the

inverse of the light transport equation [Pre65, Section 22]. Indeed, previous rendering algo-

rithms used in graphics can be understood to effectively be based on computing the values

of scattering functions. Veach and Guibas derived rendering algorithms based on recursive

expansion of this solution operator [VG94, Vea97] and Lafortune used the Neumann expan-

sion of the solution operator to derive recursively-defined integral equations that describe

scattering from a collection of surfaces; he called this the global reflectance distribution

function (GRDF) and also used it to derive new light transport algorithms [LW94, Laf96].

Arvo and Veach have extensively investigated properties of the solution operator and con-

ditions for its existence[Arv95, Vea97].

In order to simplify equations for future discussions, we will introduce a set of linear

operators (see e.g. Taylor and Lay for an introduction to operators on vector spaces[TL80])

that describe scattering and propagation of radiance in an environment based on a notation

developed by Preisendorfer [Pre65]. Similar frameworks focused on the rendering equa-

tion, rather than the equation of transfer, have been developed by Arvo [Arv93a, Arv95]

and Veach [Vea97].
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Consider a convex optical medium with no emitting objects inside it that is illuminated

by an incident radiance distribution, Lb, at its boundary. At each point and in each direction

inside the medium, we can define a radiance distribution due to this direct illumination by

accounting for the attenuation from the boundary to the point; we will denote this by L0(x,

ω).

Now given the radiance field L0, we can define the first order radiance field L1, which

gives radiance at a point x in direction ω due to incident radiance that has scattered one

time. At each point x′ along the line from x to the boundary in the direction w, scattered

direct illumination is found by the integral over the sphere; this radiance is then attenuated

along the line from x′ to x.

L1(x,ω) =
Z t

0

Z

S2
L0(x

′,ω′)p(ω′→ ω)dω′Tr(x
′,ω)dt ′

where r is the distance from x to the boundary of the medium and where x′ = x + t ′ω.

L1 can be defined as a two stage process. First we define a phase scattering operator P

by

(P f )(x,ω) =
Z

S2
p(ω′→ ω) f (x,ω′)dω′.

Next we define a transmission operator T, by

(T f )(x,ω) =

Z r

0
Tr(x,x + rω) f (x,ω)dt ′

We can then define in general the j-th order radiance function by

L j = TPL j−1.

This expression gives the radiance function for light that has been scattered exactly j times

after emission.
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If we combine T and P into a single light transport operator, K = TP, then the light

field in the medium accounting for all orders of scattering is

L =
∞

∑
i=0

Li =
∞

∑
i=0

KiL0, (2.11)

where Ki denotes i applications of K and K0 is the identity operator I. This infinite series,

which is known as the natural solution of the equation of transfer, formally satisfies the

equation of transfer and converges under mild requirements of physically correct scattering

behavior.

We can write the formal inversion of the operator equation, 2.11 [Pre65],

L = (I−K)−1L0 (2.12)

Computing this solution operator, (I−K)−1 is the implicit goal of many applications in

rendering. For example, if an incident radiance distribution L0 is known (e.g. from a set of

light sources in a synthetic scene), and if the object to be rendered by described by given

attenuation coefficient functions, phase functions, etc., in order to render an image of the

object, it’s necessary to compute the radiance leaving the object, L. Doing so requires

computing the value of the solution operator for the incident radiance distribution and the

appropriate outgoing directions for the image. More generally, the solution operator de-

scribes the response of an object to any incident radiance distribution.

A common solution method has been to expand the solution operator into its Neumann

series; this is the approach taken by Kajiya, for example [Kaj86].

(I−K)−1 = I +K +K2 + · · ·

See Arvo [Arv93a] for an overview of integral equation solution techniques and their ap-

plication to the equation of transfer and the rendering equation.
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2.5.3 Previous Work in Graphics

Computing scattering functions that hide the complexity of light scattering from surfaces

has long been a research problem in graphics and optics. In graphics, this work has been

done in the context of reflection from surfaces modeled by the BRDF and the BSSRDF as

well as scattering functions that model scattering from complex geometry.

BRDF Models

Representative examples of BRDF scattering models in grapihcs include the Torrance–

Sparrow reflection model [TS67], an analytic approximation to light scattering from rough

surfaces; Blinn’s model for dusty surfaces, which uses a single-scattering approxima-

tion [Bli82]; Kajiya’s discussion of replacing complex geometry with reflection functions

[Kaj85]; and Westin et al.’s computation of BRDF samples by simulating light scattering

from micro-geometry [WAT92].

When no closed-form expression or approximation for multiple scattering at a surface

is available, previous work has either ignored multiple scattering (e.g. [Bli82]), or based

solutions on the equation of transfer and the definition of the BRDF (e.g. [WAT92]), where

reflected radiance in the outgoing direction is computed given differential irradiance from

the incident direction.

BSSRDF Models

Miller and Mondesir computed hypersprites that encoded specular reflection and refraction

from objects [MM98], and Zongker et al. have described an apparatus for computing the

scattering and transmission functions of glossy and specular real-world objects [ZWCS99].

Dorsey et al. have rendered rich images of stone and marble by computing BSSRDFs

at rendering time [DEL+99]. Their solutions are based on the equation of transfer and

photon mapping to accelerate multiple scattering computations, and they clearly showed
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Figure 2.7: Basic viewing geometry for the 1D (left) and 3D (right) scattering functions.
All vectors and rays are specified in the outgoing direction.

the importance of this effect for some materials.

More recently, Jensen et al have rendered subsurface scattering from BSSRDFs using

a dipole method that approximates multiple scattering very efficiently under a number of

simplifying assumptions [JMLH01, JB02]. This approach is particularly effective in the

high albedo case, where light is scattered many times before being absorbed. However,

this method is derived under the assumptions that the medium is semi-infinite and homo-

geneous; while they have shown the applicability of the method in more general settings,

the error introduced by doing so is difficult to quantify.

Scattering from Complex Objects

In recent years, a number of researchers have worked on computing scattering functions

that describe the aggregate scattering behavior of complex volumetric and geometric ob-

jects. Kajiya and Kay’s volume texels were an early example [KK89], and Neyret extended

their framework to include more general geometries and demonstrated applications to re-

ducing aliasing due to level-of-detail changes [Ney98]. Rushmeier et al. approximated

scattering from clusters of geometry by averaging the reflectance of surfaces hit by random
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rays [RPV93]. Sillion and Drettakis approximated occlusion due to complex objects as

volume attenuation functions [SD95] and Sillion et al. approximated aggregate scattering

functions from clusters of objects [SDS95]. None of these approaches accounts for mul-

tiple scattering inside the object or for light that enters the object at a different point than

it exits as general scattering functions do. Debevec et al. measured reflection functions of

human faces using a general scattering approach [DHT+00].



Chapter 3

Nonlinear Integral Scattering Equations

This chapter introduces a pair of integral scattering equations that express the scattering

function of participating medium in terms of the scattering functions of smaller subsets of

it. In contrast to computing the scattering function via inversion of the equation of transfer,

where many terms of the (I−K)−1 expansion must be evaluated for accurate results if the

scattering albedo is high, the integral scattering equations are integrals over depth through

the medium. As such, they can be evaluated more efficiently than the equation of transfer.

Furthermore, because they include terms that themselves have scattering functions, there

are opportunities of approximate these terms in a manner that isn’t possible with previous

approaches, leading to accurate solutions more efficiently.

3.1 Ray Space and Operator Notation

Before deriving these scattering equations, we will first introduce the notation we will use

throughout the remainder of this chapter.

Previous work in graphics has used a variety of parameterizations of surfaces and direc-

tions for the expression of the rendering equation (e.g. Kajiya used an integral over pairs

of points on surfaces). Veach has introduced abstractions based on ray space that have a

33
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x Generic point
ω Generic direction
r A ray through space, with origin x(r) and

direction ω(r)
µr Cosine of ray’s direction with surface normal
δ(x) Delta function: Kronecker or Dirac,

depending on context
S 2 The sphere of all directions
Ω The hemisphere around the +z direction
M 2 A 2D manifold
R Ray space: a set of rays going through a

set of locations in a set of directions
RM 2 The set of rays originating on a two dimensional

manifold M 2

L(r) Radiance along the ray r
p(x,ω′→ ω) Phase function at a point.
k(r′→ r) Scattering kernel
S(r′→ r) Scattering function for light reflected along

ray r due to incident light along ray r′

σa(x) Volume absorption coefficient at x
σs(x) Volume scattering coefficient
σt(x) Volume attenuation coefficient, σs(x)+σa(x)
α(x) Albedo σs(x)/σt(x)
z Depth in one-dimensional medium
R(z,ωi→ ωo) Reflection function from slab of depth z
T(z,ωi→ ωo) Transmission function from slab of depth z

Figure 3.1: Table of notation.

number of advantages: in addition to simplifying and clarifying formulas, ray space makes

clear that any particular parameterization of surfaces and directions is an arbitrary choice,

mathematically equivalent to any other [VG95, Vea97].

In this setting, ray space R is the set of rays given by the Cartesian product of points in

three-space R
3 and all directions S 2: R = R

3×S 2. We will define two specializations of

R . First is RM 2 , which is the subset of R where all rays start on a given two-dimensional

manifold M 2: RM 2 = M 2× S 2. A particular instance of RM 2 that is often useful is
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RM 2(z′), where the manifold is the plane at z = z′. Another useful specialization is to limit

the directions of rays R to the hemisphere around the surface normal of the manifold at the

ray’s origin; we denote this by R +
M 2 . The negation of a ray −r is defined as the ray with

the same origin as r but going in the opposite direction.

The scattering kernel k describes light scattering at a point. In ray space it is defined as

k(r′→ r) = δ(x(r)− x(r′)) σs(x(r)) p(x(r),ω(r′)→ ω(r)),

where p(x(r),ω(r′)→ ω(r)) is the phase function at the point x(r) for scattering from

ω(r′) to ω(r) and we have included the scattering coefficient σs in k in order to simplify

subsequent formulas. Note that it is zero unless the two rays share the same origin.

In contrast to the phase function and scattering kernel, the scattering function S(r′→ r)

is potentially non-zero for any pair of rays because of multiple scattering; it is not necessary

that the rays meet at a point for light along one ray to affect the response along another.

Though the general scattering function is ten-dimensional (since it is based on two rays,

each of which require five dimensions), when we are considering scattering from a specific

object, it is often more convenient to consider the eight-dimensional specialization where

all rays originate on a parameterized two-dimensional manifold that bounds it.

In order to be able to do integrals over RM 2 and RM 2(z), we define a differential mea-

sure:

dr = dω(ω(r))dA⊥(x(r)) = µr dω(ω(r))dA(x(r))

where x(r) is the origin of r, ω(r) is its direction, A is the area measure on R M 2 , and dω is

the differential solid angle measure.

Given an object’s scattering function, outgoing radiance along a ray r is computed by
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integrating its product with incident radiance over the object’s boundary.

