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Abstract 
With today's technology, it is possible to place a significant amount graphics processing 

power on a single chip.  While this allows computers to render very impressive imagery, 

many interactive graphics applications require several orders of magnitude more in proc-

essing power.  Parallelism is one way of achieving increased power, and scalable solu-

tions achieve parallelism through the replication of a basic unit.  In this dissertation, we 

discuss scalable graphics architectures and present novel techniques for scaling two im-

portant aspects of graphics architectures that have not been addressed by the literature: 

interface and texture. 

First, we analyze parallelism in the graphics pipeline.  By looking at the virtual ma-

chine defined by the graphics API and analyzing its dependencies, we are able to exam-

ine the sources of parallelism.  We define the metrics of scalability and analyze the extent 

to which existing graphics architectures are able to scale.  Second, we present a novel 

parallel graphics interface that allows for scalable input rates.  This interface allows mul-

tiple graphics contexts to simultaneously submit commands to the graphics system while 

explicitly ordering the drawing of graphics primitives.  Even with scenes that require a 

total order, fully scalable submission and rendering are demonstrated.  Finally, we pre-

sent a scalable texture architecture based on a shared texture memory.  In order to tolerate 

the high and variable latencies of a shared texture memory, a novel texture prefetching 

architecture is described.  The effects of parallel texture caching are examined in detail, 

demonstrating the applicability of such an approach across a wide variety of rasterization 

architectures. 
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Chapter 1 Introduction 

Introduction 

The roots of this dissertation can be traced back a decade to my first experience, during 

high school, with an interactive graphics architecture during high school.  An exuberant 

engineer was speaking during career day about his experiences at Silicon Graphics, Inc.  

To convey this excitement to an otherwise unimpressed audience, he brought his graphics 

workstation to demonstrate a simple flight simulator.  When I first saw this demo, I truly 

felt it was magic—here was an imaginary world in which I was immersed, controlled by 

my whim!  I could fly a plane, pause the world, and look at it from any angle with a few 

flicks of the wrist.  Little did I understand the underlying graphics architecture, let alone 

the concept of computation in silicon.  Looking back now, the experience was far from 

realistic—the polygon counts were low, the surface detail was minimal, the lighting mod-

els were simplistic, aliasing was occurring on the edges, etc.  Furthermore, years of study 

have transformed the mystery of computers into mundane machinery.  However, even 

today when I load up the latest 3D game, I am in awe.  The goal of this dissertation is to 

advance the mundane machinery of graphics architectures that creates the magic of inter-

active 3D.  In particular, this thesis examines techniques and algorithms for providing 

scalability in two areas of interactive graphics architectures that have not previously been 

addressed by the research community: interface and texturing. 
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1.1 Trends in Graphics Architecture 
Interactive graphics architectures have improved dramatically over the past few decades 

due to improvements in both algorithms and semiconductor technology.  In addition to 

improving raw performance, successive architectures incorporate additional features 

aimed at improving visual quality.  According to one classification of workstation graph-

ics [Akeley 1993], the first-generation graphics architectures of the late 1970s and early 

1980s were able to transform and clip geometry at rates that enabled wire frame render-

ings of objects.  In the late 1980s, second-generation architectures were able to incorpo-

rate enough memory and compute power to enable depth buffering for hidden surface 

removal and Gouraud shading for smooth lighting.  These capabilities opened the door 

for applications such as computer-aided design, animation, and scientific visualization.  

Then in the 1990s, third-generation architectures introduced texture mapping and an-

tialiasing capabilities that greatly enhance realism in virtual reality and simulation appli-

cations.  During this same period, due to advances in semiconductor technology, archi-

tects were able to integrate compelling 3D graphics on a single chip, paving the way for 

low-cost mass-market applications such as gaming and other forms of computer enter-

tainment.  As an extension to this classification [Hanrahan 1997], we are moving towards 

a fourth generation of interactive graphics architectures that include programmable shad-

ing and other advanced lighting models.  Eventually, the paradigm of local shading mod-

els will be broken by fifth-generation architectures that are able to compute global illu-

mination in real time. 

Rendering research deals with computationally efficient methods for image synthesis, 

but the definition of computational efficiency is elusive due to exponential rates of in-

crease in available computational performance over the past several decades.  As the size 

of the devices that can be placed on a chip decreases, a chip architect can exploit the re-

sulting improvement in speed and density to increase computational power.  Under the 

current regime of semiconductor devices, computing power at a given price point has 

doubled approximately every couple of years.  Consequently, “computational efficiency” 
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is a moving target: computations and architectures that were impractical or impossible a 

decade ago are now quite feasible.  This rate of exponential growth in semiconductor 

processing power, dubbed Moore’s Law, is expected to continue for at least another fif-

teen years using known manufacturing methodologies.  Furthermore, it is quite conceiv-

able that improvements in semiconductors or another technology will allow this exponen-

tial growth for quite some time.  Graphics architects have been able to increase perform-

ance at exponential rates by utilizing these semiconductor advances and will continue to 

do so in the future. 

Although the technological forces greatly influence the way graphics architectures are 

designed, market forces have an equally important role in shaping graphics architectures.  

As three-dimensional graphics architectures have become increasingly mainstream, sig-

nificant changes have occurred in their designs.  In the past, computational power was 

relatively scarce, and graphics architects had to use tens to hundreds of chips to harness 

enough power for a compelling 3D experience.  These systems, though parallel, were not 

very scalable: at best, one or two aspects of performance could be scaled by a factor of 

two or four.  Because of the large number of components, the cost of these systems was 

very high, and consequently the volumes were limited to the few customers to whom in-

teractive graphics was mission-critical.  Furthermore, as the amount of processing power 

that can be placed on a single chip has increased, architects have been able to design 

compelling graphics architectures at lower price points.  The early graphics architectures 

were aimed at a few high-end customers who were willing to pay millions of dollars for 

flight simulators; however, later architectures, composed of a few to several chips, were 

aimed at personal workstations, whose customers could afford price ranges in the tens of 

thousands of dollars.  Now, we are at a point where an impressive amount of graphics 

power can be provided at consumer price points on a single chip. 

