
Stanford Computer Graphics Laboratory Technical Report 2014-2

Enhancing the performance of the light field microscope using

wavefront coding

Noy Cohen, Samuel Yang, Aaron Andalman, Michael Broxton, Logan Grosenick,
Karl Deisseroth, Mark Horowitz and Marc Levoy

August 10, 2014

Departments of Electrical Engineering, Computer Science and Bioengineering, Stanford
University, Stanford, CA 94305, USA

Abstract

Light field microscopy has been proposed as a new high-speed volumetric computational
imaging method that enables reconstruction of 3-D volumes from captured projections of the
4-D light field. Recently, a detailed physical optics model of the light field microscope has been
derived, which led to the development of a deconvolution algorithm that reconstructs 3-D vol-
umes with high spatial resolution. However, the spatial resolution of the reconstructions has
been shown to be non-uniform across depth, with some z planes showing high resolution and
others, particularly at the center of the imaged volume, showing very low resolution. In this
paper, we enhance the performance of the light field microscope using wavefront coding tech-
niques. By including phase masks in the optical path of the microscope we are able to address
this non-uniform resolution limitation. We have also found that superior control over the per-
formance of the light field microscope can be achieved by using two phase masks rather than
one, placed at the objective’s back focal plane and at the microscope’s native image plane. We
present an extended optical model for our wavefront coded light field microscope and develop
a performance metric based on Fisher information, which we use to choose adequate phase
masks parameters. We validate our approach using both simulated data and experimental
resolution measurements of a USAF 1951 resolution target; and demonstrate the utility for
biological applications with in vivo volumetric calcium imaging of larval zebrafish brain.

1 Introduction

Light field microscopy, first presented by Levoy et. al in 2006 and 2009 [1, 2] and further improved
upon by Broxton et. al in 2013 [3], is a method for single-snapshot volumetric imaging that employs
a microlens array in the optical path of a fluorescence microscope. Unlike the widefield microscope,
which records the spatial distribution of light collected by the microscope objective, the light field
microscope (LFM) records both the spatial and angular distribution of the light. Captured light
field images can be processed to reconstruct a full three dimensional (weakly scattering) volume
or a single two dimensional z plane in the volume. In [3] we presented a reconstruction method
that uses an inverse-problem framework with a wave-optics optical model of the LFM and solved
it using 3D deconvolution. We showed that unlike traditional microscopy, in which high resolution
can only be achieved for a small range of z depths around the native focus plane of the microscope
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(its depth of field), the volume reconstructed from the captured light field image of the LFM
preserves significant portion of lateral spatial resolution at each z plane; even over a hundred
microns away from the native object plane.
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Figure 1: US Air Force (USAF) 1951 resolution test target translated to depths below the native object
plane (z = 0 µm) and imaged using a light field microscope with a 20x 0.5NA water-dipping objective. (a)
Images taken with a conventional widefield microscope as the target is translated to the z-heights denoted
below each image. (b) Light field deconvolution using the method developed in [3] while the microscope
was defocused to the same heights as in (a). The resolution is poor at the native plane (red frame in
leftmost column), peaks at z = −20 µm and gradually decreases with depth. (c) wavefront coded LFM,
which in this example consists of a single cubic phase mask, placed in the back focal plane of the objective.
The low-resolution at the native object plane is significantly improved (green frame in leftmost column),
and the resolution at z = −100 µm is also slightly improved compared with (b) (rightmost column, red
and green frames). This comes at the expense of reduced peak resolution at z = −20 µm.

However, as we showed in [3], whether reconstructing a full volume or only a two dimensional
z plane in that volume from a light field image, the achievable lateral resolution of the LFM is not
uniform across z depths. Fig. 1(b) shows qualitatively the resolution that can be achieved with a
20x 0.5NA water-dipping objective and a 125µm-pitch f/20 microlens array, and a more detailed
analysis of the resolution is given in section 4.1 and Fig. 5 of [3]. Our analysis showed that at the
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center z planes of the imaged volume, over a z range spanning 10 µm around the native object
plane of the LFM, the achievable lateral resolution is significantly degraded compared with that of
a widefield fluorescence microscope at its native object plane (Fig. 1(a), left-most column). Farther
away from the native object plane the achievable spatial resolution degrades gradually. However,
the LFM working range, over which the lateral resolution is high, remains much larger compared
with a widefield fluorescence microscope. This non-uniformity of resolution hinders practical use
of the LFM for some applications that require localization and measurement of fine 3D structures
in a sample that is spread over a large range of z depths. In [4, 5], the authors demonstrate the
use of LFM to image neural activity in a transparent larval zebrafish. In supplemental video 6 of
[5], reconstructed neurons located at the native object plane of the LFM show up as large uniform
square patches compared to neurons at other z depths, which are better resolved.

In this paper we propose a novel extension to the LFM that aims to mitigate the non-uniformity
of lateral resolution across depth by placing phase masks in the optical path of the LFM, in order
to produce a more uniform performance across depth. This technique, called wavefront coding,
shapes the point spread function of the microscope and is a natural extension to traditional light
field microscopy. It can be easily incorporated into the optical model and light field deconvolution
framework we proposed in [3]. We propose two types of designs: (1) placing a single phase mask
at the back focal plane of the microscope’s objective (we call this the objective mask), and (2)
combining this objective mask with an array of smaller phase masks positioned at the native
image plane of the microscope, as an integral part of the microlens array (microlenses masks). We
also show that properly-designed masks can improve the LFM resolution profile for reconstructing
both 2D planes (off the object native plane) and 3D volumes and create either a more uniform
resolution profile across z depths. Our design solves the low-resolution problem around the native
object plane, and can even create a resolution profile that favors the native object plane over other
depths. Our data suggests a general design principle for our wavefront coded LFM - using an
objective phase mask to control the size of the point spread function (PSF) at the native image
plane that is sampled by the microlenses; and using microlenses phase masks to shape the PSF at
the detector plane so that high frequencies can be resolved over a wide range of depths.

Since wavefront coding techniques were first proposed by Cathey and Dowski [6] phase masks
have been designed and employed by researchers in various imaging modalities. In microscopy,
phase-only elements have been placed in the back focal plane of a microscope’s objective, mainly
for the purpose of extending the depth of field of the microscope when imaging samples that are
spread over a wide range of depths [7, 8, 9, 10], but also for the purpose of reducing the depth of
field, allowing for better optical sectioning [11].

In the context of integral imaging, Castro et al. proposed to add an array of quartic phase
masks to an integral imaging acquisition system made of a microlens array and a detector, in
order to improve each microlens depth of field [12]. The three-dimensional reconstruction method
requires to convolve each microlens image with a single inverse filter to remove the mask blur, and
then the volume is reconstructed using a pinhole ray-optics model. However, the proposed method
does not aim to reconstruct above the resolution of the microlens array, nor does it consider a
complex optical system such as a camera or a microscope, where diffraction takes place.