Lo(r) =
1

4π

Z

R +
M 2

S(r′→ r)
µrµr′

Li(r
′)dr′

This is the three-dimensional analog to the reflectance equation, 2.9, which integrates the

product of incident radiance and the BRDF at a point to compute outgoing radiance. Its

added complexity stems from the fact that incident light scatters inside the object and may

exit far from where it entered.

We will define operators k and S, where bold text signifies the operator and Roman text

its kernel. Both operators are defined such that applying them to other functions gives:

(S f )(r) =
Z

R +
M 2

S(r′→ r)
µrµr′

f (r′)dr′

We can define compositions like kS, or SaSbSc, etc. These will be useful in computing

new scattering functions that describe the scattering of multiple objects in terms of their

individual scattering functions (see Chapter 4).

(S1 . . .Sn)(r
′→ r) =

Z

R +

M 2

· · ·

Z

R +

M 2

Sn(r
′→ r1) · · · S1(rn−1→ r)

drn−1

µ2
rn−1

· · ·
dr1

µ2
r1

(3.1)

3.2 Derivation of the Scattering Equation

With operator notation in hand, we will derive a pair of general integro-differential scat-

tering equations in ray space. These equations describe how the scattering function of an

object changes as layers with known scattering properties are added or removed from it. It

can either be solved in integro-differential form or as a purely integral equation. Our deriva-

tion follows the invariant imbedding method [BK56, BKW60, Pre58b, BKP63, BW75].

We will consider scattering from objects in an axis-aligned rectangular region of space
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with height z. This does not require that the object be parallelepiped-shaped; it is just

a convenient parameterization of space. This parameterization also makes it possible to

ignore the issue of non-convex regions of space, where illumination may exit and later

re-enter the space. That setting is also tractable, though the notation is more complex.

3.2.1 Reflection

The first scattering equation describes reflection from the medium, where here reflection

means that both rays originate on either the top or bottom of the medium and point in the

same hemisphere.

We will first consider the change in scattering behavior of this object as thin layers ∆z

are added on top of it. Multiple scattering in ∆z occurs with probability o(∆z2), and so we

will gather all multiple scattering in an o(∆z2) term. Later in the derivation we will divide

by ∆z and take the limit as ∆z→ 0, at which point all of the o(∆z2) terms disappear. There

are five remaining types of scattering events that need to be accounted for that are not in

the o(∆z2) term (see Figure 3.2):

1. S: Light that is attenuated in ∆z, scattered by the original object, and attenuated again

in ∆z.

2. k: Light that is scattered in ∆z so that it leaves the new layer without reaching the

original object.

3. kS: Light that is scattered in ∆z so that it passes into the original object, is scattered,

and then is attenuated in ∆z as it exits.

4. Sk: Light that is attenuated in ∆z, scattered by the object, and is then scattered by ∆z

such that it leaves the object.

5. SkS: Light that is attenuated in ∆z, scattered by the object, scattered in ∆z back into

the object, scattered again by the object, and then attenuated again.
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z
∆z

S k kS Sk SkS

Figure 3.2: The five types of scattering events to be considered in the invariant imbedding
derivation of the scattering equation. The S events reflect the aggregate multiple scattering
inside the z slab. All other scattering events, such as kSk, are gathered in an o(∆z2) term in
Equation 3.2.

Accounting for each of the five modes of scattering in turn, a new scattering function

for z+∆z can be written

S(z+∆z) = e−σt(∆z/µi)e−σt(∆z/µo)

(

S(z)+

S(z,z+∆z)+S(z,z+∆z)S(z)+S(z)S(z,z+∆z)+

S(z)S(z,z+∆z)S(z)+o(∆z2)

)

, (3.2)

where S(z) is the scattering operator for a slab of thickness z and S(a,b) is the scattering

operator for the portion of the slab from depth a to b.

We can simplify this further by replacing the e−c∆z term with 1− c∆z + o(∆z2) and

taking advantage of the fact that for a layer that is infinitesimally thin [GY89],

S(z,z+∆z) = k∆z+o(∆z2).

Making these simplifications and then taking the difference between the new scattering
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operator S(z+∆z) and the scattering operator of the original layer S(z), we have

S(z+∆z)−S(z) = o(∆z2)+

(

−σt

(

1
µi

+
1
µo

)

S(z)+

(

k(z,z+∆z)+k(z,z+∆z)S(z)+S(z)k(z,z+∆z)+

S(z)k(z,z+∆z)S(z)
)

)

∆z

Now we divide by ∆z and take the limit as ∆z→ 0, which gives us the infinitesimal

change in the scattering function due to the addition of the new layer.

∂S
∂z

=−σt

(

1
µi

+
1
µo

)

S +
(

k +kS +Sk +SkS
)

(3.3)

The first approach to solving this equation came from Ambarzumian, who observed

that for a semi-infinite atmosphere (i.e. one with a depth of ∞), ∂S
∂z must be zero. In other

words, given a semi-infinite homogeneous atmosphere, any finite thickness can be removed

from it will leave the atmosphere’s scattering function unchanged.1 Thus,

0 =−σt

(

1
µi

+
1
µo

)

S +
(

k +kS +Sk +SkS
)

so

S =
1

σt

(

1
µi

+ 1
µo

) (k +kS +Sk +SkS)

=
1
σt

µiµo

µi +µo
(k +kS +Sk +SkS)

For the finite thickness setting, however, a boundary condition is needed in order to

convert this non-linear integro-differential equation into an integral equation. If we assume

1Ambarzumian’s original observation was for the one-dimensional case, with only isotropic scattering in
the atmosphere. Others later extended this to the anisotropic case.
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that the object is bounded by a perfect absorber from below — i.e. S(0) = 0 — then

application of the Laplace transform gives Equation 3.4. General boundary conditions are

most easily handled with the adding equations that are introduced in the next chapter.

S(z) =
Z z

0
e−σt(1/µi+1/µo)(z−z′)(k(z′)+k(z′)S(z′)+

S(z′)k(z′)+S(z′)k(z′)S(z′)
)

dz′. (3.4)

Writing Equation 3.4 with the operators expanded out, we have

S(z,ri→ ro) =
Z z

0
e−(σt(xi)/µi+σt(xo)/µo)(z−z′)

(

k(ri(z
′)→ ro(z

′))+

1
4π

Z

R +

M 2(z′)

k(ro→−r′)S(z′,ri→ r′)
dr′

µ2
r′

+

1
4π

Z

R +

M 2(z′)

S(z′,r′→ ro)k(ri→ r′)
dr′

µ2
r′

+

1
16π2

Z

R +

M 2(z′)

Z

R +

M 2(z′)

S(z′,r′′→ ro)k(−r′→−r′′)S(z′,ri→ r′)
dr′

µ2
r′

dr′′

µ2
r′′

)

dz′ (3.5)

where the ray r(t) is a new ray along the same line as r, constructed by offsetting the origin

by distance t along the z axis and xi = x(ri(z− z′)) and xo = x(ro(z− z′)).

This is a formidable equation, but like the equation of transfer, it expresses a simple fact

about light scattering. With computers and numerical methods, it can be solved. We will

discuss previous solution techniques and some new Monte Carlo approaches for solving it

in Section 3.3.
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3.2.2 Transmission

A similar derivation based on adding an infinitesimally thin layer and finding the change

in transmission through the region of space gives the integral scattering equation for trans-

mission, where the two rays enter on opposite sizes with respect to the z parameterization.

We will omit the details of the derivation here.

S(z,ri→ ro) = δ(x(ri)+(x(ro)+ zω(ro)/µro)Tr(x(ri),x(ro))×
Z z

0
e−(σt(xi)/µi+σt(xo)/µo)(z−z′)

(

k(ri(z
′)→ ro(z

′))+

1
4π

Z

R +
M 2(z′)

k(ro→−r′)S(z′,ri→ r′)
dr′

µ2
r′

+

)

dz′+

Z z

0
e−(σt(xi)/µi+σt(xo)/µo)(z−z′)

(

1
4π

Z

R +
M 2(z′)

S(z′,r′→ ro)k(ri→ r′)
dr′

µ2
r′

+

1
16π2

Z

R +
M 2(z′)

Z

R +
M 2(z′)

S(z′,r′′→ ro)k(−r′→−r′′)S(z′,ri→ r′)
dr′

µ2
r′

dr′′

µ2
r′′

)

dz′ (3.6)

3.2.3 One-dimensional setting

There are useful special cases of the general scattering equations in the one-dimensional

setting; this was where they were first derived. In one dimension, position in x and y is

irrelevant, so the delta functions in the integral from the phase function disappear, leading to

simpler formulas and easier implementation. A finite slab then has four scattering functions

(see Figure 3.3): given illumination at the top, one gives the amount of light reflected at

the top R+ and another gives the amount of light transmitted at the bottom T− [Cha60].

The other two, R− and T+, give reflection and transmission due to light incident at the

bottom. R+ and T− are given in Equations 3.7 and 3.8. Note that in general R+ 6= R−

and T+ 6= T−; this was first demonstrated by Preisendorfer [Pre58a] and Hovenier has

investigated the relationship between R+ and R− and T+ and T− in the general case in the
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presence of polarized light [Hov69].

R+(z,ωi→ ωo) =

Z z

0
e−σt(z′)(1/µi+1/µo)(z−z′) σs(z

′)

(

p(z′,ωi→ ωo)+

1
4π

Z

Ω
p(z′,−ω′→ ωo)R+(z′,ωi→ ω′)

dω′

µ′
+

1
4π

Z

Ω
R+(z′,ω′→ ωo)p(z′,ωi→−ω′)

dω′

µ′
+

1
16π2

Z

Ω

Z

Ω
R+(z′,ω′′→ ωo)p(z′,−ω′→−ω′′)R+(z′,ωi→ ω′)

dω′dω′′

µ′µ′′

)

dz′ (3.7)

T−(z,ωi→ ωo) = δ(µi−µo)e
−

R z
0 σt(z′)dz′/µi+

Z z

0
e−σt(z)(z−z′)/µi σs(z

′)

(

e−z′/µop(z′,ωi→−ωo)+

e−z′/µo
1

4π

Z

Ω
p(z′,−ω′→ ωo)R+(z,ωi→ ω′)

dω′

µ′
+

1
4π

Z

Ω
T−(z′,ω′→ ωo)p(z′,ωi→−ω′)

dω′

µ′
+

1
16π2

Z

Ω

Z

Ω
T−(z′,ω′′→ ωo)p(z′,−ω′→−ω′′)R+(z′,ωi→ ω′)

dω′dω′′

µ′µ′′

)

dz′ (3.8)

Note that the T equation is written in terms of R; this can make its solution somewhat

inconvenient. Hovenier has reduced this pair of functions to a single exit function; particular

values of R and T can both be computed directly from it [Hov77].