This mass-market trend has had a profound impact on graphics architectures because 

the engineering costs of designing mass-market architectures can be amortized over mil-

lions rather than thousands of units.  The first and most obvious result is the massive 

economies of scale that occurs.  At low volumes, engineering costs make up the majority 
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of the cost of a graphics unit, and the cost of the silicon makes for a small fraction.  At 

high volumes, engineering costs are a fraction of silicon costs.  Thus, high-volume de-

signs are able to provide processing power at a cheaper rate.  Furthermore, the low per-

unit cost of engineering in high-volume designs allows for an increased engineering 

budget.  This means that mass-market graphics architectures tend to have highly opti-

mized designs that make better use of the silicon and faster product cycles.  As a result, 

graphics architectures aimed at the consumer market provide a much better price-

performance ratio than graphics architectures aimed at the professional market. 

Because interactive graphics is still several orders of magnitude away from realism 

because of limited performance, many high-end customers need performance beyond 

what the consumer graphics chip can offer.  The obvious answer is to make increased use 

of parallelism: the amount of computational power that can be placed on multiple chips is 

proportionally higher than that placed on a single chip, but these chips must be able to 

communicate and coordinate their computations.  The subdivision of computation among 

different processing units is one of the main decisions for a graphics architect, whether it 

is within a single chip, with area constraints, or across multiple chips, with cost and 

bandwidth constraints.  Traditionally, high-end graphics systems were composed of het-

erogeneous chip sets—one type of chip is built for command processing, another for 

composition, etc.  Furthermore, these architectures did not place a high premium on scal-

ability—at most one or two aspects of performance may be increased by adding more 

chips to the system.  Because of the large price-performance advantage offered by low-

end, single-chip graphics architectures, it is no longer cost-effective to engineer point so-

lutions for the high-end graphics system composed of heterogeneous chips.  Instead, the 

optimal way to build these high-end graphics architectures is by combining self-

sufficient, low-end graphics chips in a scalable fashion to realize scaled performance. 

In this thesis, we examine the scalability of parallel graphics architectures.  First, we 

present a novel analysis of the graphics pipeline and a novel framework for the classifica-

tion of graphics architectures, examining how current architectures fit into these frame-

works.  Then, we examine two aspects of scalability that have been largely ignored by 
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parallel graphics research: we look at how to scale the interface into graphics systems in a 

way that is semantically compatible with existing interfaces; then, we will look at how 

the texturing subsystem of graphics architectures may be scaled.  In addition to present-

ing designs for scalable interface and texturing, we will quantify the effectiveness of our 

approaches. 

1.2 The Rendering Problem 
Rendering is the field of study that deals with the synthesis of images from computer 

models of the world; vision is the complementary problem that deals with the analysis of 

images to create computer models of the world.  While the two problems are inverses of 

each other, the state of the two fields from the point of computation is quite different.  

With vision, the computational process of creating a model of the world from real-world 

imagery is extremely difficult because it is, in general, an artificial intelligence problem.  

Thus, human-like understanding and reasoning are required, fundamental processes 

whose computational algorithms are largely unknown, and much research focuses on un-

derstanding these processes.  On the other hand, the fundamental process behind render-

ing, the physics of light transport, is well understood.  This understanding is so detailed 

that multiple levels of approximation must be applied to make image synthesis tractable.  

Thus, rendering research mainly deals with computationally efficient algorithms and 

models for image synthesis.  Rendering systems can be classified according to two axes: 

the representation used to describe the environment and the algorithm used to create the 

images.  In general, many algorithms may be used for a given representation, and many 

representations may be used in conjunction with an algorithm. 

1.2.1 Representations and Algorithms 
The various representation formats of 3D environments may be loosely classified as sur-

face-based, volume-based, or image-based.  Surface-based representations (e.g., NURBS, 

subdivision surfaces, and triangle meshes) describe the environment as 2D manifolds in a 
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3D world and are by far the most common representation format because of their amena-

bility to animation.  Volume-based representations describe characteristics of the 3D en-

vironment (e.g., opacity) as a function of a 3D position in space.  Often, this function is 

parameterized by uniformly spaced samples in space called voxels.  A generalization of 

volume-based representations that parameterizes the environment according to a 2D di-

rection in addition to 3D position leads to a 5D plenoptic function [McMillan & Bishop 

1995].  Image-based representations, on the other hand, forgo a direct representation of 

the 3D environment and describe it as a set of 2D images.  Some examples of such repre-

sentations are 2D panoramas [Chen 1995] and 4D light fields [Levoy & Hanrahan 1996, 

Gortler et al. 1996].  Given the plethora of representation formats, the “correct” choice 

for an application depends on the ease of modeling the environment, the phenomena used 

in the rendering, and the time constraints of rendering. 

