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Qutline

® review light fields and wave optics

® observable light field and
the Wigner distribution

® applications



Light Fields

® radiance per ray
® ray parametrization:
® position (s)

® direction (u)
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Wave Optics

parallel rays plane waves
waves instead of rays

interference, diffraction

VYVYVYYYYYVYY

plane of point emitters
(Huygen’s principle)

each emitter has
amplitude and phase
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Wave Optics

® waves instead of rays
® interference, diffraction

® plane of point emitters
(Huygen’s principle)

® cach emitter has
amplitude and phase

Ul(z) = A(z)e?*®)



Position and Direction
in Wave Optics

® recall: light field
describes how power
is spread over

position and direction U(ZIZ’) _ A(m)ejqb(x)

® point emitters on
plane have amplitude
and phase

® positional spread is
amplitude squared
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Position and Direction
in Wave Optics

® recall: light field
describes how power
is spread over

position and direction U(ZIZ’) _ A(x)ejqb(x)

® point emitters on

plane have amplitude I(x) = A ()
and phase

® positional spread is
amplitude squared
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Position and Direction
in Wave Optics

axial

zero spatial
frequency
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in Wave Optics
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Position and Direction
in Wave Optics

plane waves 1
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Position and Direction
in Wave Optics

D —

aperture = |28 wavelengths
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aperture = 64 wavelengths
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aperture = 32 wavelengths
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aperture = |6 wavelengths
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aperture = 8 wavelengths
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aperture = 4 wavelengths



Position and Direction
in Wave Optics

aperture = 2 wavelengths



Position and Direction
in Wave Optics



Recap

ray optics position direction

wave optics position spatial frequency

® to determine both position and
spatial frequency, need to look at a window
of finite (nonzero) width
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2D Wigner Distribution
i) / h(x) e 2™ =y

11 = ‘
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2D Wigner Distribution
i) / h(x) e 2™ =y

h(il?) /h (:13+ g) h* (:1:— g) e =927 1
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2D Wigner Distribution

Wi (2, fe) = / (2 +§) e (2= §) 72 0esag

® input: one-dimensional function of position

® output: two-dimensional function of
position and frequency

® (some) information about spectrum at each
position



2D Wigner Distribution

® projection along frequency
yields power

® projection along position
yields spectral power




2D Wigner Distribution

LI projection along frequency
H yields power

® projection along position
yields spectral power




2D Wigner Distribution

LI projection along frequency
H yields power

® projection along position
yields spectral power
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2D Wigner Distribution

h(z)|> @ tradeoff between

H width and height

(fixed “area” or
space-bandwidth product)

® uncertainty principle

[ Je fe
L
-/ (o)
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h(z)|> @ tradeoff between

I_‘ . width and height
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2D Wigner Distribution

Wi (2, fe) = / (2 +§) e (2= §) 72 0esag

® information about both
position and frequency

® fixed space-bandwidth product



Observable Light Field

® move aperture
across plane

® |ook at
directional
spread

® continuous scene
form of
plenoptic
camera
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Observable Light Field

® move aperture
across plane

® |ook at
directional
spread

® continuous scene
form of
plenoptic

camera aperture —
position s

direction u




Observable Light Field

2
Z(T)(s,u) = /U(x)T(x — 5)e TN dy

obs
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Observable Light Field

aperture window

\ N 2
lgg(s,u) = /U(x)T(x — 5)e I TN dy
/) ~

Fourier transform

wave



Observable Light Field

aperture window

v N 2N
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Fourier transform
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Observable Light Field

2
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Observable Light Field

Z(T)(s,u) = /U(x)T(x — 5)e TN dy

obs

15 ) (5, ) Z/WU (5, %) @ Wr (=5, %)

Wigner distribution
of wave function

2



Observable Light Field

2
Z(T)(s,u) = /U(x)T(x — 5)e TN dy

obs

1 (s,u) = Wy (s, %) @ W (—s, &)

obs
/ i

Wigner distribution  Wigner distribution
of wave function  of aperture window




Observable Light Field

2

lgg(s,u) = /U(x)T(x — 5)e TN dy
blur trades off
resolution in position

I with direction

15 ) (5, ) Z/WU (5, %) @ Wr (=5, %)

Wigner distribution  Wigner distribution
of wave function  of aperture window




Observable Light Field

at zero wavelength limit
(regime of ray optics)

Z(T)(s,u) = Wy (S, %) Q W (—s, %)

/ i

Wigner distribution  Wigner distribution
of wave function  of aperture window



Observable Light Field

at zero wavelength limit
(regime of ray optics)

I5pe (5,0) = Wy (5, %) ® 0(—s,u)
/

Wigner distribution
of wave function



Observable Light Field

at zero wavelength limit
(regime of ray optics)

Z(T>(S, u) =Wy (s, %)

observable light field and Wigner equivalent!



Observable Light Field

® observable light field is a
blurred Wigner distribution with a
modified coordinate system

® blur trades off resolution in
position with direction

® Wigner distribution and observable light
field equivalent at zero wavelength limit



Application - Refocusing
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saksen Application - Refocusing
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Application - Wavefront Coding

Dowski and Cathey 1995

same aberrant blur regardless of depth of focus
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Application - Wavefront Coding

Dowski and Cathey 1995

1 M

point cubic small change
in scene phase plate in blur shape

same aberrant blur regardless of depth of focus



Application - Wavefront Coding

slices corresponding

I to various depths
ambiguity

function
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Application - Wavefront Coding

point before phase plate



Application - Wavefront Coding

point after phase plate



Application - Wavefront Coding

point after phase plate at image
plane
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Application - Wavefront Coding

® refocusing in
ray space is shearing

® shearing of a parabola

results in translation

® blur shape invariant
to refocusing
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Application - Wavefront Coding

slices corresponding

. to various depths
Fourier transform

of light field



Application - Wavefront Coding

¢
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Wigner distribution
for cubic phase plate system



Conclusions

® |ight field’s position and direction =
wave optics’s position and frequency

® observable light field =
blurred Wigner distribution
(equal at zero wavelength limit)

® analysis using light fields and
Wigner distribution interchangeable



Future Work

® analyze various light field capture and
generation systems using wave optics

® rendering wave optics phenomena

® adapt more ideas from
optics community
and vice versa!
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