The application of the reflection and transmission operators to a function f is

(R f )(ω′→ ω) =
1

4π
1
µ

Z

Ω
R(ω′→ ω) f (ω′)dω′
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T -
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Figure 3.3: The two reflection and transmission functions of a slab.

which gives us a nearly familiar equation for computing reflected radiance at a point:

Lo(ω) =
1

4π
1
µ

Z

Ω
R(ω′→ ω)Li(ω

′)dω′

The reflection function of a surface is thus related to its BRDF, fr, by

R(ω′→ ω) = 4π fr(ω′→ ω)µ′µ.

3.2.4 Discussion

The scattering equations thus bring us to a new approach for considering rendering prob-

lems. Note that there are no fundamentally new types of rendering problems that the scat-

tering equations make accessible: as noted in Section 2.5.2, the formal inverse of the oper-

ator rendering equation can be used to solve the same kinds of scattering problems as well.

For example, Hanrahan and Krueger effectively used a Neumman series expansion of the

inverse to estimate four-dimensional scattering functions to compute BRDFs. This method

can be extended to higher-dimensional scattering problems, and more sophisticated Monte

Carlo techniques can be applied.
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Conversely, as explained in Section 2.5, the scattering equation can be used for more

than just pre-computing scattering functions. Given knowledge of particular viewing condi-

tions, particular lighting conditions, or both, we can directly compute estimates of integrals

such as SLe (where Le is emitted radiance), rather than first computing S and then passing

emitted light through it. Since both approaches are based on formulae that directly describe

the physics of light scattering, it is not surprising that the two approaches are connected in

this way. In fact (and reassuringly), the scattering equation can be derived directly from the

equation of transfer [Pre65]. The advantage of the scattering function approach, however,

is that it makes possible different flavors of solution methods that can be more efficient than

approaches based on the equation of transfer.

3.3 Monte Carlo Solution

A previously uninvestigated technique for solving the scattering equations is Monte Carlo

integration. Monte Carlo is a particularly effective technique for solving high dimensional

integrals and integrals with discontinuities in the integrand. Its generality makes it possible

to compute integrals where the functions in the integrand vary almost arbitrarily [KW86];

here, it allows wide variety in the possible phase functions, scattering and attenuation co-

efficients, and geometric shapes rendered.

In this section we first introduce basic principles of Monte Carlo integration. We then

describe our solution technique for the one-dimensional reflection and transmission equa-

tions in order to motivate the general case. We explain the extension of this method to

the three-dimensional case and discuss new difficulties that arise from the transition to this

more general setting. General introductions to Monte Carlo integration include books by

Spanier and Gelbard [SG69], Kalos and Whitlock [KW86] and Fishman [Fis96].
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3.3.1 Monte Carlo Overview

We will briefly introduce notation and summarize basic principles of Monte Carlo integra-

tion. Monte Carlo is a statistical integration technique based on taking random samples

from the domain of an integrand and using them to estimate the value of an integral. The

standard Monte Carlo estimator gives the value of an integral
R

D f (x)dx over some domain

D as the expected value of
1
N

N

∑
i

f (Xi)

p(Xi)
,

where the Xi are random variables drawn from a sampling distribution p(x) over D. This

distribution must be non-zero for all x where f (x) > 0.

The most straightforward approach is to use a uniform distribution over D. However,

given some prior knowledge about the shape of the integrand f (x), a more efficient ap-

proach is to use importance sampling, where the distribution p(x) is more likely to gener-

ate samples where f (x)’s value is relatively large. Importance sampling is one of a family

of techniques for variance reduction that try to compute accurate estimates of the integral

without just increasing the number of samples taken, N.

Another important technique for improving the efficiency of Monte Carlo integration is

Russian roulette, which makes it possible to skip the computational expense of evaluating

terms that are likely to make a small contribution to the overall result. With probability q,

an estimate f (Xi)/p(Xi) is not evaluated and is instead replaced with a value c. Otherwise,

the estimate is still computed but is replaced with

f (Xi)/p(Xi)−qc
1−q

.

The expected value of the estimate is still the value of the integral
R

D f (x)dx. There is

great flexibility in how the values q and c are chosen; if the function f (x) is expensive to

evaluate or can sometimes be closely approximated with a constant term, Russian roulette
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can substantially improve the efficiency of Monte Carlo integration.

3.3.2 Solution in One Dimension

We will describe a simple recursive solution of the integral scattering equation. Because

S(z) in Equation 3.4 is written recursively in terms of integrals of scattering functions of

S(z′), we can evaluate an estimate of S(z) based on a Monte Carlo integration process. The

general form of the integral to estimate the value of is

Z z

0
e− f (z′)g(z′)dz′,

where f (z′) and g(z′) represent corresponding terms of Equation 3.5. This process is most

easily understood in the one-dimensional case (Equation 3.7).

The standard Monte Carlo estimator says that we can compute this integral by sampling

zi values from some distribution p(z) and computing the estimate

1
N

N

∑
i

e− f (zi)g(zi)

p(zi)
.

Of the terms in this expression, e− f (zi) and p(zi) can be computed immediately. g(zi)

is itself a sum of four terms, one of which is easily computed (the phase function), and

the rest of which involve single or double integrals. Monte Carlo integration can then be

applied to estimate those integrals, as we will show shortly.

Sampling from exponential distributions

For the first sampling distribution of depths zi, it is better to use a distribution that matches

the e− f (z) term’s distribution than to use a uniform distribution, particularly when the op-

tical thickness of the scattering medium is large. For constant attenuation functions, the
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exponential term’s distribution can be sampled directly: to sample the integral

Z z

0
eaz′dz′

where a =−σt(1/µi +1/µo), we first find the probability density function

p(z′) =
aeaz′

eaz−1
.

The cumulative distribution function P(z) is
R z

0 p(z′)dz′. Given a random number ξ between

0 and 1, we set ξ = P(z′) and solve for z′, giving

z′ =
log(1+ξ(eaz−1))

a
.

More generally, if the attenuation term isn’t constant but varies with depth, the a sampling

distribution that matches it cannot in general be computed analytically. In this case, we

can sample an optical thickness and march through the medium until that distance has been

covered. In either case, the resulting sample is weighted by the exponential term at z′

divided by the pdf.

3.3.3 Estimating the Hemispherical Integrals

Similar Monte Carlo integration machinery can be applied to compute the integrals in the

g(z) term. For example, consider the second term of the reflection function integral,

1
4π

Z

Ω
p(z′,−ω′→ ωo)R+(z′,ωi→ ω′)

dω′

µ′
.
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The values of z′, ωi, and ωo are given; values for ω′ are sampled from a sampling distribu-

tion to compute the estimate

1
N

N

∑
i

p(z′,−ω j→ ωo)R+(z′,ωi→ ω j)
1
µ′

p(ω j)
.

As before, a uniform distribution of directions over the hemisphere could be used. It is

not feasible to directly sample from the distribution of p(z′,−ω→ ωo)R+(z′,ωi→ ω), as

doing so effectively requires being able to compute the integral analytically. However,

sampling from the phase function’s distribution or an approximation to R+’s distribution

can give better results than just using a uniform sampling distribution.

Sampling phase functions

Many phase functions can be sampled exactly; we will describe three in this section. Our

general sampling routine takes an incident direction and two random numbers, ξ1 and ξ2,

which are used to select an outgoing direction. The routine calls the appropriate lower-level

sampling routine based on the phase function, constructs an outgoing vector, and returns

the new direction as well as the probability of it being chosen.

The phase function-specific sampling routines take a single random number and return

a value cosθ that represents the cosine of the offset of the new vector from the original one

(see Figure 3.4) as well as the probability density function for sampling that offset. The

offset angle is enough to give us a circle of possible directions for the new vector. We then

use the second random number to select a specific outgoing direction by choosing a point

around the circle.

An isotropic phase function is most easily sampled. In order to sample with a uniform

density over the sphere of possible directions, we compute cosθ = 1− 2ξ. By uniformly

sampling in cosθ (and thus non-uniformly sampling in θ), this accounts for the sinθ effect

of the measure on the sphere sinθdθdφ [CW93].
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Figure 3.4: Given an incident vector ω, a scattered vector ω′ is sampled via a two-step
process. First the phase function samples an offset angle θ based on its distribution. Then,
ω′ is computed using a second random number to sample a direction from the circle of
possible directions given by θ.

The Henyey-Greenstein phase function (Equation 2.3) is also easily sampled [HK93].

By applying the standard integration and inversion approach to find a sampling distribution

that is propoertional to the function’s distribution, we have

−cosθ =
1+

g2−(1−g2)
(1−g+2gξ)2

2g
,

and where the probability density is just the value of the phase function for the direction

chosen.

When sampling a weighted sum of phase functions, e.g. Equation 2.4, a two-stage

process is used. First, we randomly choose one of the terms to sample (for example, with

probability proportional to their relative weights). We then use that term’s importance

sampling routine to determine cosθ. However, to compute the pdf, we apply multiple

importance sampling [VG95] (the balance heuristic in particular), and return instead the

weighted sum of pdfs from each of the terms.

A slight complication is that we often need to sample a direction that is constrained

to be in a particular hemisphere. For example, when computing estimates of the kS term

of Equation 3.4, if we want to sample a direction based on k, that direction must be in
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ω

ω'
Figure 3.5: When sampling directions ω′ for estimating the hemispherical integrals in the
reflection equation, the directions ω′ need to be in the opposite hemisphere (dark region)
than the incident direction ω.

the downward hemisphere (see Figure 3.5). If the sampling method used sometimes does

generate samples in the upward hemisphere, the value of the integrand must be taken as

zero for such samples.

Sampling scattering functions

It is also useful to be able to use importance sampling to choose directions according to the

scattering function. This is more difficult than sampling according to the phase function,

since we don’t know the value of the scattering function in closed form. Thus, it is nec-

essary to come up with approximate importance functions that match the general shape of

the scattering function well, but are still easily evaluated.

The simplest approach would be to treat the structure of the scattering function as com-

pletely unknown and use an isotropic sampling distribution. Because there is non-zero

probability of sampling any direction, the value computed is guaranteed to be correct. How-

ever, a better approach tries to increase overall efficiency by sampling a distribution that

better matches the scattering function’s distribution.

We could do this by sampling according to a single-scattering approximation of the
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scattering function. For optically thin objects and for objects with low albedos, most scat-

tering is due to single scattering events, rather than chains of multiple scattering, anyway.

Because we can sample phase functions exactly, this is slightly better, though it doesn’t

account for the multiple scattering encapsulated by the scattering functions.

We have developed a more robust sampling approach that accounts for what has been

called angular relaxation [Yan97, Section 3.8]. It has widely been observed that after

multiple scatterings, the original radiance distribution is eventually ‘forgotten’ and becomes

completely isotropic. The larger the albedo, the greater this effect.