While the algorithms used for rendering are quite varied, often being closely tied to a 

particular representation, they may be classified as projection-based or ray-based.  With 

projection-based algorithms, surface elements, volume elements, or image elements are 

transformed onto the image plane according to a projective map.  Because of regularity in 

computation and access patterns, these types of algorithms tend to be fast.  Ray-based 

algorithms, on the other hand, compose images by tracing rays through the environment 

and computing interactions between these rays and the intersected scene elements.  Such 

algorithms allow the description of much richer phenomena, but the higher computational 

costs lead them to be much slower.  Again, the “correct” choice for a rendering algorithm 

depends on the phenomena and time constraints.  For example, an animator may use an 

interactive projection-based graphics system to set an animation’s key frames during the 

day, and then she may use a Monte Carlo ray tracer to render the final animation over-

night.  Because projection-based algorithms tend to be more efficient computationally, 

most interactive rendering systems use such an algorithm because of the performance 

level required by human interaction.  
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1.2.2 Interactive Rendering 
Key frame animation, modeling, computer-aided design, simulation, gaming, and many 

other applications of rendering require the interaction of a human.  Human interaction is 

confined to a relatively constrained period [Foley et al. 1990].  The productivity of a hu-

man using a computer interactively for a task is dramatically dependent on the latency 

between the user’s input and the computer display’s output.  In particular, if the latency 

exceeds beyond approximately 1 second, productivity drops dramatically: the computer’s 

responses to the human’s actions are too slow for the human to interact seamlessly.  At 

the other end of the spectrum, the benefits of a low-latency system are limited by the 

physiological characteristics of the human brain that give the illusion of a real-time phe-

nomenon.  For example, the motion fusion rate is the frame rate required to fool the hu-

man eye into perceiving motion in discrete frames as a continuous motion.  This is 

around 20 Hz for humans.  The flicker fusion rate is the rate at which a set of images that 

are “flashed” onto a surface (akin to a strobe light) appears as a continuous source of il-

lumination.  This tends to be between 50 and 80 Hz for most humans, depending on light-

ing conditions.  Virtual reality researchers have also found that for a human immersed in 

a virtual world, end-to-end latencies in the tens of milliseconds give the illusion of real-

time, while latencies over about a hundred milliseconds give nausea.  In fact, the minimal 

latency detectable by a human has been shown to be approximately ten milliseconds 

[Regan et al. 1999].  Thus, we define interactive rendering as the process of creating im-

ages from 3D environments at rates between approximately 1 and 100 Hz. 

The latency requirements of interactive rendering place unique constraints on graph-

ics architectures.  First, because the utility of interactive computer graphics to most appli-

cations is related to a specific latency, performance increases are targeted at rendering 

scenes that are more complex rather than rendering scenes at a faster rate.  For example, 

for a computer-aided design application, being able to render a machine part at several 

hertz gives the designer a good sense of the object.  While increasing the frame rate by an 

order of magnitude makes the interaction noticeably smoother, in the end, the contribu-
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tion of computer graphics to the design process does not increase significantly.  Simi-

larly, in a virtual reality application, increasing the frame rate from 100 Hz to 1000 Hz is 

not useful due to the perceptual characteristics of the human brain.  Increasing scene 

complexity, however, results in an appreciable improvement.  Another result of latency 

requirements on interactive graphics architectures is the focus on frame latency rather 

than frame throughput.  It is not very useful to provide a frame rate of 10 Hz if the la-

tency on each of those frames is 1000 milliseconds.  Ideally, a frame rate of 10 Hz should 

be provided with a frame latency of 100 milliseconds.  This has particular implications on 

how interactive graphics architectures should exploit parallelism—distributing each 

frame to a distinct graphics pipeline is not practical beyond a couple of pipelines (e.g., 

Silicon Graphics’s SkyWriter).  Thus, most parallel architectures focus on intra-frame 

parallelism. 

1.3 The Graphics Pipeline 
The computer graphics community has settled on a general algorithm for performing in-

teractive rendering called the graphics pipeline.  It defines a projection-based rendering 

algorithm that mainly supports surface representation, although it can be extended to 

support volume-based and image-based representations.  The de facto standard that cur-

rently specifies the graphics pipeline is OpenGL (Open Graphics Library) [Segal & Ake-

ley 1992, Neider et al. 1993].  To programmers, OpenGL defines the application pro-

grammer’s interface (API) to the graphics system.  To graphics architects, OpenGL speci-

fies the OpenGL machine model—a virtual machine that in essence defines the OpenGL 

graphics pipeline.  While many other graphics APIs and virtual graphics pipelines exist 

(e.g., Direct3D), we will focus our attention on OpenGL.  However, much of this thesis is 

applicable to other APIs. 

The most defining characteristic of the graphics pipeline is, as the name implies, that 

it is a pipeline.  In a pipeline, data flows linearly from one stage to the next in a fixed or-

der, and each stage processes some type of input data and produces some type of output 
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data for the next stage in the pipeline.  Such a pipeline lends itself naturally to pipeline 

parallelism, where each stage in the pipeline is implemented by a separate processing 

unit optimized for that particular type of processing.  A pipeline also provides for strict 

ordering semantics, the idea that data is processed and its effects are realized in a serial 

order as data moves along the pipeline.  The graphics pipeline also has implications for 

data dependence: one piece of data is processed independently of other pieces of data.  

This characteristic is key for data parallelism, where data for any given stage of the pipe-

line can be distributed across a large number of processing units for parallel processing.  

We will examine data dependence issues in greater detail in Chapter 2.  Generally, the 

lack of data dependencies carries with it many implications for graphics algorithms.  For 

example, the graphics pipeline supports only a local shading model where the lighting 

calculations for one primitive must be computed independently of all other primitives.  

This precludes global illumination effects such as shadows, indirect illumination, and 

caustics. 

The graphics pipeline is composed of several stages, as illustrated in Figure 1.1.  The 

application enters data into the graphics pipeline, and the data flows through the various 

graphics stages.  Each of these stages holds a certain amount of state that determines how 

data passing through is processed.  For example, the position, direction, intensity, etc. of 

the light sources are held by the lighting stage; these parameters determine how the colors 

of the vertices passing through it are modified.  This lighting state is set according to the 

application’s needs, and often the state changes are flowed through the pipeline alongside 

the graphics data.  We now will briefly go over each of the stages, which are roughly 

grouped as geometry stages or rasterization stages. 
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• Command Processing.  The command processor is responsible for process-

ing the input stream of graphics commands.  Some of these commands are 

state modifying commands that are simply propagated to the appropriate stage 

of the pipeline.  While there is great variety in the number of types of state 

modifying commands, the frequency with which they occur is relatively low.  