A light field image could also be captured together with a widefield image, the latter providing
high-resolution information about the native object plane as proposed in [13]. This method requires
splitting the incoming light between two cameras or capturing the light field and widefield images
sequentially, which is less suitable for imaging dynamic phenomena. Another approach to improve
the low resolution at the native object plane is to divide the light captured by the objective into
two optical paths with a known path difference between them, and place two microlens arrays
(potentially with different focal lengths) side by side in front of the detector [14]. However this
method has the drawback that it sacrifices half the sensor area.
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It is worth noting that there are some degrees of freedom in the design and use of the LFM
that can help mitigate the problem of non-uniform resolution at the expense of other properties.
For example, by varying the microlens array pitch a tradeoff between the peak resolution of the
LFM and the resolution farther away from the native focal plane can be achieved - smaller pitch
would result in higher peak resolution in the vicinity of the native object plane and worse lateral
resolution farther away from it. It is also possible to avoid the low resolution at the native object
plane by focusing the LFM outside the volume of interest in the sample. However, this sacrifices
half of the microscope’s working range.

The paper is organized as follows: in Section 2 we present an extension to the optical model we
presented in [3] for the wavefront coded fluorescence LFM that includes phase masks. This model
is then used to generate simulated results and to deconvolve experimental data. In Section 3 we
derive a performance metric for the LFM based on Fisher information. The metric is independent
of the type of reconstruction algorithm used and is well correlated with standard resolution mea-
surement methods. We demonstrate that it can be a useful tool for designing phase masks and
optimizing LFM performance. Finally, in Section 4 we present both experimental results using a
fabricated glass objective phase mask, as well as simulated results for other proposed microscope
configurations, including microlenses phase masks.

2 Optical model
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Figure 2: Schematic diagram of the light propagation through our proposed wavefront coded light field
microscope. Phase masks (in green) are placed in the back focal plane of the microscope’s objective, where
the telecentric stop is placed in a doubly-telecentric microscope configuration, and also in the aperture of
each microlens in the microlens array.

The reconstruction of a 2D plane or a 3D volume from a light field image requires solving an inverse
problem of the form

f = Hg, (1)
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where f is the light field image, g is the reconstructed volume (or plane) and H is a measurement
matrix modeling the forward imaging process. H is constructed by modeling how light from a point
source in a given location the volume propagates through the LFM and results in a diffraction
pattern on the detector plane. The inverse problem is solved numerically by applying a non-blind
deconvolution algorithm such as Richardson-Lucy.

In [3] we also presented a physical-optics model of light propagation through the LFM, based
on wave optics theory. The model assumes a fluorescence microscope in which the objective and
tube lens are set up as a doubly-telecentric 4-f system where the back focal plane of the objective
coincides with the tube lens’s front focal plane. The wavefront at the native image plane of the
microscope, generated by a point source in the volume, is calculated using scalar diffraction theory
for a circular aperture objective [15] (which is accurate for low-NA objectives with an aperture
diameter much larger than the wavelength of incoming light, for which polarization effects can be
neglected). This wavefront is then multiplied by the transmission function of the microlens array
and the result is propagated a distance equal to one microlens focal length to the detector plane
where an intensity image is recorded. In order to solve the inverse problem, the optical model
is discretized and measurement noise is modeled to have a Poisson distribution (i.e. mostly shot
noise).

In this work we extend this optical model to include a phase mask in the back focal plane of
the microscope’s objective, and phase masks at the aperture of the microlenses of the microlens
array. Our model takes advantage of the explicit Fourier transform relationship between parallel
planes in the microscope, and is fast to compute numerically. This is especially important, as we
later define a performance metric, based on the forward optical model, to search for suitable phase
masks that improve the performance of the LFM.

We define our coordinate system so that its origin is located on the optical axis at the front
focal plane of the objective, which we also refer to as the native object plane. Positive z values
are defined towards the objective. x and y are spatial coordinates on planes perpendicular to the
optical axis and we denote r = [x, y]

T
. A point source with electric field amplitude A, located at

p = [xp, yp, zp]
T

in the volume (marked by the red dot in Fig. 2) emits a spherical wavefront that
propagates to the front focal plane of the objective. According to the Huygens-Fresnel integral [16]
and assuming r � λ, at the front focal plane of the objective we have

U0 (r,p) = −ıAknzp
2πr2

exp (ıknr)

r ,
[
(x− xp)2 + (y − yp)2 + z2p

]1/2
kn =

2π

(λ/n)

where kn is the wave number, λ is the emission wavelength and n is the index of refraction of the
medium through which light propagates (n = 1.33 for our simulated and experimental results).
For point sources that are located off the front focal plane of the objective, the propagation creates
the well known quadratic-phase profile on this plane that is associated with defocus.

The objective and tube-lens in a well-corrected, doubly-telecentric microscope can be modeled
as 4-f system, as shown in Fig. 2. The objective’s focal length, denoted fobj can be calculated
from the known magnification M and the tube lens focal length ftl

fobj =
ftl
M
.

The transmittance function of a Abbe-sine corrected objective with a circular aperture is given by
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[15]

Tobj (x, y) = Pobj (x, y) (cos θ)
1/2

exp

(
−ı k

2fobj

(
x2 + y2

))
where

Pobj (x, y) = circ

((
x2 + y2

)1/2
dobj/2

)

θ , sin−1

(
λ
(
x2 + y2

)1/2
n

)
.

dobj is the diameter of the objective’s back aperture and Pobj (r) is the objective’s pupil function. If
desired, Tobj (r) can also accommodate any wavefront error that is the result of optical aberrations
in the objective, or a quadratic phase term that could be present if the microscope is not arranged
in a perfectly telecentric configuration.

Under the Fresnel approximation, the wavefront at the objective’s front focal plane U0 (r,p),
multiplied by the objective’s pupil function and the wavefront at the back focal plane of the
objective U−

1 (r,p) form a Fourier transform pair (up to a complex scaling factor)

U−
1 (r,p) = −ıexp (ıkfobj)

λfobj

∫∫
U0 (ξ, η,p)Pobj (ξ, η) exp

(
−ı k

fobj
(ξx+ ηy)

)
dξdη

where k = 2π
λ . In our wavefront coded LFM design, a phase mask is placed in the back focal plane

of the objective. The phase function that is implemented by the mask multiplies U−
1 (r) as follows

U+
1 (r,p) = U−

1 (r,p) exp (ıφobj (x, y,Θobj))

where Θobj is a vector of parameters that define the shape of the phase function. As an example,
the well known cubic phase mask, which introduces a phase function φobj (x, y) = α

(
x3 + y3

)
has

only one free parameter α, that determines the maximal phase retardation.
In a 4-f telecentric microscope configuration, the back focal plane of the objective coincides

with the front focal plane of the tube lens, and therefore the wavefront at the back focal plane of
the tube lens U−

2 (r,p,Θobj), is a scaled Fourier transform of U+
1 (r,p,Θobj)

U−
2 (r,p,Θobj) = −ıexp (ıkftl)

λftl

∫∫
U+
1 (ξ, η,p,Θobj)Ptl (ξ, η) exp

(
−ı k
ftl

(ξx+ ηy)

)
dξdη

where Ptl (x, y) is the pupil function of the tube lens, typically a circ function. U−
2 (r,p,Θobj) is a

scaled, inverted, and blurred (depending on the phase mask function and the objective back aper-
ture size) version of the wavefront U0 (x, y) [17], multiplied by the phase function φobj (x, y,Θobj).