Yanovitskij has derived an expression that describes the isotropization due to multiple

scattering events from the Henyey-Greenstein phase function [Yan97]. Expressed in our

notation, the scattering distribution function after n scattering events is

p(ω→ ω′)n
=

1−g2n

1+g2n−2g|gn−1|(−ω ·ω′)3/2
. (3.9)

Using this improved distribution, an approximation to the scattering function’s distri-

bution is given by the infinite sum

∞

∑
n=1

αp(ω→ ω′)+α2p(ω→ ω′)2
+ · · ·

Although this could be used for importance sampling by choosing a term to sample with

probability proportional to its contribution, we can’t apply the multiple importance sam-

pling technique, as that would require that we compute the probability of each of the sam-

pling strategies choosing the resulting direction. Therefore, we cut off the infinite sum

after a small number of terms (e.g. three or four), and collect all remaining terms in a

single perfectly isotropic importance function.

See Figure 3.6 for pseudo-code that summarizes the complete process for applying

Monte Carlo integration to evaluate the 1D reflection function.
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Procedure R(z, ωi, ωo ) ≡
(z′, pdf ) := sampleDepth(σt , z)

scale := e−(z−z’)∗σt∗(
1
µi

+ 1
µo

) / pdf
result := σs * p(ωi, ωo )
if (not terminate()) then

(ω′, pdf’ ) := sampleAngle(p, ωo )
result := result + σs * p(-ω′, ωo ) * R(z′, ωi, ω′ ) /

(cosω′ * pdf’ )
(ω′′, pdf” ) := sampleAngle(p, ω i )
result := result + R(z′, ω′′, ωo ) * σs * p(ωi, -ω′′ ) /

(cosω′ * pdf” )
result := result + R(z′, ω′, ωo ) * σs * p(-ω′′, -ω′ ) *

R(z′, ωi, ω′′ ) / (cosω′ * cosω′′ * pdf’ * pdf” )
endif
return result * scale

Figure 3.6: Pseudo-code for evaluation of the one-dimensional reflection equation. The
phase function p(), σs, and σt are all potentially varying with depth. The terminate()
function probabilistically stops the recursion using Russian roulette based on the weighted
contribution that this estimate of R will make to the final solution. The sampleAngle()
function uses importance sampling to choose an outgoing angle based on the phase function
and the incoming angle; it returns the new direction and its probability density.
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Discussion

There is an important difference between the process of estimating values of the integral

scattering equation and Monte Carlo solutions of the equation of transfer: as the recursion

continues, the z′ at which we are estimating S is monotonically decreasing. Once we have

chosen a depth at which to estimate S, all scattering above z′ is irrelevant; it has already

been accounted for. In effect, we are able to make a single pass through the medium from

top to bottom, peeling off layers and solving scattering problems for thinner sub-objects.

In comparison, standard approaches to solving the equation of transfer such as those based

on the Neumann series expansion do not create a progressively simpler problem as they

proceed.

3.3.4 Solution in Three Dimensions

In the 3D case, this sampling process is less straightforward due to the delta function in the

ray space phase function. Fortunately, delta functions generally fit easily into Monte Carlo

sampling schemes. For example, given two rays r and r′, the k(z′) term of Equation 3.4

is zero unless both r and r′ start at the same point and the z′ depth sampled in the first

sampling step above matches that point. In general two rays in 3D do not meet at all.

Therefore, in the process of sampling the integrals, whenever we have a choice of rays to

sample, sometimes we must carefully choose a ray and a depth such that this delta function

is non-zero. To make this easier, we separate S into two components, Ss, scattering due

to a single scattering event, and Sm, scattering due to multiple scattering events. This is

analogous to distribution ray tracing with a mixed pure specular and diffuse surface where

the two parts need to be sampled separately.

Ss(z) =
Z z

0
e···k dz′
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Figure 3.7: Sampling rays r′ in the 3D case; hilighted regions denote terms that are free
to be sampled. From left to right: for direct lighting, all scattering events are along r’s
path through the medium; for Ss, we sample a distance along r to find a scattering event—
this gives a ray that connects through the point x′ on the boundary; for Sm, we have more
freedom to sample the direction of r′′ and can use a variety of sampling distributions;
finally, for SkS, we sample a point for the scattering event k and then sample the two
outgoing directions.

and

Sm(z) =
Z z

0
e···(kS +Sk +SkS)dz′.

Thus, S = Ss +Sm.

Consider the specific case of estimating Lo = SLe for a given outgoing ray r and a

single point light source. Separating S, we have two integrals, SsLe +SmLe. The first term

is easily handled: it just represents single scattering of emitted light in the medium, so all

scattering events are along r’s path through the object. We choose positions for scattering

events (i.e. x′ in Figure 3.7a) using importance sampling to select points along r as above.

Given these points, the incoming ray r′ follows directly since the light is a point source; for

an area light, a point can be chosen on the source and r then follows.

Moving on to SmLe, we first consider the term

SkLe = SskLe +SmkLe

(treatment of kS is analogous), we first randomly sample a point x′ on the surface where
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the k scattering event happens, using an exponential distribution centered around x(r) (Fig-

ure 3.7b). This strategy is based on the assumption that the longer the distance light travels

under the surface, the more it will be attenuated and the less impact it will have. This

defines a ray r′ to the light due to the point light assumption (as above, area lights are

a straightforward extension). The second single scattering event must be along r’s path

through the medium and must have a direction such that it passes through x(r′) in order

for all of the respective delta distributions to be non-zero. We therefore can again chose a

depth along r with importance sampling.

There is more freedom in sampling from the SmkLe term (Figure 3.7c). We choose a

ray r′ as above, and still must have the k scattering event at x(r′) for the delta distribution

in k to be non-zero. However, the direction of r′′ can be chosen arbitrarily since Sm doesn’t

have the delta distribution along the path of r through the medium that Ss does. We simply

sample from the phase function’s distribution based on ω(r′) to get the ray direction for the

r′′.

Finally, the SkSLe term is slightly different: we also need to choose two rays that

meet at a point where the k term will be evaluated (Figure 3.7d). We sample the shared

ray origin from an exponential distribution centered around the midpoint between x(r) and

x(r′). Given this origin that the two new rays share, we again use importance sampling

with the phase function to choose the two ray directions.

3.4 Results

In this section, we demonstrate the use of the 1D scattering equations to rendering com-

plex surfaces and show applications of the 3D scattering equation to accurate rendering of

surfaces, accounting for light that enters the surface some distance from where it exits.
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3.4.1 Accuracy

We tested our implementation’s accuracy against a model that corresponds to what is known

as “the standard problem” in astrophysics. The parameters to this model are an atmo-

sphere’s optical thickness, albedo, and phase function. The resulting scattering functions

that describe the atmosphere’s aggregate scattering function have been computed and tabu-

larized by many authors. We compared our results to tables from Bellman et al. [BKP63],

which have results computed by using Gaussian quadrature to generate a system of differ-

ential equations which were then solved via the Runge-Kutta method.

For a set of roughly forty randomly-selected albedos, thicknesses, and pairs of angles,

we found excellent agreement with the scattering function values our routines computed.

Finally, we verified that our 3D implementation gave the same results as the 1D equation

for uniformly illuminated planar objects that have homogeneous scattering properties in xy.

3.4.2 Efficiency

We then conducted a series of experiments to compare the efficiency of our solution method

to a standard solution method that uses the equation of transfer. We implemented a Monte

Carlo sampling routine that uses the equation of transfer to estimate the scattering function

of a medium for a pair of angles based on a random walk. Our implementation is similar

to the algorithm described by Hanrahan and Krueger [HK93]: a particle is injected into

the medium from the incident direction and followed along a path through the medium.

The walk is biased so that at each scattering event, the attenuation to the surface in the

outgoing direction is computed and the result is accumulated to estimate the function’s

value. Russian roulette is used to terminate this process, based on the accumulated weight

of the path.

After verifying that both methods converged to the same results, we compared their
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Figure 3.8: Comparing our solutions of the “standard problem.” After giving each method
the same amount of processor time to compute the best possible solution, we have graphed
the ratio of variance when the equation of transfer is sampled to the variance when the
scattering equation is sampled. Points above 1 on the y axis indicate situations where the
scattering equation is more efficient. Because both sampling methods converge at the same
rate asymptotically, the ratio of running time to compute solutions of equivalent quality is
proportional to the variance ratio.



CHAPTER 3. NONLINEAR INTEGRAL SCATTERING EQUATIONS 58

relative efficiency. For a variety of thicknesses, scattering coefficients, absorption coeffi-

cients, and phase functions, we computed accurate estimates of the scattering function for

a pair of angles. We then applied both solution methods to computing estimates of the

scattering functions for the pair of angles, giving each the same amount of processor time.

The same Russian roulette termination parameters were used for each method and impor-

tance sampling was applied in analogous places (e.g. for sampling the outgoing direction

of the phase function at scattering events for the equation of transfer). Our implementation

generally computed five to ten estimates with the equation of transfer in the time it took to

compute one estimate with the scattering equation.

The graphs in Figure 3.8 show some of the results. We computed the ratio of variance

of the equation of transfer solution to the scattering equation solution, after giving each the

same amount of processor time. For some cases scattering equation solution had 5 to 10

times less variance, and for some configurations (strongly anisotropic phase functions and

very thick objects), it sometimes had over 100 times less variance. Although the scattering

equation approach generally performed well, for cases with high albedos the equation of

transfer was sometimes more efficient. The scattering equation also did well for most phase

function parameters, except for extreme backward scattering. In this case, although most

of incident light is quickly scattered back out of the top, we still continue to work through

the z depth of the medium, not allocating effort as well as may be optimal.

3.4.3 Subsurface Scattering from Volumes

As a final example, we generated some images to demonstrate the use of the 3D scattering

equation to compute reflection from complex surfaces and performed some experiments to

understand the properties of subsurface light transport.

To determine how distance from the point of illumination affected the intensity of re-

flected light, we illuminated half of a slab from the direction along its normal and looked
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Figure 3.9: Reflection function magnitude in the unilluminated part of an object as a func-
tion of distance from the boundary of illuminated region. σa = 0.5, σs = 0.5, g = 0.

at the scattering function’s magnitude in the normal direction at a series of points mov-

ing away from the illuminated area. Figure 3.9 shows the results. As one might expect,

reflectance drops off roughly exponentially. Other experiments showed that as the object

gets thinner, light entering from far away becomes less important, because more light scat-

ters out of the object before traveling very far. These observations help validate some

of the assumptions made in designing importance sampling techniques for 3D scattering

equation.

We also rendered some images of marble, in the form of a marble block. Scattering

properties were computed procedurally using noise functions [Per85]. Figure 3.10 shows

a comparison of rendering a block with the 1D scattering equation (left) compared to a

rendering with the 3D scattering equation (right). The right halves of the blocks were

brightly illuminated by a directional light source, while the left halves were lit dimly. There

are a number of significant differences between the two images. Most strikingly, when

subsurface light transport is accounted for we can see the effect of light that entered in the

illuminated half and then scattered into the unilluminated half. Furthermore, the veins of

the marble, where the attenuation coefficient is high, cast shadows inside the volume; this

effect is missing in the 1D case. A subtle difference between the two can be seen along
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Figure 3.10: Comparison of rendering subsurface scattering from a side-lit marble cube
with the 1D scattering equation (left) and the 3D scattering equation (right). Since the 3D
solution considers light that enters the surface away from where it exits, subsurface light
transport is more accurately modeled.

the edges: they are more transparent in the 3D version, since the geometry of the object

is accounted for in computing subsurface scattering and rays leave the object after a short

distance.