The majority of commands that the command processor sees are vertex com-

mands: commands that control the properties of vertices that are submitted to 

the rest of the graphics pipeline in the form of 3D object-space triangles.  The 

amount of data associated with a vertex is approximately a couple hundred 

bytes—this includes properties such as position, normal, texture coordinates, 

color, and surface material.  Because much of this data is not changing on a 
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per vertex granularity, the notion of a “current” vertex is used to minimize the 

bandwidth required for the interface.  The current vertex holds all of the ver-

tex properties except for position.  As these various vertex properties are 

specified, the values of the properties are modified in the current vertex.  

Then, when a position is specified, the current vertex is emitted with the 

specified position.  The command processor is responsible for determining 

how these vertices are connected to form 3D object-space triangles that are 

submitted to the rest of the pipeline.  The command processor is also respon-

sible for managing display lists, precompiled lists of commands that may be 

invoked with a single command later. 

• Transformation.  The incoming 3D object-space triangles are transformed to 

a world-space coordinate system according to a model-view matrix.  This 4 x 

4 matrix transforms homogenous coordinates in object-space to homogenous 

coordinates in a canonical world-space where the eye is located at the origin 

looking down the negative Z-axis.  This matrix is able to express an arbitrary 

series of transformations that include rotation, translation, scaling, shearing, 

and projection.  Surface normals are similarly transformed into world-space 

coordinates.  The resulting 3D world-space triangles are then transformed into 

clipping coordinates according to another 4 x 4 projection matrix.  In this 

space, clipping occurs against the edges of a canonical view frustum.  These 

clip coordinates are then mapped to the screen by a perspective divide and a 

simple transformation.  Additionally, the texture coordinates of the vertices 

are transformed according to another 4 x 4 matrix.  These texture coordinates 

may either be specified by the application or generated according to the posi-

tion of the vertices.  Once all these transformations have occurred, we are left 

with world-space triangles for lighting and screen-space triangles for 

rasterization. 

• Lighting.  Using world-space positions and normals in conjunction with the 

material properties, the vertices of the triangles are lit from a number of light 
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sources according to a local lighting model: the lighting of any one vertex is 

independent of any other vertices.  Light parameters typically include a posi-

tion, various intensity coefficients, attenuation factors, and spotlight parame-

ters.   

• Scan Conversion.  Scan conversion takes the three vertices of a screen-space 

triangle and generates samples from the interior of the triangle (fragments) 

everywhere there is a screen pixel.  The values for these fragments are gener-

ated by linearly interpolating between the three vertices of a triangle.  Typical 

interpolated values include color, depth, and texture coordinates.  Because the 

projected triangles are being viewed under perspective, care must be taken to 

correctly interpolate the parameters, particularly texture coordinates.  The re-

sulting untextured fragments are then passed on for texture mapping.   

• Texture Mapping.  In its most basic form, the texture subsystem pastes an 

image onto a triangle that is viewed in perspective.  This involves performing 

a lookup in the texturing unit’s texture memory based on the incoming frag-

ment’s texture coordinates.  Because the texture coordinate does not usually 

map exactly to a sample in the texture map (a texel), some sort of filtering 

must occur.  Point sampling takes the nearest neighbor, while bilinear sam-

pling takes a weighted average of the four closest texels.  However, this can 

still result in aliasing artifacts because an arbitrary number of texels may fall 

within the region between adjacent pixels.  Intuitively, one should use a 

weighted average of the texels within and around this region.  A common ap-

proximation to this is mip mapping.  For each texture, multiple pre-filtered 

copies of the texture are stored: one at full resolution, one at half the width 

and height, one at quarter the width and height, and so on, down to a single-

texel texture.  A typical pre-filtering technique utilized is a simple box filter—

just take the average of the four corresponding pixels in the higher resolution 

image of the mip map.  Then, when rendering occurs, not only are the texture 

coordinates for a fragment calculated, but also an approximation of the texel-
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to-pixel ratio.  This ratio is used to pick a level of the mip map from which bi-

linearly interpolated sample are taken.  A ratio of one corresponds to full reso-

lution, a ratio of two corresponds to half resolution, a ratio of four corresponds 

to quarter resolution, and so on.  Because the texel-to-pixel ratio usually falls 

in between two mip map levels, a linearly interpolated average of bilinearly 

interpolated samples from the two adjacent mip map levels may be taken, re-

sulting in trilinear mip mapping. 

• Composition.  Given a textured fragment with color, depth, and coverage, the 

composition unit’s responsibility is to merge this fragment with the various 

buffers (color buffer, depth buffer, stencil buffer) that are collectively known 

as the framebuffer.  Depth occlusion is usually resolved by comparing the 

fragment’s depth with the depth stored for the pixel in the depth buffer and 

conditionally rejecting the fragment.  A variety of blending modes and logic 

ops define how a fragment is combined with the color currently in the color 

buffer.  The pixel coverage information is used in conjunction with the stencil 

buffer according to a stencil op to implement a variety of effects. 