Our original design of the LFM features a microlens array at the native image plane of the mi-
croscope (where the detector is positioned in a widefield fluorescence microscope). As we described
at length in [3], the microlens array acts as a sensing element that enables the recording of both
spatial and angular information about the light distribution in the imaged sample. We extend
the optical model to include an arbitrary phase function in each microlens aperture. Denoting
Tse (x, y,Θµlens) the general transmission function of the sensing element, Pse (x, y) the aperture
function and Qse (x, y,Θµlens) the phase function, the transmission function takes on the form
of a rectangular grid, with added phase component that multiplies the quadratic phase of each
microlens

Tse (x, y,Θµlens) = Pse (x, y)Qse (x, y,Θµlens)
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where

Pse (x, y) = rect

(
x

dµlens
,

y

dµlens

)
∗ III (x/pµlens, y/pµlens)

Qse (x, y,Θµlens) = exp

(
−ı k

2fµlens

(
x2 + y2

)
+ φµlens (x, y,Θµlens)

)
∗ III (x/pµlens, y/pµlens) .

dµlens is the size of the rectangular aperture of each microlens and pµlens is the pitch of the
microlens array (or the distance between microlenses, dµlens ≤ pµlens). III (·) is the Dirac comb
function and ∗ denotes convolution.

Tse (x, y,Θµlens) multiplies the incident wavefront U−
2 (r,p,Θobj). For convenience, we define

Θ = [Θobj ,Θµlens]
T

and we have

U+
2 (r,p,Θ) = U−

2 (x, y,Θobj)Tse (x, y,Θµlens) .

The wavefront incident on the detector U3 (r,p,Θ) in Fig. 2, equals to U+
2 (r,p,Θ) propagated

forward the distance between the sensing element and the detector which is equal to one microlens
focal length fµlens in our case

U3 (r,p,Θ) =
exp (ıkfµlens)

ıλfµlens
exp

(
ı

k

2fµlens

(
x2 + y2

))
∫∫

U+
2 (ξ, η,p,Θ) exp

(
ı

k

2fµlens

(
ξ2 + η2

))
exp

(
−ı k

fµlens
(xξ + yη)

)
dξdη.

Finally, the resulting incoherent light field PSF at the detector plane is given by the squared
modulus of the coherent PSF

h (r,p,Θ) = |U3 (r,p,Θ)|2 .

For more details about the discretization of this optical model and the formulation and solution of
the reconstruction problem, we refer the reader to [3]. In this work we use the same formulation
and reconstruction techniques presented there. Since the addition of phase masks to the optical
model merely changes the intensity distribution in the light field PSF, compared with the light
field PSF of a standard LFM (i.e. the system matrix H in Eq. (1)), our proposed extension of
the LFM comes at only a minor increase in computational complexity over the existing light field
deconvolution technique.

3 Analysis of the performance of the LFM based on Fisher
information

Characterizing the performance of an LFM is not a trivial task. Common methods such as mea-
suring the full-width-half-max of the optical system’s PSF or using a resolution target (such as a
US Air Force 1951 test target) to measure the achievable resolution cannot be applied to the light
field image directly. Rather, these methods must be applied to the image or volume reconstructed
from the light field image (see [3]) and are therefore become sensitive to the choice of reconstruc-
tion algorithm and any priors the algorithm applies. In addition, reconstructions are computation
intensive and thus time consuming. For these reasons, it is inconvenient to rely on them when
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designing objective or microlenses phase masks for enhancing the LFM performance. It is therefore
beneficial to develop a performance metric that is independent of the reconstruction but correlates
well with resolution measurement methods.

We propose to characterize the performance of our wavefront coded LFM by calculating the
Fisher information of the optical system. This is similar to the approach used in [6], in which
the Fisher information was used to analyze the sensitivity of a cubic phase mask to misfocus.
Subsequently, the Fisher information was also used in design and analysis of other phase masks
for enhancing the depth of field of imaging systems [18, 19, 20]. In these works, the phase mask
performance is analyzed and optimized by calculating the Fisher information of the optical system’s
PSF with respect to the Zernike defocus coefficient W20. The Fisher information was used to
measure how the PSF changes with defocus. A phase mask that minimizes the Fisher information
results in a PSF that is insensitive to defocus, thus granting the optical system extended depth of
field. In contrast, in [21] the authors designed a phase-amplitude mask that results in a rotating
PSF that yields a high Fisher information with respect to defocus. This allowed them to estimate
the depth of a two-dimensional thin object from the rotation angle of the PSF via a deconvolution
process. In our setting, we will see that the Fisher information can measure the sensitivity of the
light field PSF to the position of a point source in the volume and serve as the basis for a metric
that the calculates the performance of the microscope.

We adapt the Fisher information-based approach to our needs by defining a measure of how
the light field PSF changes when the position of a point source translates slightly in the volume.
Formally, consider the light field PSF h (r,p,Θ) observed at the detector plane. Normalized
properly, h (r,p,Θ) can be regarded as a two-dimensional probability density function, defined
over the detector area, which depends on the unknown parameters vector p. Therefore, we can
calculate the Fisher information matrix I (p,Θ) with respect to the unknown point source position
p, from the observed light field PSF

I (p,Θ) =

 Ixpxp (p,Θ) Ixpyp (p,Θ) Ixpzp (p,Θ)
Iypxp (p,Θ) Iypyp (p,Θ) Iypzp (p,Θ)
Izpxp

(p,Θ) Izpyp (p,Θ) Izpzp (p,Θ)

 (2)

where

Iij (p,Θ) = −
∫∫ (

∂2 ln ĥ (r,p,Θ)

∂i∂j

)
ĥ (r,p,Θ) dr

ĥ (r,p,Θ) =
h (r,p,Θ)∫∫
h (r,p,Θ) dr

.

Each element of the Fisher information matrix is the second moment of the efficient score (the
gradient of the log-likelihood function) of the PSF relative to a certain direction of movement of
the point source in the volume. It holds information about how the light field PSF changes when
the point source position moves slightly in that direction, or in other words - how sensitive the
light field PSF is to the point source position.

High Fisher information values suggest that the light field PSF is sensitive to the exact position
of the point source in the volume - i.e. slight shifts in the point source position in the volume result
in a significant, detectable change in the light field PSF recorded on the detector. And vice versa
- low Fisher information values mean that the recorded light field PSF appears the same on the
detector, regardless of small shifts in the point source position in the volume. In this case, the
imaging system suffers from inherent ambiguity with respect to the point source position that will
hinder reconstruction methods that try to localize the point source in the volume.
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The proposed Fisher information matrix depends only on the optical model of the system,
irrespective of which reconstruction algorithm is employed. It is also relatively fast to compute
numerically - it requires calculating three Fourier transforms and four matrix multiplications per
object point (this depends on the exact elements in the optical path), and therefore can be used
for both analysis and synthesis purposes.

The proposed performance metric was used to design the combination of phase masks proposed
in section 4.4 - the parameters of the phase masks Θ were chosen to maximize a performance
metric that is based on the Fisher information matrix in Eq. (2). The performance metric is a
weighted sum of the Fisher information matrix elements

J (p,Θ) =
∑
i

∑
j

ωijIij (p,Θ) .