3.5 Previous Work

In the early 1900s, McCleland and McClelland and Hackett developed techniques similar

to the invariant imbedding method used to derive the scattering equations here. After con-

ducting a series of experiments to measure reflected flux from a variety of materials after

bombardment from β rays, they derived a pair of coupled differential equations describ-

ing the change in upward and downward radiation at points in a one-dimensional medium

[McC06, MH06a] (see also [McC05, MH06b]). These results were used to better esti-

mate scattering and attenuation properties of objects, by distinguishing between singly and

multiply scattered radiation.

Ambarzumian’s description of the invariance of the reflection function of a semi-infinite
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atmosphere was the next important innovation for this approach [Amb42, Amb43, Amb58].

He observed that the intensity and distribution of reflected light from a semi-infinite homo-

geneous atmosphere is unchanged as finite layers are added to or removed from it (see Sec-

tion 3.2); this led to an entirely new integral scattering equation that described scattering

from such an atmosphere directly, entirely avoiding the need to use the equation of transfer.

Chandrasekhar refined this insight and placed it on a firm mathematical footing [Cha60].

He then developed generalized principles of invariance that led to integro-differential equa-

tions that described reflection and transmission from finite atmospheres.

Bellman and Kalaba were the first to derive the purely integral form of this equation for

theoretical analysis of solutions to the scattering equation [BK56]. Further theoretical anal-

ysis of the equation in integral form as well as the generalization to depth-varying albedos

was performed by Ueno [Uen60] and Busbridge [Bus61]. Redheffer [Red62] points out

that similar ideas to Ambarzumian’s have been applied for computing impedance in cir-

cuits. He also provides a wide set of references to similar work in other areas (for example,

probability.)

3.5.1 Extensions to higher dimensions

There have been a number of previous efforts to generalize the scattering equations to

higher dimensions. Bellman et al. derived a scattering function that accounted for vari-

ation in the x direction as well as in the z direction [BKU62] and Corones has derived

a system of equations for scattering in a two-dimensional medium, under the assumption

that scattering happened at discrete points and in discrete directions [Cor89]. Faber et

al. investigated the generalization of the adding equations to two dimensions [FSW89],

and Nelson et al. derived non-linear integro-differential equations describing reflection and

transmission of radiation in a two-dimensional medium, neglecting angular distribution of

radiation [NSV92]. More recently, Nelson and Seth have derived scattering equations in
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the two-dimensional case where the particles are allowed to move in only four directions

[NS97]. In some sense this is a generalization of the Kubelka-Munk model to two dimen-

sions. Tessendorf has developed a method of invariant imbedding for general geometries

[Tes90, Tes87].

Recently, Wang has derived a scattering equation in the three-dimensional case where

incident illumination from a distant source is constant over the entire upper boundary of

the region and where the phase function varies only in z [Wan90] [NUW98, Section 4.6].

Thus far, it has only been applied to the problem of estimating the reflectance of an object

on the ground, given information about reflected light from an atmosphere above the object

[Wan93, WU94].

3.5.2 Application to computer graphics

The first graphics researchers to recognize the importance of the scattering equations were

Max et al. [MMKW97]. They used the one-dimensional scattering equation to compute

light scattering in tree canopies by deriving a system of ordinary differential equations.

They solved this system with an adaptive Runge-Kutta method, using a clever application

of the Fourier transform to avoid an O(n3) matrix multiplication. Because their solution

technique discretizes the hemisphere into sets of angles, it becomes increasingly expensive

for strongly peaked phase functions. More importantly, the viability of the extension of this

solution method to 3D scattering problems has not been demonstrated.

3.5.3 Previous Solution Methods

Techniques previously used to solve the scattering and adding equations have been based on

the integro-differential form such as Equation 3.3. Two comprehensive reviews are given

by Hansen and Travis [HT74] and Irvine [Irv75]. See also van de Hulst’s book [van80]

and Peraiah’s survey article for recent developments in and comparison of various solution
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methods [Per99].

Gaussian Quadrature

The most widely used technique thus far has been to apply Gaussian quadrature (see e.g.

[Atk93] for a general introduction to numerical analysis and quadrature methods) to Equa-

tion 3.7, in integro-differential form:

∂R(z,ωi→ ωo)

∂z
=−σt(z)

(

1
µi

+
1
µo

)

R(z,ωi→ ωo)+p(z,ωi→ ωo)+

1
4π

Z

Ω
p(z,−ω′→ ωo)R+(z,ωi→ ω′)

dω′

µ′
+

1
4π

Z

Ω
R+(z,ω′→ ωo)p(z,ωi→−ω′)

dω′

µ′
+

1
16π2

Z

Ω

Z

Ω
R+(z,ω′′→ ωo)p(z,−ω′→−ω′′)R+(z,ωi→ ω′)

dω′dω′′

µ′µ′′

)

(3.10)

By applying the quadrature formula

Z 1

0
f (x)dx =

N

∑
i=1

wi f (xi)

to the integrals, where the weights wi and evaluation points xi come from the Gaussian

quadrature rules, a system of non-linear ordinary differential equations can be constructed.

If we write R(z,ωi→ ω j) as fi j(z), we have a set of N2 ordinary differential equations:

∂ fi j(z)

∂z
=−σt(z)

(

1
µ i

+
1
µ j

)

fi j(z)+p(z,ωi→ ω j)+

1
4π

N

∑
k=1

p(z,−ωk→ ω j)
wk

µk
fik(z)+

1
4π

N

∑
k=1

wk

µk
fk j(z)p(z,ωi→−ωk)+

1
16π2

N

∑
k=1

N

∑
l=1

wkwl

µkµl
fl j(z)p(z,−ωk→−ωl) fik(z) (3.11)
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Given the set of initial conditions fi j(0) = 0, this nonlinear initial value problem can be

solved with standard techniques, such as Runge-Kutta integration.2 The computational

expense of this process can be reduced by making use of the symmetry that fi j(x) = f ji(x),

though the asymptotic complexity is still O(n2). (Max et al.’s solution technique was based

on these techniques, using a refinement suggested by Hansen and Travis [HT74, Section 3]

to avoid an O(n3) matrix multiplication in the solution).

The advantage of this method is that it easily handles inhomogeneity in the medium,

both with depth-varying albedos and depth-varying phase functions. The implementation

is also relatively straightforward and can be based on libraries of numerical routines. How-

ever, the method breaks down in the face of complexity in the scattering medium: if the

phase function is highly anisotropic, the quadrature rule must be applied with a large num-

ber of points N; with the O(n2) asymptotic growth of the method, it can quickly become

inefficient. More significantly, the generalization of this technique to higher-dimensional

settings quickly becomes intractable; we have not seen it applied to any problems more

complex than computing values of the one-dimensional reflection and transmission equa-

tions.

The Doubling Method

The adding equations have been applied to computing scattering functions in a technique

called the doubling method. Starting with a representation for the reflection and transmis-

sion functions of a very thin layer (this starting scattering function is often computed with a

single-scattering approximation or with a successive orders method), the adding equations

are applied to compute reflection and transmission functions for layers of progressively

twice the thickness [Han71, van80]. For a homogeneous atmosphere, the adding equations

2This family of solution methods is often referred to in the literature as “invariant imbedding”, thus con-
fusing the method of deriving the equation to be solved with the numeric technique applied to solve it. In
particular, many authors have failed to distinguish between the general and continuous scattering equations
that can be derived using invariant imbedding and the approximate discrete forms of them that result from
applying a quadrature-based solution method.
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only need to be applied a logarithmic number of times in the overall thickness of the at-

mosphere; it can thus compute scattering functions of very thick atmospheres relatively

quickly.

Some method must be used to compute the integrals for the adding equations; typically

the reflection and transmission functions are projected onto some basis such that the adding

equations can be evaluated directly via matrix inversion (e.g. [PP51]). In addition to effi-

ciency for thick atmospheres, another advantage of the doubling method is that it doesn’t

directly depend on the scattering properties of the atmosphere (e.g. that it be isotropic).

However, there are similar issues as with quadrature methods where techniques based on

a discretization of directions require progressively finer discretizations as phase functions

become more anisotropic.

Finally, the doubling method works poorly when the atmosphere is inhomogeneous.

In that case it degenerates to the adding method, which takes a linear number of adding

computations, rather than a logarithmic number.

Asymptotic fitting

Many methods that are usually efficient have difficulty with slabs with large optical thick-

nesses. Yet thick homogeneous slabs have reflection functions that change slowly and

smoothly with depth. This observation led to the asymptotic fitting method. The reflec-

tion function is computed for a series of thicknesses—e.g. R(x), R(2x), and R(4x)—and is

stored with some discrete representation. A curve is then fit to the scattering functions, and

new scattering functions for thicker slabs can be extrapolated at very large thicknesses. This

method has been applied by van De Hulst [van71] in conjunction with doubling method.

See also van De Hulst’s book for further discussion [van80] and Yanovitskij for more recent

applications [Yan97].
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Monte Carlo

Monte Carlo solution of the equation of transfer has been done by many authors; we are

not aware of previous application to the scattering equations. An early example is Plass and

Kattawar’s investigation of reflection and transmission of polarized light from cloud models

[PK68, KP68]. Somewhat more recently, Meier and Lee have investigated scattering from

plane parallel atmospheres where energy absorbed at some wavelengths is emitted at others

(i.e. fluorescence) [ML78, LM80, ML81].



Chapter 4

The Adding Equations

The adding equations make it possible to express scattering functions of aggregate ob-

jects or regions of space in terms of the scattering functions of the objects inside the

region. Given two objects with known scattering functions, we often want to compute

the new scattering function that describes overall scattering from the two objects together.

This new scattering function must account for scattering from each of the objects as well

as all scattering exchanges between the two. The adding equations give the appropriate

theoretical basis for computing these new scattering functions correctly. They were de-

veloped in the fields of neutron transport and radiative transfer to solve just this prob-

lem [PP51, van80, TJH66] and were first introduced to computer graphics by Pharr and

Hanrahan [PH00].

Computing scattering functions with the adding equations can often be done much

more efficiently than by recomputing the scattering functions of the aggregate object from

scratch [van80]. This stems from the fact that the scattering functions of the two objects,

Sa and Sb, already incorporate all of the multiple scattering events inside a and b, so it is

only necessary to compute the effect of multiple scattering between the two objects. This

can lead to a more efficient approach than solving for the overall scattering directly. After

a few terms, the series usually converges quickly, as long as not too much of the light is

67
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re-scattered at each step. Since the results of this computation are new scattering functions,

they can themselves be used in further computations of new scattering functions.