• Display.  Many modern interactive display technologies are based on a raster 

scan.  The display is in the state of constant refresh where the color on a cer-

tain portion of the display must be re-displayed every fraction of a second.  In 

a monitor, for example, an electron gun starts out at the upper-left corner of 

the screen and scans out the first row of pixels.  A horizontal retrace then 

moves the electron gun beam from the right side back to the left side, and an-

other row is scanned out.  This continues until the bottom row is reached, at 

which time a vertical retrace occurs and the whole process is repeated.  The 

implication that this has on graphics architectures is that its color buffer must 

constantly be accessed to drive the display.  Furthermore, if adjacent pixels of 

the color buffer are stored in logically separate locations, the pixels must be 

reassembled for scan-out. 
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These stages of the graphics pipeline form a basis for the work presented in this the-

sis.  Our work relates to the scaling of the graphics pipeline—given the basic stages of 

the pipeline, we examine ways of distributing work amongst multiple copies of each 

stage in a way that gives scalable performance increases.  This thesis focuses on provid-

ing scalability in two stages of the pipeline that have been previously ignored by the re-

search community: the interface to the command processing unit and the texturing unit. 

1.4 Summary of Original Contributions 
The original contributions of this thesis fall in three areas.  First, we present a novel 

analysis of parallelism in graphics architectures in Chapter 2: 

• Sources of Parallelism.  A lot of work has been done in microprocessor ar-

chitecture that analyzes various aspects of computer systems.  We present a 

novel analysis of the graphics pipeline that comparatively applies concepts 

found in computer architecture.  We focus on examining how parallelism is 

exposed and constrained by architectural structures, semantics, and dependen-

cies. 

• Analysis of Scalability.  We define the five parameters of a graphics architec-

ture that benefit the end user (and hence, those that should be scaled) and the 

various semantics that a parallel architecture may support.  Based on this, we 

examine the extent to which existing parallel graphics architectures scale with 

respect to these categories. 

Then, we present and quantify algorithms for two aspects of scalability that have not 

been addressed by previous research in computer graphics.  In Chapter 3, we present a 

novel scheme for parallelizing the interface to the graphics system: 

• Parallel Graphics Interface.  The rate of performance improvement in 

graphics architectures has outstripped the rate of performance improvement in 

microprocessor and computer architectures.  As a result, the interface has be-
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come a major bottleneck to improving the overall graphics system.  To allevi-

ate this bottleneck, we present a novel parallel interface for graphics systems.  

By introducing simple, well-understood synchronization constructs into the 

graphics interface, we are able to parallelize the submission of graphics com-

mand by the application, the bandwidth between the application and the 

graphics system, and the processing of graphics commands by the graphics 

system.  These parallel interface extensions are compatible with the semantics 

applications have come to expect from a graphics interface, and we demon-

strate that the interface can be used to attain near-linear speedup in graphics 

performance in three varieties of implementations.  Much of this work was 

described in [Igehy et al. 1998b], and some was described in [Eldridge et al. 

2000] and [Buck et al. 2000]. 

In Chapter 4, we examine and quantify the scaling of the texture subsystem.  In par-

ticular, we focus on two aspects of making parallel texturing work: 

• Prefetching in a Texture Cache.  Texture subsystems have come to rely on 

caching to greatly reduce the bandwidth requirements of texture mapping.  In 

a parallel texture caching architecture, particularly one that shares texture 

memory across many texturing units across a scalable network, memory la-

tency can be both high and highly variable.  We present a texture prefetching 

architecture that works in conjunction with texture caching.  This architecture 

is able to eliminate virtually all the latency of a memory system.   While this 

architecture is useful when a texture unit accesses a single texture memory  

with a small, fixed latency, it is critical for texturing units accessing a poten-

tially shared memory across a potentially shared network.  Much of this work 

was described in [Igehy et al. 1998a]. 

• Parallel Texture Caching.  The concept of a parallelizing the texturing sub-

system is simple: each texturing unit is responsible for accessing and applying 

texture to a fraction of the fragments generated by a scene.  Additionally, the 
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texture data may be shared across the texture memories of the texture units in-

stead of being replicated in a dedicated texture memory for each texturing 

unit.  We present a detailed study of both shared and dedicated texture mem-

ory architectures, focusing in particular on quantifying how well texture cach-

ing parallelizes across a variety of parallel rasterization architectures.  We find 

that texture caching works well with a variety of parallel rasterization schemes 

given the proper choice of parameters.  Much of this work was described in 

[Igehy et al. 1999]. 

Finally, we conclude the thesis in Chapter 5. 
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Chapter 2 Analysis of Parallel Graphics 

Analysis of Parallel Graphics 

Interactive graphics architectures have evolved over the past few decades to a canonical 

graphics pipeline, which we briefly outlined in Section 1.3.  OpenGL [Segal & Akeley 

1992] formally specifies such a graphics pipeline and has gained widespread acceptance 

throughout the research, professional, and consumer communities as a de facto standard.  

This specification forms a formal starting point for our research, and its role in graphics 

architectures is quintessential.  As the specification says, “To the programmer, OpenGL 

is a set of commands that allow the specification of geometric objects in two or three di-

mensions, together with commands that control how these objects are rendered into the 

framebuffer.”  By using this set of commands, the programmer is able to write a graphics 

program that renders images on any computer that supports OpenGL, regardless of the 

underlying hardware.  Conversely, a graphics architect is able to design a system that can 

perform the rendering of any program written using OpenGL, regardless of the original 

target system of the graphics programmer.  In this view of OpenGL, the graphics API is a 

language for graphics architectures.  In Section 2.1, we analyze the virtual graphics ma-

chine implicitly specified by this language, examining how this model exposes parallel-

ism in some ways and constrains parallelism in other ways.  Then, in Section 2.2, we pre-

sent the relevant criteria for scaling in graphics architectures, and we evaluate how exist-

ing parallel graphics architectures scale with respect to these different criteria. 
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2.1 Sources of Parallelism 
From the point of view of the graphics architect, an API such as OpenGL defines much 

more than just a language—it defines the virtual graphics machine that must be imple-

mented.  In this section, we analyze this virtual graphics machine.  We take the novel ap-

proach of applying concepts found in traditional computer architecture (e.g., [Hennessy 

& Patterson 1996]) to graphics architectures.  A formal understanding of this conceptual 

framework helps direct the graphics architect, whose job is to implement a specific in-

stantiation of the virtual graphics machine under the constraints of cost, performance, 

time, and complexity.  One of the main technical factors that has led to the proliferation 

of graphics architectures is the fact that the virtual graphics machine is significantly dif-

ferent from a traditional microprocessor—the specialized computation of graphics ex-

poses parallelism that traditional architectures are not optimized to exploit. 