ωij are coefficients that weight the contribution of each element of the matrix, which let us normalize
the contributions from all directions of movement, or for example to weight lateral components
differently than longitudinal components in the z direction, along the optical axis of the system.
The final metric is the sum of J (p,Θ) across all p positions. Note that we did not apply a general
optimization problem over all possible phase mask configurations - such optimization is not trivial
due to the sheer number of degrees of freedom and is outside the scope of this work. In addition,
we chose to focus only on the two said positions for the phase masks (objective back focal plane
and microlenses apertures) since it is easier to analyze and this configuration and also to actually
implement it. Moreover, changing the position of a phase mask is equal to adding a quadratic phase
term to the original phase function. This term does not affect the performance of our wavefront
coded LFM in any significant way.

In Fig. 7 we show a comparison between the lateral resolution limit measured on reconstructed
planes of a simulated USAF resolution target (Fig. 7(e)) and the proposed performance metric
for different configurations of phase masks in our wavefront coded LFM (Fig. 7(f)). To generate
the plot in Fig. 7(f) we set ωij to consider only the elements of the Fisher information matrix
that correspond to lateral resolution (in the directions of the axes xpxp, ypyp and the diagonals
xpypand xpyp). The values Iij (p,Θ) were calculated for a point source on the optical axis of
the microscope for different z planes. The derivative was calculated numerically using a finite
difference approximation with a step of 0.5 µm (slightly below the smallest feature on the USAF
target). Comparing the performance metric results in Fig. 7(f) to the resolution measurement on
a USAF target contrast shown in Fig. 7(e), we confirm that the performance metric we propose
correlates well with the resolution measured on the USAF target.

4 Experimental and simulation results

In this section we present simulated and experimental results that demonstrate the performance
of our wavefront coded LFM. We begin with experimental results using an objective phase mask
that we fabricated. In section 4.1 we discuss our experimental setup and in section 5 we show
experimental results with only a cubic phase mask placed at the objective’s back focal plane,
and using a standard microlens array with no phase masks. We compare the lateral resolution
of the standard LFM to our wavefront coded LFM and discuss the reasons for the difference
in performance. We also demonstrate the improved resolution at the native object plane in a
biological application. In section 4.4 we show simulation results of additional configurations of
our wavefront coded LFM, including phase masks in the microlenses apertures. We discuss the
merits of different configurations and compare their respective resolution performance across depth.
Finally, in section 4.5 we give a ray-space analysis of our wavefront coded LFM with two phase
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masks configurations. The analysis provides more insight on how the use of phase masks affects
sampling of spatial and angular information of the LFM.
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OBJ
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L2L3L4L5

OBJ

DET MLA

Figure 3: Wavefront coded light field microscope - image and schematic diagram. The setup is composed
of a fluorescence microscope (objective OBJ and tube lens L1), relay optics (L2 and L3) that create a
conjugate back focal plane of the objective, a phase mask (PM) that is placed at that conjugate plane on
an translation stage, a microlens array (MLA) and a detector (DET), relayed one microlens focal length
behind the microlens array using relay optics (L4 and L5).

4.1 The experimental setup

In order to test the performance of our wavefront coded LFM we altered our light field microscope
setup described in [3] to include a physical phase mask in the objective back focal plane. It is not
straightforward to access the objective’s actual back focal plane in our setup so we added relay
optics to create a 1:1 conjugate back focal plane where we can easily place a phase mask. Fig. 3
shows an image of our setup and a schematic diagram of the optical path. A sample is imaged
by a 20x 0.5NA (Nikon) water immersion objective through a 535 nm fluorescence emission filter
(Semrock 535/50) and through a tube lens, L1 (Nikon 200mm). The physical phase mask is placed
between a pair of relay lenses, L2 and L3 (3” Edmund Optics achromatic doublets, f=200 mm)
which together form a 1:1 4-f system. We chose to match their focal length to that of the tube
lens to create a 1:1 image of the back focal plane of the objective. The exact position of the glass
phase mask (PM) is determined according to the location of the conjugate objective’s back focal
plane (note that if the microscope is not exactly telecentric, as is the case in our setup, this plane
may be different than the back focal plane of L2). The mask is mounted on a stage that allows
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for XY translation and rotation about the optical axis for accurate alignment. L3 is placed one
focal length after the phase mask. The remainder of the light path is the standard path used in
[3]: a microlens array (MLA, RPC 125 µm pitch, f/20) is positioned at the native image plane
of the microscope, with lenses L4 and L5 (Nikon 50mm f/1.4 and Nikon 35 mm f/2, arranged in
back-to-back configuration) used to relay the detector (DET, Retiga 4000R) plane to precisely one
microlens focal length behind the microlens array. This optical setup effectively implements the
optical path shown in Fig. 2 (without the microlens phase masks). Note that the pair of relay
optics L2, L3 and L4, L5 are not modeled of our optical model since we assume they are high
quality optics and since we use only the center part of these large lenses to minimize aberrations.
Therefore, the relay optics have very little effect on the light field PSF. We note however, that
the choice of focal lengths for L4 and L5 does affect the number of detector pixels under each
microlens, as explained in [3]. In our configuration we chose to have 25 × 25 pixels under each
microlens.

We chose to manufacture and test the well known cubic phase mask since it is relatively easy
to fabricate and due to its promising performance in simulations. The cubic mask, made by
RPC Photonics, was fabricated by depositing a 20 mm × 20 mm polymer (with refractive index
n = 1.52 for emission wavelength of λ = 535 nm) on BK7 glass substrate and etching the cubic
shape onto the polymer. The phase function it implements is p (x, y) = 117

(
x3 + y3

)
, where the

spatial coordinates x and y are normalized to the square mask size. The free parameter α = 117
was chosen to take advantage of the entire depth range achievable by the fabrication process over
the 20 mm × 20 mm mask area (the depth limitation of the process was 75 µm). Note that the
mask area is larger than the diameter of the back aperture of the 20x 0.5NA objective we use
(the back aperture diameter dobj = 2fobjNA [15] is equal to 10 mm in the case of our 20x 0.5NA
objective). Since our phase mask has width and height twice that size, it can also accommodate
other objectives - particularly ones with relatively low magnification and high NA that have larger
back aperture diameter.

To test the accuracy of the fabrication we measured the profile of the mask using a coherence
correlation interferometer (CCI HD, Taylor Hobson). Fig. 4(a) shows the measured mask sag and
the back aperture diameter of the microscope objective. The maximal surface error compared to
the design was measured to be 500 nm over the entire mask area and 300 nm inside the objective’s
back aperture diameter.