In this chapter we will give a rigorous derivation of the adding equations in the rayspace

setting based on the interaction principle. We will then describe new Monte Carlo methods

for solving the adding equations, and we will demonstrate their use for rendering subsurface

scattering from layered media.

4.1 The Interaction Principle

In the 1960s and 1970s, R. W. Preisendorfer investigated the relationship between the in-

variance principles that formed the basis of the scattering equations of the previous chapter

and the classical equation of transfer [Pre65, Pre76]. He first demonstrated that the two

world-views were equivalent; each could be derived from the other, and thus neither was

more general or fundamentally more powerful than the other. Preisendorfer went on to state

a more general interaction principle that subsumed both approaches to radiative transfer.

He demonstrated that both could be derived directly from the interaction principle and

showed a number of new approaches that it made possible.

4.1.1 Radiometric Invariance Principles

Classic work by George Stokes laid the foundation for the invariance and interaction princi-

ples of the Twentieth Century. In a classic nineteenth Century paper, he derived expressions

for the amount of light reflected and transmitted from a stack of glass plates [Sto62]. Given

reflection and transmission coefficients for an individual plate that describe the reflected

flux at the boundary and directly transmitted flux through a homogeneous glass plate, ρ

and τ, Stokes investigated the summation of all reflected and transmitted terms; he found
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ρ (1−ρ) τ ρ

(1−ρ) τ
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...

Figure 4.1: The overall reflection and transmission from a glass plate, expressed in terms
of the reflection and transmission factors for single scattering or transmission events (after
[Per99]).

the overall reflectivity and transmissivity to be

R = ρ+ τ2(1−ρ)2ρ(1+ρ2τ2 +ρ4τ4 + · · ·) = ρ
(

1+
τ2(1−ρ)2

1−ρ2τ2

)

and

T = (1−ρ)2τ(1+ρ2τ2 +ρ4τ4 + · · ·) =
(1−ρ)2τ
1−ρ2τ2

(See Figure 4.1).

Following similar lines, Stokes also showed that if a system of n and m plates is formed,

where reflection and transmission values are known as Rn and Tn, etc, then the composite

reflectance and transmittance are

Rn+m = Rn +RmT 2
n (1+RnRm +R2

nR2
m + · · ·) = Rn +

RmT 2
n

1−RnRm
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Figure 4.2: The overall reflection and transmission for a collection of n and m plates,
expressed in terms of the reflection and transmission of each individually

and

Tn+m = TnTm(1+RnRm +R2
nR2

m + · · ·) =
TnTm

1−RnRm

(See Figure 4.2). He thus introduced the observations that overall scattering could be com-

puted directly in terms of the reflection and transmission functions of the individual layers,

and that the reflection and transmission for two layers together could be computed based

on the already-computed reflection and transmission of each one. The adding equations

are effectively the generalization of these equations to encompass general operators and

functions.

4.1.2 Statement and Use of the Interaction Principle

The interaction principle generalizes this approach to light scattering. It can be directly

derived either from Preisendorfer’s axiometric formulation of radiative transfer theory or

directly from the electromagnetic theory [Pre65, Chapter XIV] [Pre76, Volume II, p. 189].
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Figure 4.3: Basic ray space definition figure.

The basic property of radiative transfer theory that it relies on is the linearity of radiometric

interactions.

As in the previous chapter, we use an instance of the ray space notation to describe

our integration domains. Given some region of space Gx with a two-dimensional boundary

given by a manifold M 2
x , we define the set of all rays originating on M 2

x with direction

leaving Gx by RM 2
x

= M 2
x ×Ω. (see Figure 4.3 for an example of ray space.) We also

define the differential measure of rays as in Chapter 3.

The scattering function Sx for a particular region Gx is defined over all rays in three-

space; however it has a value of zero for all rays that do not originate on M 2
x . This nota-

tional convention allows us to freely write products of scattering operators SaSb where the

boundaries M 2
a and M 2

b are not the same (giving a result that is identically the zero opera-

tor). See Section 3.1 for more on our ray space conventions. Incident and exitant radiance

functions (e.g. Li) are naturally defined over all rays in three-space, though we will only

make use of their values on boundary manifolds M 2.
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4.1.3 Statement of the interaction principle

Quoting directly (with operator notation changed to match ours) the interaction principle

states [Pre76, Section 3.2]:

For every X, G, A, B, m and n, for X is an optical medium and G is a subset of

X, and A = (A1, . . . ,Am) is a class of sets Ai consisting of incident radiometric

functions on G and B = (B1, . . . ,Bn) is a class of sets B j consisting of response

radiometric functions on G, and m and n are positive integers, then there exists

a unique set {Si→ j : i = 1, . . . ,m, j = 1, . . . ,n} of linear (interaction) operators

Si→ j with domain Ai and range B j with the property that for every element

(a1, . . . ,am) of A there exists an element (b1, . . . ,bn) of B such that

b j =
m

∑
i=1

Si→ j ai (4.1)

Or, in matrix form,

b = S a (4.2)

The most important element of the principle is that it asserts both the existence and

uniqueness of the linear operators Si→ j. Because it is stated in terms of functions and op-

erators, the interaction principle makes an exact statement about the system as formulated.

In most applications, the optical medium X is three-space, where the subsets G are

convex surfaces1 in X and Ai and B j are radiance functions. Other common settings are

the case where Ai and B j are irradiance functions as well as the one-dimensional case,

where interactions between plane-parallel media that are homogeneous in two dimensions

are considered. When interaction between volumetric objects is being considered, two-

dimensional surfaces are still generally used for the domains of A and B and the interactions

are written in terms of incident and exitant radiance distributions over their boundaries.
1The principle holds for concave configurations as well, but the notation is more complex.
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X

G

A i

B j

Figure 4.4: Basic setting for the interaction principle. Each subset Gi of the region has an
incident radiance function Ai and an exitant radiance function Bi.

For the remainder of this chapter, we will consider X to be three-space and G to be two-

dimensional boundaries of parallelipid-shaped regions of space. Ai is the set of incident

radiance functions on these boundaries, and ai is a particular radiance function Li(x,ω),

where x is a point on the boundary and ω is an outgoing direction. B j is the set of exitant

radiance functions (see Figure 4.4).

4.1.4 Application and example

Application of the interaction principle generally involves a three-step process:

• First, the radiometrically interacting objects are enumerated: the subset G of X is

identified and the incident radiometric quantities of interest are chosen, giving Ai.

The outgoing radiometric quantities B j then follow.

• Given the sets Ai and B j, the interaction operators Si→ j are determined. This lets us

write the interaction matrix equation 4.2.

• We identify the radiometric relationships between the objects and the functions Ai
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and B j. In particular, by introducing additional equations that take into account ra-

diometric principles (such as the invariance of radiance along lines in a vacuum), the

system can be simplified.

The result of this is the system of operator equations to be solved. A variety of methods

can then be applied, including projection onto a finite basis or Monte Carlo techniques. We

only consider Monte Carlo approaches here.

4.2 Example: Interacting Plane Surfaces

We start with a simple example to show the use of the interaction principle, after [Pre76,

Section 3.4]. Consider two planar surfaces X1 and X2, in three-space, with surface normals

defined pointing toward the other surface (Figure 4.5). Each surface has an incident radi-

ance distribution due to illumination from external sources (and not counting illumination

from the other surface), given by L1
i , L2

i , respectively. Each surface has a scattering oper-

ator associated with it that describes how incident radiance is scattered by the surface, S1

and S2. The two surfaces are separated by a vacuum.

We wish to compute the outgoing radiance distribution accounting for the interaction

of multiply-reflected radiance between the two of them. We apply the interaction principle,

first defining the incident quantities:

• A1: the incident radiance function on X1 due to direct illumination, L1
i .

• A2: the incident radiance function on X1 due to scattered light from X2, L1←2
i .

• A3: incident radiance on X2 due to direct illumination, L2
i

• A4: incident radiance on X2 due to light from X1, L2←1
i .

Now we define the exitant quantities that we want to compute:



CHAPTER 4. THE ADDING EQUATIONS 75

X1


X2

L (1)i
0

L (2)i
0

L (2)o

L (1)o

Figure 4.5: Given two surfaces X1 and X2, with incident radiance distribution functions L1
i

and L2
i , we apply the interaction principle to compute the outgoing radiance distributions

L1
o and L2

o.

• B1: the exitant radiance distribution function on X1, L1
o.

• B2: the exitant radiance distribution function on X2, L2
o.

Finally, we need to describe the interaction operators Si j. Rather than defining the four

separate operators S11, S21, S32, and S42, we will just use general scattering operators S1

for X1 and S2 for X2. These scattering operators are defined for all points and all pairs

of incident and exitant directions over each of the surfaces, and describe the amount of

incident illumination scattered at each point from one direction to another.

From the interaction principle, we have

L1
o = S1L1

i +S1L1←2
i

L2
o = S2L2

i +S2L2←1
i

Because the two objects are separated by a vacuum and because radiance is constant along

lines in a vacuum, the incoming radiance at a point on X1 from some direction due to

outgoing radiance from X2 is equal to the outgoing radiance at a corresponding point in a
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corresponding direction on X2. Thus,

L1←2
i = L2

o

L2←1
i = L1

o

Therefore, we have

L1
o = S1L1

i +S1(S2L2
i +S2L2←1

i )

L2
o = S2L2

i +S2(S1L1
i +S1L1←2

i )

If we eliminate L1
o and L2

o from the right side of the expressions, we then have

L1
o = (S1L1

i +S1S2L2
i )(I−S1S2)

−1 (4.3)

L2
o = (S2L2

i +S2S1L1
i )(I−S2S1)

−1 (4.4)

By expanding the inverted operator in a Neumann series, we come to the familiar result

for Equation 4.3

L1
o = S1L1

i +S1S2L2
i +S1S2S1L1

i + · · · .

In other words, the outgoing radiance from X1 can be computed by computing outgoing

radiance due to light scattered from direct illumination; then radiance due to scattered light

from direct illumination on X2 that is scattered towards X1; direct illumination on X1 that is

scattered towards X2, reflected back to X1 and then scattered; and all further interactions of

multiple scattering between the two objects.

This result shouldn’t be surprising to anyone familiar with rendering-equation based

approaches to solving light transport problems in computer graphics; what is noteworthy

is the methodology that led us to this result, which completely sidesteps of the equation of

transfer but has still led us to a rigorous result in the radiometry setting.
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1

2

L i

Figure 4.6: Basic setting deriving the adding equations using the interaction principle: two
regions with known scattering properties are illuminated by an incident radiance function
Li. We’d like to find the overall scattering operator S∗ that gives exitant radiance, Lo = S∗Li.

4.3 Derivation of Adding Equations

The original derivation of the adding equations by Peebles and Plesset followed a similar

approach to the one used in the previous section, though the general interaction principle

was not known at this time [PP51].

Consider two objects or regions of space in a volume, labeled 1 and 2 (see Figure 4.6).