Typically, microprocessor architectures are made up of four essential structures: 

processing units, instructions, registers, and memory.  Processing units define the compu-

tation that can be performed; instructions define the control of the microprocessor; and 

registers and memory define the state of the system.  While both registers and memory 

represent the state, the main distinction between the two is that registers are fixed and fi-

nite in number.  Thus, registers can be addressed with much fewer bits, can be imple-

mented with much faster logic, and are often given specialized functionality.  An instruc-

tion stream forms a sequence of commands executed by the microprocessor.  Each com-

mand instructs one or more of the processing units to modify the state of the system 

based on the contents of the registers and / or the memory.  This modified state can be 

registers or memory.  As with the microprocessor, the virtual graphics machine may be 

viewed in terms of the same four essential structures.  The sequence of graphics com-

mands from the API defines the instruction stream that the processing units execute.  

Memory is specialized into specific domains such as the framebuffer (color, depth, sten-

cil), texture memory, display list memory, and the accumulation buffer.  The graphics 

context, which determines how incoming primitives are combined with the various 
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memories (e.g., lighting state, blend mode, texturing mode), corresponds to the register 

set.  Like the register set, the graphics context has an architecturally specified number of 

components. 

2.1.1 Instruction Set 
A basic premise of all microprocessor instruction sets is the idea of serial ordering 

semantics: even though many instructions may be processed simultaneously, the result of 

such processing must be identical to the result of processing the instructions serially.  

OpenGL and most other widely accepted graphics APIs also require this strict ordering 

semantics.  Such semantics give the application programmer a clear, simple understand-

ing of the underlying system.  Individual instructions may expose parallelism by them-

selves, and adjacent instructions may expose parallelism in a way that does not violate 

strict ordering semantics. 

Instruction sets are often classified with a certain design philosophy.  In the early 

days of the integrated circuit, memory was the scarcest resource in a system.  Conse-

quently, microprocessors were designed with the CISC (complex instruction set comput-

ing) philosophy.  Instructions were of variable size, with the most common instructions 

taking the fewest bytes; instructions treated registers non-orthogonally, often tying a spe-

cific register to a specific instruction, requiring additional bytes to use a different register; 

a single instruction could cause a large number of operations (e.g., cosine function, string 

copying instructions).  Typically, each instruction took several cycles to compute.  As 

compiler technology improved and pipelining became possible, instruction sets moved to 

the RISC (reduced instruction set computing) philosophy.  Instructions were of fixed 

size; the number of registers increased and instructions could address them orthogonally; 

each instruction specified a single operation.  Now, instruction fetch has become a critical 

bottleneck in microprocessor architecture—it is very difficult to keep all the execution 

units busy with useful work from the instruction stream.  As a consequence, we are see-

ing a move towards VLIW (very long instruction word) instruction sets that allow a fixed 
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number of RISC instructions per instruction word and effectively move much of the de-

pendency analysis to the compiler. 

Within this framework, OpenGL is a CISC instruction set.  In a certain sense, 

OpenGL instructions follow the CISC philosophy to a greater extent than microprocessor 

CISC instructions.  The size of instructions can be anything from a few bytes to specify a 

change in the current color to dozens of bytes to specify a matrix to millions of bytes to 

specify a texture.  The register set specified by the graphics context state is highly non-

orthogonal.  Each instruction accesses only specific registers in the graphics context, 

sometimes with special side effects.  The amount of work specified by each instruction 

can vary by an enormous amount, anywhere from writing a single value into the current 

color to modifying every pixel in the framebuffer. 

Graphics instructions can be broadly classified into four categories.  By far, the most 

common type of command is the context-modifying instruction.  Examples of such com-

mands are: color, normal, material, and texture coordinate commands that specify the 

vertex attributes of the current vertex; commands that specify the lighting, commands 

that specify the blending modes, etc.  The second type of command is the buffer-

modifying instruction that reads some of the system state and modifies one or more of the 

buffers based on this state.  The most common of these is the vertex command, which can 

specify the drawing of a triangle; however, clears, bitmap downloads, texture downloads, 

and display list downloads all fall into this category.  Readback commands in the graph-

ics interface allow the querying of state by the application program, and no analogue ex-

ists for this type of command in the microprocessor world.  Finally, special instructions 

such as flush and finish commands fulfill a special need in the graphics interface.  While 

the view exported to the application program by the graphics interface is a machine that 

executes commands serially, one at a time, with the modifications of all previous com-

mands visible to the current command, the view exported to the display device is com-

pletely different.  In order to synchronize the display to the state expressed by the com-

mand stream, one of two commands may be used.  A flush command may return imme-

diately but guarantees that all previous commands will execute in a finite amount of time.  
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A finish command does not return control to the application program until all previous 

commands are executed. 

2.1.2 Data Dependencies 
The instruction set of a machine greatly influences how much parallelism an implementa-

tion may exploit.  While the instruction set may allow multiple operations to occur simul-

taneously, it can also introduce dependencies that inhibit parallelism.  Here, we review 

general concepts in data dependencies and their relationship to different types of parallel-

ism. 