4.2 Experimental results with a single phase mask - resolution analysis

Before presenting the resolution measurements with the objective cubic phase mask, it is beneficial
to study light field PSFs for a point source at the native object plane to gain insight into the
increase in resolution at that plane, attributed to the phase mask. Fig. 4(b,c) show the effect of a
small lateral translation on the PSFs at the native image plane and on the light field PSFs at the
detector plane, with and without the cubic phase mask, respectively. The cubic PSF shape at the
native image plane spans an area of about 150 µm×150 µm and is much larger than the diffraction
spot of the standard LFM. It is spread by the microlens array and forms a complicated diffraction
pattern on the detector that spans four microlenses. This light field PSF is more sensitive to the
exact position of the point source on the native focus plane than the light field PSF without the
phase mask. When the point source is translated 2 µm laterally, the diffraction pattern changes
significantly. The diffraction spot of the standard LFM on the other hand, is spread by a single
microlens to a circular disk on the detector plane. Shifting the point source position laterally
causes only a slight change in the light field PSF - since the shifted small diffraction spot on the
native image plane still lies within the numerical aperture of a single microlens, it produces in
a very similar disk pattern on the detector plane. Therefore, the cubic phase mask reduces the
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ambiguity in localizing a point source on the native object plane.
To confirm the improvement in lateral resolution in actual experiments we used the same

procedure as in [3] where we imaged a high resolution USAF 1951 test target (Max Levy DA052)
at each of 201 z depths spanning 200 µm, and reconstructed the image of each target, restricting
the light emission to voxels at the known z depth of the USAF target in each image. We chose to
reconstruct each image with a spatial sampling period 16 times smaller than the native sampling
period of the LFM, as determined by the microlens array pitch (or microlenses

(a) (b) (c)

100 µm

Figure 4: The cubic mask placed at the conjugate back focal plane of the light field microscope objective
and its effect on the LFM PSFs for a point on the native object plane. (a) The measured sag of the cubic
phase mask. The white circle indicates the size of the back aperture of the 20x 0.5NA objective. (b)
With the phase mask, a point source at the native object plane generates a cubic PSF at the native image
plane of the LFM (left column, top row) and a complicated diffraction pattern that spans 4 microlenses on
the detector (left column, bottom row). Translating the point source by 2 µm in x and y (right column)
changes the light field PSF intensity profile significantly. (c) Without the cubic phase mask. By contrast,
the light field PSF after a 2 µm translation in x and y still resembles a disk. The greater change in (b)
than (c) reflects the higher sensitivity of our wavefront coded LFM to small changes in the specimen at
the native object plane, hence its improved spatial resolution at that plane.

spacing) divided by the objective magnification (also referred herein as the native resolution of
the LFM). The resulting reconstructions of the resolution target (Fig. 5(a,c)) were then analyzed
using a similar contrast metric as in [3] to produce the resulting modulus transfer function (MTF)
plot shown in Fig. 5(b,d). Each z plane containing a USAF pattern was registered to a ground truth
USAF image and the contrast was calculated for each of the USAF regions of interest according
to

contrast = (Imax − Imin) / (Imax + Imin) ,

where Imaxand Imin are the average signal levels along a line drawn perpendicular to the stripes
in each USAF group. The final contrast threshold is the minimum contrast between the horizontal
and vertical stripes in each USAF group. In Fig. 5(b,d) the green curve in shows the limiting
resolution of the LFM taken to be the 10% contrast cut-off frequency.

Using the LFM with no phase masks, we see several limitations. Over a large range of depths
around the native object plane of the LFM the achievable spatial resolution fluctuates significantly,
with certain z depths (−15 µm off the native object plane) reaching high spatial resolution, while
other z depths (around −25 µm off the native object plane) only reaching lower spatial resolution.
In particular, the lateral spatial resolution of the LFM at z depths very close to the native object
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plane (the z-depth the microscope is focused at±5 µm around it) is significantly degraded compared
with that of a traditional fluorescence microscope. Here, resolution is limited by the fact that the

500

100

200

60

(a)
-50µm 0µm 50µm 100µm-100µm

Light field deconvolution of experimental data without phase mask

0 50 100-50-100
z position (µm)

Spatial Frequency (cycles/m
m

)

(b) Lateral MTF

500

100

200

60

(c)
-50µm 0µm 50µm 100µm-100µm

Light field deconvolution of experimental data with cubic phase mask

0 50 100-50-100
z position (µm)

Spatial Frequency (cycles/m
m

)

(d) Lateral MTF

Figure 5: Experimental measurements of the resolution of the standard LFM and our wavefront coded
LFM, with a single cubic mask, placed at the objective back focal plane. (a) Light field deconvolution of
experimental data captured with no phase mask. At the native object plane (z = 0 µm) the resolution is
low, but at other planes, much higher spatial resolution can be reconstructed. The resolution gradually
decreases as we move farther away from the native object plane. (b) Experimental MTF measurements
for the standard LFM , based on contrast calculation of different spatial frequency groups in the USAF
target. High contrast values MTF are shown as hot (white-yellow), while lower values are cold (blue).
Peak resolution of more than 500 lp/mm is achieved at z = 15 µm, but the resolution fluctuates in a region
of about 50 µm around the native object plane. (c) The same reconstructed planes, now with the cubic
phase mask. The resolution at the native object plane is significantly improved, is similar for z=±50 µm
and is also slightly improve at z=±100 µm. (d) The corresponding MTF heat maps show that with the
cubic phase mask, the resolution is more uniform around the native object plane, but the peak resolution
drops to about 350 lp/mm.

detector pixels collect aliased, redundant information about the spatial position of an object
in the volume, as explained in [3]. In the example shown in Fig. 5, a LFM with a 20x objective
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and 125 µm pitch microlens array yields a maximal attainable frequency of 80lp/mm at the native
object plane. At these z depths, objects with fine details cannot be reconstructed with high fidelity.
Moreover, even at z depths where high spatial resolution is achieved, lower spatial frequencies are
degraded, resulting in inconsistent performance. For example, note the lower contrast at frequencies
around 200 lp/mm, between −10 µm to −20 µm off the native object plane. Farther away from
the native object plane, the achievable spatial resolution degrades gradually, limiting the effective
working range of the microscope (even though it is still much larger compared with a widefield
fluorescence microscope).

With the cubic phase mask however, many of these limitations are overcome. The resolution
is significantly more uniform around the native object plane and is also slightly improved farther
away from it. Moreover, the MTF frequency response at each depth is more monotonic decreasing
with frequency. This more uniform resolution profile comes at the expense of peak resolution
performance - the peak resolution when using a cubic phase mask reaches only about 64% of the
peak resolution of the LFM when no phase mask is used.

4.3 Volumetric reconstructions with the cubic phase mask

+x

+y
+x

+y
10 µm

(a)

Light Field 
Deconvolution

Light Field deconvolution with 
objective cubic phase mask

(b)

(c) (d)
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Figure 6: In vivo volumetric calcium imaging of a larval zebrafish at camera-limited frame rate. (a) The
native object plane out of a reconstructed volume at a single point in time using conventional light field
deconvolution. The poor spatial resolution makes it hard to distinguish individual fluorescent sources. (b)
With the use of a single cubic phase mask at the objective’s back focal plane, the resolution is improved.
The insets in (a) and (b) show magnification of the telencephalon, an optical processing center in the
forebrain. c,d) XZ maximum projections of the same volumes in (a) and (b) illustrate that no z resolution
is traded away to obtain the improvement shown in (b). “Banding” artifacts shown in (c), caused by the
low resolution planes (black arrow), are gone in (d).
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We conclude the experimental results by comparing three-dimensional volumes reconstructed from
light fields which were captured with and without a single cubic phase mask at the objective’s
back focal plane. To illustrate an application that benefits from the improved resolution around
the native object plane we applied our new technique toward in vivo calcium imaging in larval
zebrafish, a task which requires volumetric imaging at video frame rates and ability to resolve
neurons about 5-10 µm in size across all z depths. In this case, the volume is reconstructed
without any prior knowledge about the z plane where the is specimen is located. Moreover, unlike
a USAF target the specimen is not planar but is spread over a large range of depths. We used a
20Ö 0.5NA objective to image a volume of size 500 µm Ö 500 µm Ö 300 µm at 3 Hz (the limiting
frame rate of our camera). Epi-illumination at 488 nm was used to excite 535 nm fluorescence
emission from active neurons in 8 dpf zebrafish expressing calcium indicators pan-neuronally, Tg
(elavl3:GCaMP5G) in nacre background.