Applying the interaction principle in a similar manner, we can find that

L1
o = S1Li +S1L1←2

i

L2
o = S2Li +S2L2←1

i
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If the two objects abut or are separated by a vacuum, we can again describe incident radi-

ance at one of them due to exitant radiance from the other.

L1 = S1Li +S1L2 (4.5)

L2 = S2Li +S2L1 (4.6)

Now we can substitute the second equation into the first, giving us

L1 = S1Li +S1(S2Li +S2L1)

Collecting L1 terms, we have

(I−S1S2)L1 = (S1 +S1S2)Li

Now we can compute the scattering function S12 that gives us outgoing radiance from the

boundary of G1 due to incident radiance Li and scattering between G1 and G2: L1 = S12Li.

Solving for L1(Li)
−1, we have

L1(Li)
−1 = (I−S1S2)

−1(S1 +S1S2) (4.7)

= S1 +S1S2 +S1S2S1 + · · · (4.8)

= S1 +S1S2S12 (4.9)

A similar scattering function that gives the outgoing radiance function along the boundary

of G2 can be derived similarly. The sum of these two, i.e. the overall scattering function

for the two objects that describes the overall outgoing radiance due to Li, is

S∗ = S1 +S2 +S1S2 +S2S1 +S1S2S1 + · · ·
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Depending on the incident radiance distribution and the outgoing quantities of interest,

many of these terms may be zero. For example, for the one-dimensional case of scattering

layers where there is only incident illumination from the top and where we are only inter-

ested in outgoing radiance at the top, all terms ending with S2 disappear because Li is zero

over the boundary of the bottom region, thus S2Li is zero. Furthermore, terms starting with

S2 are also irrelevant, since the outgoing ray of interest starts on the top of the top layer and

thus isn’t on the bottom layer’s boundary (recall the convention of Section 3.1).

4.3.1 One-dimensional setting

The adding equations are similarly simplified to integrals over just directions. In operator

form, the scattering functions of two combined slabs a and b are

R+
a+b = R+

a +T+
a R+

b T−a +T+
a R+

b R−a R+
b T−a + · · ·

R−a+b = R−b +T−b R−a T+
b +T−b R−a R+

b R−a T+
b + · · ·

T−a+b = T−b T−a +T−b R−a R+
b T−a + · · ·

T+
a+b = T+

a T+
b +T+

a R+
b R−a T+

b + · · ·

The adding equations were developed by van De Hulst [van80], Twomey et al. [TJH66],

and Redheffer [Red62] in the 1960s, and were applied to computing numerical results for

isotropic scattering from plane-parallel atmospheres and scattering from clouds, respec-

tively. They were first discovered in the field of neutron transport by Peebles and Ples-

set [PP51] and have since been applied to a wide variety of scattering problems. Later,

Hansen extended the method to account for polarization [Han71]. The adding equations

were later generalized to more general geometries by Preisendorfer [Pre76].

If one starts with a very thin slab with known reflection and transmission functions (if

the slab is thin enough, a single scattering approximation works well), and then proceeds to
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compute the scattering functions of slabs that are progressively twice as thick, the overall

scattering functions can be computed entirely by this doubling method [Han71, van80]. For

a homogeneous atmosphere, the adding equations only need to be applied a logarithmic

number of times in the overall thickness of the atmosphere; it can thus compute scattering

functions of very thick atmospheres relatively quickly. In addition to efficiency for thick

atmospheres, another advantage of the doubling method is that it doesn’t directly depend

on the scattering properties of the atmosphere (e.g. that it be isotropic).

The Kubelka-Munk model for diffuse reflection from layered surfaces [KM31] uses a

similar solution; if Equation 4.2 is written to operate on irradiance and if the scattering

functions are isotropic, the Kubelka-Munk model can be easily derived. This is an instance

of a two-stream model, similar to Schuster’s [Sch05], which just considers the total amount

of light going in the up and down directions, neglecting its distribution. The Kubelka-Munk

model was first introduced to graphics by Haase and Meyer [HM92] and has been widely

used. However, due to assumptions built into the model, either glossy specular reflection

has to be ignored or multiple reflection between the specular component and the added layer

is lost. A different approach to layer composition is due to Hanrahan and Krueger [HK93];

they compose scattering layers considering only one level of inter-reflection. This misses

the effect of multiple internal reflections before light leaves the layer, which is important

except for objects with very low albedos.

4.4 Monte Carlo Solution

Previous methods used to solve the adding equations have been based on projecting the

scattering functions S1 and S2 onto a finite basis. This results in matrices that represent the

operators, so that Equation 4.3 can be solved directly with matrix inversion. This method

works well as long as the scattering function is smooth and as long as one-dimensional

scattering functions are being considered. However, the error introduced by the finite basis
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is difficult to quantify, and no one has yet shown a tractable extension of these methods to

three-dimensional scattering functions.

For these reasons, we investigated Monte Carlo methods to solve the adding equations.

Monte Carlo has the advantage of being able to directly handle arbitrarily complex scatter-

ing functions and high-dimensional scattering functions. The solutions computed have no

error due to approximation in a basis. There are two sub-problems to solve when apply-

ing Monte Carlo: how many terms to evaluate of the infinite sum of products of scattering

functions, and how to estimate individual terms of the sum.

We solve the first problem and compute an unbiased estimate of the infinite sum by

probabilistically terminating the series using Russian roulette; after computing estimates of

the first few terms, we terminate with some probability after each successive term. When

we continue on, subsequent terms until we do terminate are multiplied by a correction

factor so that the final result is unbiased. This method was introduced to graphics by Arvo

and Kirk in the framework of terminating recursive sampling for ray tracing [AK90].

The result of this termination is a finite number of terms of Equation 3.1, each of which

needs to be estimated and the results summed. For each such term, we have the multiple

integral represented by the composition of a set of scattering functions to estimate:

Z

R +
M 2

· · ·
Z

R +
M 2

Sn(r
′→ r1) · · · S1(rn−1→ r)

drn−1

µ2
rn−1

· · ·
dr1

µ2
r1

To compute a Monte Carlo estimate of such a term, a set of connecting rays ri that connect

the incident and outgoing rays need to be sampled (see Figure 4.7).

One approach is to start with r and sample from a distribution similar to S1 with impor-

tance sampling to compute rn−1. Given rn−1, S2 can be sampled in a similar manner, and

so forth Alternatively, we can start with r′ and work backwards, first sampling Sn to find

r1, etc. More generally, we can consider this to be a sampling problem analogous to sam-

pling the path integral formulation of the equation of transfer [Vea97]; rather than always
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Figure 4.7: In computing the value of the aggregate scattering function S12 for the pair of
rays r and r′, we may need to estimate the term S1S2S1. In this case, we need to sample
one or more pairs of connecting rays r1 and r2 to be able to compute an estimate of the
form S1(r→ r1)S2(stab2(r1)→ r2)S1(stab1(r2)→ r′).

sampling rays front-to-back, back-to-front, or in some combination thereof, more flexible

sampling strategies can be applied. In any case, the end result is a Monte Carlo estimate of

the form
1
N

N

∑
i

Sn(r′→ r1) · · · S1(rn−1→ r)
p(r1) · · · p(rn−1)

1
µ2

rn−1
· · ·µ2

r1

,

where p(ri) gives the probability density for sampling the ray ri. In general, this may be a

conditional density based on an already-sampled ray, p(ri|ri−1), etc.

In sampling the intermediate rays, the operative goal is to find chains of rays such that

the scattering functions Si make a large contribution to the final result; this is analogous to

the problem faced in sampling a set of rays from a light source to a sensor in classic light
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transport problems.

4.4.1 Implementation

We have implemented routines that solve the adding equations in the one-dimensional set-

ting; as such, we only need to sample connecting directions, rather than rays as in the

three-dimensional case. We have implemented these routines in a modular fashion: they

are given abstract data types describing the top and bottom layers as well as the incoming

and outgoing directions.

The layer objects provide a small number of operations to the Monte Carlo integra-

tion routines that compute the estimates of the integrals (see Figure 4.8). In principle, the

only necessary operation is evaluation of the two reflection and two transmission func-

tions: given an incident and an outgoing angle, the fraction of incident illumination that is

scattered is returned. However, there are three additional issues that must be considered.

1. In the course of choosing the intermediate connecting directions, we’d like to use

importance sampling to choose these directions (see Section 3.3.3 for a discussion

of general issues in importance sampling scattering functions). As such, each layer

also has a routine that chooses an outgoing direction given an incident direction with

importance sampling and returns the probability density of choosing that direction.

For layers where distributions for importance sampling are not easily computed, a

default implementation uniformly samples the hemisphere of possible directions.

2. Multiple importance sampling: once we have used a particular sampling strategy

for choosing the intermediate directions (e.g. front-to-back), we can compute an

estimate with lower variance with multiple importance sampling [Vea96, Vea97]. In

effect, we need to compute the probability density that the other sampling strategies

would have sampled the path that we did. Weights computed based on these densities

are then used to scale the contribution of the sample in order to reduce variance from
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evaluate(mode, ω, ω) → value Evaluates R+, R−, T+, or T−, based on
mode, for the pair of directions given.

sample(mode, ω) → (ω′, pdf) Sample a direction ω′ from some sampling
distribution for importance sampling the
scattering function. Returns the direction and
the pdf for sampling the direction.

pdf(mode, ω) → (density) Returns the probability density for sampling
the given direction ω

tau() → (thickness) Returns the optical thickness of the layer
isDelta() → (true, false) Reports if a delta distribution is present

Figure 4.8: The interface provided to the adding equation estimation routines by various
implementations of layers types.

importance sampling methods that pick a direction with low probability that ends up

making a large contribution to the final result.

3. Delta distributions: the presence of delta distributions in the reflection and transmis-

sion functions can happen in two circumstances–either due to a surface that reflects

specularly, such as a mirror, glass, or water, or due to direct transmission of attenu-

ated light through a volumetric layer. When a delta distribution is present, the evalu-

ation routine alone is not sufficient to describe the scattering behavior, because there

is zero probability of an external sampling routine choosing a direction such that the

delta distribution is non-zero. Therefore, we also include a boolean function which

tells if its scattering functions are delta distribution; this is used in the estimation

routine to ensure that we use the importance sampling function for this layer.

Delta distributions may be present in this series due to direct transmission through a

layer of finite thickness (Equation 3.8) as well due to layers that specularly reflect or refract

light (e.g. a mirror reflector at the bottom, or a Fresnel layer at the top). These are tricky

because the delta functions cannot be evaluated, but only sampled—the evaluation routines

always return zero. However, when such a layer samples a new direction given an incident

or outgoing direction, it can pick the appropriate scattered direction. For example, when
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Figure 4.9: When a layer that scatters with a delta function (e.g. a Fresnel layer) is com-
posed with another layer, the angles ω′i and ω′o cannot be sampled by the lower layer.
Rather, the top layer must determine ω′i directly based on ωi (and similarly for ω′o), since
the lower layer has zero probability of randomly sampling a direction where the top layer’s
transmission function is non-zero.

computing the term T+R+T− when the top layer is a Fresnel reflector, we compute both

the incident and outgoing directions to the bottom layer by sampling T+ and T− given the

outgoing and incident directions at the top, respectively; the reflection function R+ has

no choice in sampling its incident and outgoing directions, as it would never be able to

randomly find an outgoing direction that is transmitted into the final outgoing direction

(see Figure 4.9).