2.1.2.1 Dependencies and Parallelism 
A well-understood source of parallelism in microprocessor instruction sets is bit-level 

parallelism: the processing units operate on multiple bits of data at a time.  For example, 

a 1-bit addition instruction takes in two 1-bit numbers along with a carry-in bit to produce 

a 1-bit result and a carry-out bit.  An 8-bit addition may be computed by eight applica-

tions of the 1-bit add instruction.  However, if the instruction set defines an 8-bit add in-

struction, the implementation may parallelize the computation in novel ways (e.g., a 

chain of 1-bit adders, a 16-bit table lookup).  Similarly, the instruction set may define a 

SIMD (single-instruction multiple-data) operation that allows eight 8-bit adds of eight 

distinct sets of values with a single instruction.  This instruction exposes data parallelism 

to the architect by allowing the simultaneous use of eight adders on eight sets of distinct 

operands.  Even if the eight additions were specified by eight separate instructions, the 

same parallelism is available, albeit at the cost of a more complex instruction fetch, be-

cause no data dependencies exist between the eight operations.  Data parallelism is pos-

sible whenever there is a lack of data dependencies between instructions requiring opera-

tions of similar type, whether it is a simple addition or the entire transformation and light-

ing stage of the graphics pipeline. 

However, not all instructions expose parallelism in such a straightforward manner.  

For example, a multiply-accumulate instruction is defined as the sum of a number with 



22 CHAPTER 2.  ANALYSIS OF PARALLEL GRAPHICS 

 

the product of two other numbers.  However, the two individual operations of multiplica-

tion and addition may not be executed simultaneously because of intra-instruction data 

dependencies: the multiplication must occur before the addition.  Even with these de-

pendencies, significant pipeline parallelism is exposed.  If the system has enough func-

tional units for a single addition and a single multiplication per instruction, the multiply-

accumulate operations may be pipelined to allow a single multiple-accumulate instruction 

per cycle.  On the first cycle, the multiplication for the first instruction occurs using the 

multiplication unit.  On the second cycle, the first instruction uses the addition unit, 

thereby completing its execution, and the second instruction uses the multiplication unit.  

On the third cycle, the second instruction moves to the addition unit, and a third instruc-

tion starts using the multiplication unit, and so on.  This pipelined execution can occur so 

long as there are no inter-instruction data dependencies: if the second instruction uses the 

result of the first multiply-accumulate instruction as an operand for its initial multiplica-

tion, it cannot be pipelined with the first instruction. 

Instruction streams also expose what are known as false dependencies.  A false de-

pendency occurs when a dependency exists between instructions because of the use of the 

same registers (resource conflict), but no true dependency exists in the underlying data 

flow.  For example, imagine an add instruction that uses a register as one of its operands 

followed by an add instruction that uses the same register to store the result of its opera-

tion.  From the point of view of the register set, those operations must be done sequen-

tially.  However, from the point of view of the underlying computation, the second in-

struction does not require the results of the first instruction.  This is called a write-after-

read hazard (anti-dependency).  If an add instruction that writes its result to a register is 

followed by an add instruction sometime later that also writes its result into the same reg-

ister, a write-after-write hazard has occurred (output dependency).  Virtualization is one 

solution for removing these dependencies: microprocessors typically provide more physi-

cal registers than the number of architectural registers specified by the instruction set and 

perform register renaming to provide a virtualized mapping between the two to address 

the problem of false dependencies. 
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2.1.2.2 Data Dependencies in Graphics Architectures 
By examining how the various instructions of the graphics API are dependent on other 

instructions, we can understand the sources of parallelism in graphics architectures.  

Here, we look at the dependencies exposed by the four types of graphics commands: 

buffer-modifying commands, context-modifying commands, readback commands, and 

special commands. 

Buffer-modifying commands perform read-modify-write operations on one or more 

of the buffers based on the content of the graphics context.  A triangle-drawing command 

requires that the triangle first be transformed, light, and setup for rasterization according 

to the graphics context.  A large amount of parallelism may be exploited at this level.  

Beyond the abundant bit-level parallelism available in the floating-point operations, sig-

nificant data parallelism exists in the fact that most operations occur on four-element vec-

tors (e.g., position, normal, color, texture) in SIMD fashion.  Furthermore, many of the 

operations for a single triangle have no intra-instruction data dependencies: the projection 

matrix may be applied independent of the lighting; the contribution of each light may be 

calculated independently; etc.  Even operations that cannot take advantage of this data 

parallelism because of intra-instruction data dependencies may utilize pipeline parallel-

ism to an extremely large degree: e.g., one matrix-multiply unit may be transforming a 

vertex with the projection matrix while another matrix-multiply unit is transforming the 

next vertex with the model-view matrix.  Because absolutely no inter-instruction data de-

pendencies exist between triangles except at the framebuffer (we will look at this in more 

depth later), data parallelism may be used across multiple triangle instructions in addition 

to pipeline parallelism.  In fact, many implementations chose to exploit inter-instruction 

data parallelism by distributing triangles amongst many units because infrequent clipping 

operations can cause excessive stalling in pipelined implementations. 

Subsequent to the rasterization setup stage, triangles are broken up into fragments that 

correspond to individual pixels on the screen.  Each fragment is then put through a series 

of steps that access the various buffers: texturing, alpha testing, depth testing, stencil test-
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ing, blending, etc., some of which may terminate further processing on the fragment.  As 

with transform, lighting, and setup, large amounts of SIMD parallelism exists for each 

fragment in addition to basic bit-level parallelism: texturing computes coordinates based 

on vectors, and all color operations compute on four components at a time.  Additionally, 

many of the operations of a single fragment may be done in parallel: e.g., the texture 

lookup, the depth test, the alpha test, and the blending operation may all be performed 

simultaneously.  The only dependencies exposed are the actual writes to the depth, sten-

cil, and color buffers—everything else may be performed speculatively. 