Two time series were acquired, one with and without the previously described cubic phase
mask, and min-subtracted reconstructed volumes from a single time point in each time series are
shown in Fig. 6. The improvement in resolution at the native plane, shown in Fig. 6(a,b), makes it
possible to better resolve fluorescent sources located there, which are indistinguishable without the
phase mask. This improvement with the cubic phase mask comes without any loss in z-resolution,
as illustrated by the xz maximum projections in Fig. 6(c,d).

4.4 Simulation results of additional configurations

The experimental results with the cubic phase mask raise an interesting question: whether de-
signing a different objective phase mask, or using a combination of an objective phase mask and
microlenses phase masks may result in better overall performance of the wavefront coded LFM. A
question that might follow is whether there is an optimal configuration for the wavefront coded
LFM that is preferable to all others. Answering these two questions in full is not straightforward,
but we take a step in this direction by simulating and analyzing two additional configurations
of phase masks: a configuration with a spiral mask at the back focal plane of the objective and
a configuration the cubic phase mask at the back focal plane of the objective, coupled with an
additional array of cubic phase masks located at the microlenses apertures.

Our spiral phase mask is the continuous version of the phase function proposed in [22]. Instead
of dividing the aperture into several annular Fresnel zones with decreasing width, we define the
mask in polar coordinates to be

φobj (x, y) = α
(
x2 + y2

)
arctan (y/x)

where the parameter α controls the maximal phase retardation the mask creates and x and y are
normalized coordinates. The mask has two components: a radial component of quadratic phase
which is associated with defocus and an angular component that is simply the angle in radians
at a given position on the back focal plane, relative to the x = 0 axis. Intuitively, each angular
component of the mask (a ray from the center of the mask on the optical axis along a radius at a
certain angle relative to x = 0) introduces a quadratic phase which focuses light to a single spot on
the optical axis. The continuous angular dependency spreads these spots evenly in z. The resulting
asymmetric PSF at the native image plane of the LFM remains the same size across a wide range
of depths, but rotates around a center point. We chose a value of α = 200π which, according to the
Fisher information-based metric we presented in section 3, gives good performance over a depth
range of 200 µm. Over this entire range, the PSF rotates about 1.667π radians about the center
point.

15



(d)
-50µm 0µm 50µm 100µm-100µm

Light field deconvolution of simulated data with objective spiral phase mask
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Light field deconvolution of simulated data with cubic phase masks for both objective and microlenses
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Figure 7: Simulation results of USAF resolution target at different z planes for several LFM configurations.
(a) Standard LFM with no phase masks. (b) An objective cubic phase mask. (c) A combination of cubic
phase masks: an objective mask as in (b) and adding a cubic phase mask at each microlens aperture.
The resolution around the native object plane is significantly improved compared with (a) and (b), but
degrades faster farther away from it. (d) A spiral objective phase mask. The resolution is uniform across a
range of 200 µm, but peak performance is reduced compared with (a)-(c). (e) 10% contrast resolution limit
across depth for the configurations (a)-(d). At the native object plane, the standard LFM (cyan curve)
shows severe aliasing artifacts which result in inaccurate measurement of the resolution. (f) The proposed
Fisher information-based performance metric. The metric correlates well with the limiting resolution in
(e). Existing differences are due to different the Fisher information metric does not calculate the maximal
frequency for a certain contrast threshold, but rather the derivative at a certain fixed step size in the
spatial domain. 16



The second configuration we propose includes a cubic masks at the back focal plane of the
objective as well as cubic masks at the aperture of the microlenses. Adding phase masks to the
microlenses offers additional degrees of freedom and control over the shape of the light field PSF.
With a cubic phase mask at its aperture the point spread function of each microlens becomes a cubic
PSF. We chose a value of α = 5 for the free parameter of the mask. As we will see, the addition
of microlenses phase mask on top of an objective mask can significantly improve the resolution of
the LFM around the native object plane. We note that unlike the objective phase mask, which
requires adding at least one additional optical element to the optical setup (and may require more
if there is a need to create a conjugate plane as is the case in our setup), the microlenses phase
masks can be implemented as part of the microlens array by altering the microlenses sag.

Our simulations were conducted in the following way: we created an empty volume and placed
the ground truth image of a USAF target in it, at a certain z-depth. We then applied the forward
optical model on the volume g according to Eq. (1) to create a light field image f from it. This
synthetic light field image was deconvolved and processed in the same way as the experimental
light fields shown in section 4.2. We repeated this procedure, placing the USAF image at different
z depths in our simulated volume for a range of 200 µm around the native object plane of the
microscope.

Fig. 7 shows the simulation results for the two configurations we propose (see Fig. 7(c,d)) as
well as the standard LFM configuration with no phase masks and our experimental objective cubic
phase mask for comparison (see Fig. 7(a,b) respectively). The simulated results in Fig. 7(a,b) are
in agreement with our experimental results for both these cases, although the experimental results
in Fig. 5 reach a lower limiting resolution and exhibit stronger reconstruction artifacts. In Fig.
7(c,d) we show the reconstructed USAF target for the combination of cubic masks and for the
spiral mask, respectively and in Fig. 7(e) we show the 10% contrast resolution limit, calculated
from the reconstructed USAF stacks for each z-depth. A comparison to the Fisher information
performance metric is given in Fig. 7(f).

The performance of the spiral mask (Fig. 7(d)) is the most uniform over the depth range - the
resulting limiting resolution is slightly above 250 lp/mm, more than threefold improvement over
the native resolution of the LFM (80 lp/mm in our configuration). Even at a distance of ±100 µm
away from the native plane the resolution hardly degrades. This uniform performance is expected
since the spiral PSF keeps its size and general shape and only rotates around a center point with
depth. However, peak resolution is sacrificed even more compared with the cubic phase mask.
Even with the lower peak resolution, the spiral phase mask is a good candidate for applications
that require uniform resolution performance over a large range of depths.

In contrast, the combination of cubic masks at the objective back focal plane and the microlenses
apertures shown in Fig. 7(c) results in a non-uniform resolution profile across depth, with high
resolution at the vicinity of the native object plane that decreases farther away from it more
rapidly compared with the other configurations. To understand why the addition of these phase
mask trades the resolution of the LFM near the native object plane and farther away from it
in this manner, we analyze the PSF under a single microlens as a result of point source in the
volume located at two different z depths. Fig. 8(a,b) show a single microlens diffraction spot for
an objective cubic phase mask and for a combination of objective and microlenses cubic masks
respectively, both for a point source 25 µm away from the native object plane. When using
only an objective cubic phase mask, the diffraction pattern under one microlens is a large spot
and consequently its 1D cross-section MTF (the absolute value of the Fourier transform of the
central horizontal row of the 2D diffraction spot), shown in red in Fig. 8(c), cannot support high
frequencies. Adding the cubic phase mask at the microlens aperture shapes this spot into a cubic
PSF that has an improved frequency response (blue curve in Fig. 8(c)) and can therefore support
higher spatial frequencies, resulting in higher spatial resolution in the reconstruction. Farther away
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from the native object plane at z = 80 µm the opposite is true: the resulting spot when using
standard microlenses (Fig. 8(d)) is more compact than the cubic PSF (Fig. 8(e)) and can therefore
support higher spatial frequencies, as shown in Fig. 8(f).