4.4.2 Layer types

This set of operations makes it possible to implement a variety of representations for layers

and easily add them together. We have implemented a number of such representations:

• A general scattering layer that takes a procedural description of the phase function

and scattering and attenuation coefficients. It then uses Monte Carlo sampling to

compute estimates of the reflection and transmission equations (3.7 and 3.8) for given

pairs of angles.
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ω ω'

Fresnel


Volumetric Layer


Base Surface


Figure 4.10: The general setting for applying the adding equation in the one-dimensional
case. We have three layers to compute the aggregate scattering function of: a Fresnel
reflector on top, then a volumetric scattering layer, and then a simple BRDF describing
reflection at the base surface. Directions must be sampled to evaluate reflection and trans-
mission functions between the layers.

• An opaque layer, suitable for placing at the bottom of other layers, that encapsu-

lates a standard parameterized diffuse and glossy specular BRDF model for reflection

[Hal89].

• An infinitesimally thin layer that represents scattering due to refraction at a boundary

between layers with different indices of refraction. This layer accounts both for the

refractive focusing and de-focusing of light as well as Fresnel effects at the boundary

[HK93].

• A thin layer approximation that just accounts for single scattering from the phase

function. As the thickness of a layer goes to zero, this approximation becomes more

accurate. This representation was primarily useful for testing our implementation of

the adding equations by repeatedly applying the doubling method to compute scat-

tering from progressively thicker layers, after starting with a very thin layer.



CHAPTER 4. THE ADDING EQUATIONS 87

4.5 Results

We first verified our implementation of the adding equations by comparing the scattering

function values computed by applying the adding equations to two halves of an object to

those computed directly for the aggregate.

To illustrate the use of the adding equations for rendering, we took a dragon model with

a standard specular and diffuse surface shading model and added scattering layers, using

the adding equations to compute the new scattering function that describes the composition

of the base surface layer with the new scattering layer. When the routines that compute the

adding equations needed to evaluate the reflection or transmission functions of the added

layer, a new Monte Carlo estimate for that pair of angles was computed. With a not-very-

optimized implementation, the images each took a few minutes to render on a modern PC.

The series of images in Figure 4.11 shows the results. The first image shows the object

shaded with the standard shading model. As the thickness of the new layer increases going

from left to right, the shiny copper base surface is gradually overwhelmed by the grey and

more diffuse added layer. Eventually just a shadow of the specular highlights is left and

finally no trace of the base surface once the new layer is sufficiently thick. Notice that

the silhouette edges are affected more strongly by the added layer; this is because the rays

traveling at oblique angles go a longer distance through the new layer. Figure 4.12 shows

the result of procedurally varying the thickness of the added layer based on the local surface

normal in an effort to simulate scattering effects of dust (modeled in a manner similar to

Hsu and Wong [HW95]).
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depth = 0. depth = 0.2

depth = 0.8 depth = 2.0

Figure 4.11: Adding layers to a model; thicknesses are increasing from left to right. For
all images, σs = 0.5, σa = 0.5, g = −0.15. Because the adding equations and scattering
equations are used to compute the aggregate scattering function, the results accurately ac-
count for all inter-reflection inside the added layer as well as between the layer and the base
surface.
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Figure 4.12: Dragon model with procedurally-varying thickness of the added layer, based
on local surface orientation. The result is an ad-hoc simulation of dust rendered accurately
with the adding equations.



Chapter 5

Conclusion

This thesis has introduced a new theoretical framework for light scattering to computer

graphics and demonstrated its application to a number of problems in rendering subsurface

scattering. This theory has scattering as its basic foundation, rather than light transport,

which has been the basis of almost all previous approaches to rendering. We have applied

Monte Carlo integration to compute solutions to the underlying equations, extending their

applicability to a wider and more general set of problems than they have previously been

applied to in other fields.

For some rendering problems, results based on the scattering equation can be solved

more efficiently than when the equation of transfer is used. For others, particularly those

with highly scattering media, the scattering equation approach is less efficient with our

current implementation. However, we believe that just as more sophisticated Monte Carlo

algorithms have led to much more efficient approaches for solving the equation of transfer

than the first techniques applied to it, there is similar potential to improve efficiency of

solutions of the scattering equations and better take advantage of the divide-and-conquer

approaches that they make possible.

90



CHAPTER 5. CONCLUSION 91

The adding equations provide the foundation for correctly computing the overall scat-

tering from collections of objects or scattering regions of space described by their individ-

ual scattering functions. They exhibit efficiencies by providing a way to break rendering

problems into smaller parts and then reassemble the partial solutions; this gives a theo-

retical basis to clustering algorithms and a new way to apply clustering to Monte Carlo

rendering algorithms. In deriving the adding equations in the ray space setting, this thesis

has also introduced a unifying theory for transport problems to graphics: Preisendorfer’s

interaction principle. We have made connections between the interaction principle and

previous approaches to rendering.

Our example of subsurface scattering as a demonstration of the three-dimensional scat-

tering equation reflects a choice in scale rather than limitation of theory. The scattering

and adding equations have applications to computing scattering from complex volumetric

objects at larger scales, such as clouds, smoke, sunbeams, etc. As such, this approach has

applications to the level-of-detail problem. The 3D scattering and adding equations pro-

vide the correct mathematical setting for two of the outstanding problems in level-of-detail

identified by Kajiya and Kay [KK89]: automatic computation of texels from complex ge-

ometry, and computation of aggregate texels that represent two nearby texels. Furthermore,

scattering functions are the correct abstraction to use to replace geometry; techniques based

on BRDFs (e.g. [Kaj85, Ney98]) are inaccurate in that they do not correctly incorporate

the effect of light that enters an object at a different place than it exits.

Finally, this new approach has implications for classic approaches to rendering based

on light transport. By investigating the connections between this new approach and pre-

vious approaches based on light transport, it is possible to make fundamental connections

between the two approaches, leading to improved algorithms in both areas.
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5.1 Future Work

This theory has applications to many classic problems in rendering, including replacing

geometry with scattering functions and efficiently re-rendering scenes with changes in il-

lumination or as objects are added to or removed from them. Equally important, it has

promise as a way to suggest new sampling strategies for solving the rendering equation

more effectively. Understanding the connections between solution techniques that have

previously been used for each of these approaches gives many directions for future work.

The recursive expansion in Monte Carlo solutions of the scattering equation solution

ends up having a bidirectional sampling effect—paths are constructed in both directions

and meet in the middle. Our sampling of the SkS term reflects a non-local sampling strat-

egy [Vea97], where a scattering event at k is chosen before either of its adjacent scattering

events have been sampled. This is in contrast to previous bidirectional sampling strategies

for light transport that incrementally build paths by finding new vertices directly from a pre-

vious vertex. As such, understanding the connections between the path sampling strategies

that we have used and previous bidirectional path sampling strategies is important future

work. Furthermore, techniques that ameliorate the exponential nature of the recursive sam-

pling and more effectively re-use sub-paths should improve performance in cases where

the albedo is high. Another area for further investigation is better importance sampling

techniques for the 3D case and the application of multiple importance sampling to reduce

variance.

5.1.1 Geometric Scenes

Extending this approach to rendering geometric scenes should be straightforward; the basic

building blocks of the algorithm (computing the zero bounce, one bounce, and multiple

bounce scattering) of regions of space can be easily implemented for scenes comprised of

geometric objects. The only immediate complication is that all scattering must happen at
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surfaces, rather than at more arbitrarily-chosen points in space. However, we do not believe

that this is a substantial difficulty, as it is effectively the introduction of delta distributions to

the definitions of the scattering functions involved, thus reducing the number of dimensions

to be considered in the integrals.

5.1.2 Approximation and Biased Approaches

Considering different approaches for computing or approximating the scattering functions

of regions of space should be fruitful. In particular, biased Monte Carlo techniques or tech-

niques that approximate the eight-dimensional scattering function with lower-dimensional

approximations may be quite efficient. Because interactions between regions of space

would still be considered accurately, the results may be sufficiently accurate for some ap-

plications. In particular, given an approximation to the scattering function of a region S̃,

given a bound of the error with the actual scattering function |S̃−S|, it may be possible to

bound the error in the overall result after computing the interactions.

Another interesting potential application is to the level of detail problem. If approxi-

mate scattering functions of unimportant regions of space can be quickly computed (e.g.

using a lower-resolution geometric model), but only when these regions have a low contri-

bution to the overall scattering function, accurate approximations should be computed. We

also note that Neyret’s ellipsoidal normal distribution functions [Ney95, Ney98] would be

a useful way to represent scattering functions of collections of geometry.

5.1.3 Hierarchical Scattering

Hierarchical algorithms have previously been very effective for radiosity methods in com-

puter graphics [HSA91]; by taking advantage of the form of interactions in the radiosity

matrix, they are able to compute solutions efficiently by carefully choosing the level of re-

finement at which each pair of objects interacts. The adding equations give the appropriate
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theoretical basis for developing hierarchical algorithms for rendering arbitrary scenes, not

just those under the radiosity assumptions.

Specifically, a 3D scene can be hierarchically decomposed into smaller volumes of

space, for example using an octree or a kd-tree. The overall scattering function of the

scene can then be written directly in terms of integrals of the scattering functions of the

smaller regions, accounting for all possible scattering interactions between these regions.

By using a variety of methods to estimate the scattering functions of individual regions

and assembling these sub-solutions appropriately, there may be opportunities to develop

new algorithms for efficiently rendering complex geometric environments. In particular,

if the regions at the leaves of the tree were small enough to be effectively homogeneous,

the dipole approach introduced to graphics by Jensen et al [JMLH01, JB02] could be an

effective way to efficiently compute the scattering functions at the leaves.

One advantage of such an approach is that computation is naturally localized in the

regions of the scene where most of the scattering is occurring; little effort is spent on areas

that make a small contribution to the final result. Further, there are opportunities to re-use

computation across multiple computations of scattering function values, further improving

efficiency [Esp79].

Finally, with this approach there is an opportunity to precompute scattering functions

for some regions of space, and using those to approximate the scattering function Sx, rather

than evaluating it directly with Monte Carlo integration. If accurate approximations can be

developed and the approximations are used only when they make a small contribution to

the overall answer, there is further potential for efficiency improvements.
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solution operator, 29
source function, 22
spectral distribution, 8
spectral distribution representations, 12
spectral radiance, 12
spectral response curve, 13
steradian, 8

thin layer approximation, 86
transport theory, 14

volume rendering equation, 23

wave optics, 14