10 µm

(a)

(c)

(b) (d)

(f)

(e)

Figure 8: Analysis of the diffraction spot under a single microlens with and without a cubic phase mask at
its aperture. In both cases, a cubic phase mask is used in the objective back focal plane. (a) The diffraction
spot for a point source at z = 25 µm with no microlens phase mask. (b) the diffraction spot for the same
point source position as in (a), with a cubic phase mask at the microlens aperture. (c) Cross-section MTFs
of the spots in (a) - in red and in (b) - in blue. The PSF of the microlens with the cubic phase mask shows
better frequency response. (c) The diffraction spot for a point source at z = 80 µm with no microlens
phase mask. (d) The diffraction spot for the same point source position as in (c), with a cubic phase mask
at the microlens aperture. (e) Cross-section MTFs of the spots in (c) - in red and in (d) - in blue. At this
depth, the MTF of the microlens with the cubic phase mask is worse compared with not using a microlens
phase mask. In this example, adding cubic masks to the microlenses is advantageous only for a certain
range of depths of about 80µm around the native object plane.

4.5 Ray-space analysis of the wavefront coded light field microscope

Further understanding of the effects of using different phase masks can be gained by observing the
Cartesian 2D ray-space diagrams for two wavefront coded LFM configurations: (1) an objective
cubic phase mask, and (2) microlenses cubic phase masks. Ray-space diagrams show how the
detector pixels integrate light rays from different spatial positions on the native object plane,
denoted the x plane, and different angles over the objective’s back focal plane, denoted the u
plane (note that for the sake of clarity, the diagrams are two dimensional, having only one spatial
coordinate and one angular coordinate). The size of the x plane is limited by the objective’s field
of view and the size of the u plane is defined as the size of the telecentric stop of the microscope.
Although they are based on ray optics and do not consider diffraction effects, we found that these
diagrams do provide insight into the benefit of using phase masks to improve the low resolution at
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Figure 9: Backward ray tracing diagrams and corresponding ray-space diagrams for four LFM configu-
rations, assuming paraxial optics. Scale is exaggerated to highlight differences. (a)-(d) Back-traced rays
from a detector pixel for no phase masks, microlenses cubic phase masks, objective cubic phase masks and
both microlenses and objective masks configurations, respectively. Ray colors distinguish different points
inside a pixel’s integration area. The objective and microlenses phase masks spread the rays differently:
Ray bundles from each point on the detector are refracted by the microlenses masks so that their intersec-
tions with the u plane form a parabolic profile. The objective phase mask on the other hand, introduces
different phases to ray bundles that intersect at different positions over the back focal plane, so that their
positions on the x plane form a parabolic profile. (e) Ray-space diagram for (a). When no phase masks
are used, a thin object on the native object plane (the yellow vertical stripe) is sampled only by pixels
under a single microlens (denoted by same-color areas), which collect light over the same area on the x
plane. The lack of diversity in position measurement leads to low spatial resolution in the reconstruction.
(f) Using only microlenses phase masks the sampling pattern of the x plane does not change. Therefore,
the low spatial resolution at the native object cannot be improved. (g) With an objective mask, pixels
that sample the object now cover partially overlapping areas on x. The added spatial information leads
to higher spatial resolution in the reconstruction. (h) When using objective and microlenses phase masks
together, the object is sampled by even more pixels, resulting in further improvement in spatial resolution
in the reconstruction.
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the LFM’s native object plane. Fig. 9 shows one-dimensional ray-space diagrams along with
backward ray-tracing (from the detector plane to the volume) illustrations for an LFM with no
phase masks and for the two phase mask configurations mentioned above. The ray tracing illus-
trations are based on tracing rays through a paraxial model of the LFM in optical design software
Zemax.

When no phase masks are used (Fig. 9(a)), rays back-traced from a single pixel (blue rectangle
on the detector) are spread to parallel ray bundles by the microlens which are then focused by
the tube lens on the u plane. They are expanded again by the objective to parallel bundles that
intersect with the x plane. The ray bundles from one pixel cover an area on the u plane equal to
the objective’s back aperture size dobj divided by the number of pixels under a microlens; and on
the x plane the rays spread over an area of size dµlens/Mobj . Hence, in u − x space (Fig. 9(e))
every detector pixel samples a rectangular area. The ray-space diagram Fig. 9(e) illustrates the
low resolution problem at the native object plane of the LFM: a thin isotropically-emitting object
on the x plane, with width smaller than dµlens/Mobj as illustrated by the vertical yellow stripe in
Fig. 9(e), is only sampled by pixels under a single microlens (same-color rectangles in Fig. 9(e)).
In this case, the resulting light field PSF looks like a full disk as shown in Fig. 4(c). Since all
the pixels collect light from the same area on the x plane (but from different angles of view), the
measurements are redundant and it is not possible to reconstruct the object with higher spatial
resolution than the width of that area (i.e. the native resolution of the LFM), without using prior
knowledge about the object. This redundancy is also illustrated in Fig. 3 in [3] which illustrates
the spatial sampling of the volume by rays back-traced from the detector - at z = 0 µm (the native
object plane) the ray intersections are sparse, and the plane is therefore sampled only at intervals
corresponding to dµlens/Mobj (6.25 µm in this case).

By adding microlens cubic phase masks, we see that rays traced-back from each point on the
detector (Fig. 9(b)) are spread by the phase mask and intersect the u plane at positions that form
a parabolic profile. The rays intersect the x plane over an area with the same size as in Fig. 9(a).
In u − x space (Fig. 9(f)) each pixel covers the same area dµlens/Mobj on the x plane as in Fig.
9(e), but has a parabolic profile in u (this profile is the sum of many shifted parabolic profiles, each
produced by a different point inside the pixel’s integration area on the detector). The parabolic
curvature depends on the power of the cubic phase masks. It is evident that the pixels that sample
the object on the x plane (vertical yellow stripe) still contain redundant information about its
position. Therefore, the microlenses phase masks do not solve the native object plane resolution
problem.

Placing a cubic phase mask in the objective’s back focal plane (with no microlenses phase
masks) however, changes the intersection of rays with the x plane. Backward-traced rays from a
every point on the detector (Fig. 9(c)) intersect the u plane at a single point, and are spread on the
x plane over the same area size, as is the case in Fig. 9(a). But since groups of rays coming from
different points within a pixel area intersect the u plane at different positions, they are refracted
differently by the phase mask and are therefore spaced according to a parabolic profile on the x
plane. Summing the contributions from all points within a pixel, results in a parabolic profile on
the x plane as shown in Fig. 9(g). Our ray-space analysis for this case matches results presented
in [23] and [24] for a camera system with a cubic phase mask in its main aperture. When using
an objective cubic mask, the resulting light field PSF spreads over several microlenses as shown
in Fig. 4(b). An object on the native object plane is therefore sampled by pixels under several
microlenses, which collect light from different, partially overlapping spatial positions on x. The
additional spatial information can be used to reconstruct the object’s position with higher spatial
accuracy than the native resolution of the LFM. When using objective and microlenses masks
together (Fig. 9(d)), rays are refracted by both masks and result in parabolic profiles on both u
and x planes. The resulting sampling pattern of the detector pixels (Fig. 9(h)) shows that even
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more pixels sample the object on the native object plane compared with just using an objective
mask. The greater diversity of positions and angles of rays in the measurement of the native object
plane, and the fact that with the cubic phase mask each microlens PSF can support higher spatial
frequencies for that plane result in even higher spatial resolution in the reconstruction, as we show
in section 4.4.

5 Discussion

In this paper, we have presented an extension to the light field microscope that adds phase masks
in the back focal plane of its objective and in the microlenses apertures. We have shown how these
phase masks can control the shape of the light field PSF and change the microscope’s resolution
profile to be much more uniform across depth. We analyzed the resolution of several configurations
of our wavefront coded LFM theoretically, experimentally, and in simulations. We have also pro-
posed a method to characterize and optimize the LFM’s performance based on Fisher information
that is independent of the deconvolution algorithm used.

Our proposed extension to the LFM allows more control over its resolution profile and suggest
that the profile can be tailored to the desired application. In particular, we note that the spiral
objective phase mask is especially well-suited for volumetric imaging, where one can obtain very
uniform resolution performance over the entire volume while still enjoying the benefits of light field
microscopy (namely the ability to capture high speed three-dimensional data with sub-second time
dynamics).

There are several future research directions that are worth mentioning. First, we plan to validate
our simulated results experimentally, either by fabricating additional objective phase masks and
microlens arrays with phase masks or by using a phase spatial light modulator (SLM). The SLM
would allow us to implement and test various mask designs quickly. Second, we plan to incorporate
the Fisher information metric in a general optimization scheme to search for phase masks that
give even better resolution than those we proposed herein. We believe however, that such an
optimization scheme should be constrained and directed in order for it to converge to useful mask
designs. The comparisons in Fig. 7 and Fig. 8 and the ray-space analysis we presented suggest
two constraints for such an optimization scheme in order to obtain high resolution over a wide
range of z depths. First, for the entire range of z depths, the extent of the PSF at the native
image plane of the LFM has to be large enough so that it sampled by several microlenses, but
not too large so that it remains sensitive to the exact position of the point source in the volume.
Second, the diffraction pattern created by the microlenses and phase masks should support high
spatial frequencies over the entire depth range. It seems that the design principle for optimizing
our wavefront coded light field microscope should address the first requirement by optimizing the
objective phase mask, since only this mask can affect the extent of the PSF at the native image
plane where the microlens array is located. The second requirement can be satisfied by optimizing
the microlenses phase masks to control the diffraction pattern at different depths.

Finally, we would also like to use our extended optical model and Fisher information to explore
and compare the performance of more general extensions to the microlens array. These might
include using several types of phase masks at neighboring microlenses, or replacing the microlens
array with an alternative sensing element, such as the coded attenuation mask proposed in [24] for
capturing compressive light fields in a camera setup.
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M. Zimmer, E. S. Boyden, and A. Vaziri, “Simultaneous whole-animal 3D imaging of neuronal
activity using light-field microscopy,” Nat. Meth 11(7), 727–730 (2014).

[6] E. R. Dowski, Jr., and W. T. Cathey, “Extended depth of field through wave-front coding,”
App. Opt. 34(11), 1859–1866 (1995).

[7] S. Abrahamsson, S. Usawab, and M. Gustafssona, “A new approach to extended focus for
high-speed, high-resolution biological microscopy,” Proc. SPIE 6090 (2006).

[8] M. R. Arnison, C. J. Cogswell, C. J. R. Sheppard, and P. Török, “Wavefront coding fluores-
cence microscopy using high aperture lenses,” in Optical Imaging and Microscopy: techniques
and advanced systems, P. Török and F.-J. Kao, eds. (Springer-Verlag, Berlin, 2003), 143–165.

[9] A. Doblas, S. V. King, N. Patwary, G. Saavedra, M. Mart́ınez-Corral, and C. Preza, “Inves-
tigation of the SQUBIC phase mask design for depth-invariant widefield microscopy point-
spread function engineering,” Proc. SPIE 8949, Three-Dimensional and Multidimensional
Microscopy: Image Acquisition and Processing XXI (2014).

[10] S. Quirin, J. Jackson, D. S. Peterka, and R. Yuste, “Simultaneous imaging of neural activity
in three dimensions,” Front. Neural Circuits 8, 29 (2014).

[11] Y. Shuai and C. Preza, “Computational optical sectioning microscopy using an engineered
PSF with reduced depth variability - Proof of concept,” Proc. of the 9th IEEE International
Symposium on Biomedical Imaging, 1739–1742 (2012).

[12] A. Castro, Y. Frauel, and B. Javidi, “Integral imaging with large depth of field using an
asymmetric phase mask,” Opt. Express 15(16), 10266–10273 (2007).

22



[13] C. H. Lu, S. Muenzel, and J. Fleischer, “High-resolution light-field microscopy,” in Computa-
tional Optical Sensing and Imaging, Microscopy and Tomography I (CTh3B), (2013).

[14] P. Favaro, “A split-sensor light field camera for extended depth of field and superresolution,”
Proc. SPIE 8436 Optics, Photonics, and Digital Technologies for Multimedia Applications II
(2012).

[15] M. Gu, Advanced Optical Imaging Theory (Springer, 1999).

[16] J. Goodman, Introduction to Fourier Optics, 2nd ed. (MaGraw-Hill, 1996)

[17] M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

[18] Q. Yang, L Liu, and J Sun, “Optimized phase pupil masks for extended depth of field,” Opt.
Commun. 272(1), 56–66 (2007).

[19] H. Zhao, Q. Li, and H. Feng, “Improved logarithmic phase mask to extend the depth of field
of an incoherent imaging system,” Opt. Lett. 33(11), 1171–1173 (2008).

[20] H. Zhao, Q. Li, and H. Feng, “Optimized sinusoidal phase mask to extend the depth of field
of an incoherent imaging system,” Opt. Lett. 35(2), 267–269 (2010).

[21] A. Greengard, Y. Schechner, and R. Piestun, “Depth from diffracted rotation,” Opt. Lett.
31(2), 181–183 (2006).

[22] S. Prasad, “Rotating point spread function via pupil-phase engineering,” Opt. Lett. 38(4),
585–587 (2013).

[23] A. Levin , S. W. Hasinoff , P. Green , F. Durand, and W. T. Freeman, “4D frequency analysis
of computational cameras for depth of field extension,” in Proceedings of ACM SIGGRAPH.
97 (2009).

[24] Z. Zhengyun and M. Levoy, “Wigner distributions and how they relate to the light field,” in
Proc. Int. Conf. Comput. Photography, Apr. 2009, pp. 1–10.

[24] K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field photography
using overcomplete dictionaries and optimized projections,” ACM Transactions on Graphics
32(4), 46 (2013).

23