Across the different fragments of a single triangle, absolutely no dependencies exist.  

Reads to the texture memory may occur in any order because they are non-destructive, 

and modifications to the framebuffer may occur in any order because by definition each 

fragment from a triangle accesses a different location in memory.  Similarly, the texture 

accesses of fragments from different triangles may be done in any order.  Therefore, the 

only dependencies that exist between the fragments can be summarized as follows: the 

buffer modifications of fragments falling on the same pixel be done in-order with respect 

to the commands that generated the triangles.  Other commands that modify the frame-

buffer (clears, bitmap downloads, etc.) also have similar characteristics. 

Dependencies also exist between these framebuffer-modifying commands and com-

mands that modify the texture data.  When texturing is enabled, a true data dependency 

exists between the texture download and subsequent fragment-generating commands that 

use the texture data during the fragment pipeline.  Additionally, a false data dependency 

exists between the texture download and previous fragment-generating commands that 

used the texture object; a renaming scheme (akin to register renaming) could be used to 

eliminate this false dependency.  Of course, as with individual pixels in buffer modifica-

tions, dependencies exist at the level of individual texels rather than the whole texture.  

Therefore, it is possible to allow the texture access of a subsequent triangle to occur in a 

downloaded sub-region of a texture even before the entire texture is downloaded. 

The interaction between buffer-modifying commands and context-modifying com-

mands is quite interesting.  A true data dependency exists between a buffer-modifying 
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command and previous context-modifying commands that modify parts of the context 

used by the buffer-modifying command.  For example, a vertex command (which causes 

a triangle to be drawn) is dependent on a previous color command (which sets the color 

of the vertex).  In the other direction, however, a false dependency exists.  Imagine a se-

quence of commands that first sets the color, then draws a triangle, then sets the color, 

and then draws a second triangle.  Although there is a true dependency between the first 

two commands as well as true dependency between the last two commands, there is a 

write-after-read hazard (anti-dependency) between the middle two commands.  The first 

triangle command needs to read the “current color” register before the second color 

command writes it, but from a data-flow perspective, there is no dependency, and a re-

naming scheme may be used to eliminate this false dependency.  Of course, no depend-

ency exists between context-modifying commands and buffer-modifying commands that 

do not access that particular part of the graphics context. 

The interaction between context-modifying commands and other context-modifying 

commands can be similarly characterized.  Context-modifying commands nearly always 

modify independent portions of the graphics context in a write-only fashion, and thus no 

dependencies exist between distinct context-modifying commands.  Between context-

modifying commands of the same flavor, false dependencies exist.  Again, imagine a se-

quence of commands in the following order: color, triangle, color, triangle.  The second 

color command cannot set the “current color” register until after the first color command 

has done so.  However, an architect can provide a virtualized view of the “current color” 

register to remove the output dependency (i.e., write-after-write hazard).  This can be 

done with nearly all context-modifying commands, and the major exception to this rule 

has to do with the matrix state.  In particular, matrix-modifying commands are truly de-

pendent on previous commands that modified the current matrix because matrix trans-

formations are cascaded with multiplies to the current matrix (matrix loads break this de-

pendency chain).  Similarly, many commands modify the graphics context in a way that 

depends on the current model-view matrix (e.g., light positions, clip plane coordinates, 
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etc.).  As with buffer-modifying commands, true dependencies exist in one direction and 

anti-dependencies exist in the other direction. 

Readback commands expose obvious data dependencies.  Readback of a part of a 

context is truly dependent on a previous command that set the corresponding state.  

Readback of one of the buffers is truly dependent on the execution of buffer-modifying 

commands that write the corresponding buffer.  Again, this dependency exists at the indi-

vidual pixel level.  From a data-flow point of view, the reverse direction (readback of the 

current color followed by a write) exposes an write-after-read anti-dependency, but such 

a situation cannot actually occur because readback commands are synchronous: the read-

back does not return (and hence, no other commands may be submitted) until the queried 

valued is given to the program.  The finish command is directly dependent on the execu-

tion of all buffer-modifying commands, but the flush command introduces no data de-

pendencies. 

2.1.3 Control Dependencies 
One cornerstone of microprocessors and general purpose computing is the dependence of 

the instruction stream on memory and registers.  First, because instructions typically re-

side in memory, the ability to modify memory gives the ability to modify actual instruc-

tions.  This practice is uncommon, if not prohibited, on modern microprocessors.  Sec-

ond, and much more commonly, the memory address of the current instruction resides in 

an auto-incremented register that can be modified by the execution of certain instructions.  

The ability to modify the instruction stream conditionally based on the current state of the 

system gives the programmer the ability to use the microprocessor for general-purpose 

computation.  As a simple example, a first instruction subtracts two numbers and a sec-

ond instruction conditionally branches the location from which instructions are fetched if 

the result of the subtraction is non-zero.  The control logic of the instruction fetch is de-

pendent on a computation and thus exposes a control dependency.  Extracting parallelism 

in the face of these conditional branches is of great difficulty to microprocessor archi-

tects. 
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Control dependencies are minimal in a graphics system.  First, and most importantly, 

the graphics instruction stream presented by the graphics interface to the graphics system 

does not contain any control dependencies: the system CPU gives a series of instructions 

that all need to be executed, and the location of the next instruction is never dependent on 

previous instructions.  Second, a graphics command may specify conditionality, but this 

conditionality is always in the form of conditional execution.  The most common exam-

ple of this is depth buffering: a fragment is merged into the framebuffer only if its depth 

value is less than the depth of the current pixel in the framebuffer.  Dealing with a condi-

tional operation is much simpler than dealing with a conditional branch that diverges in-

struction fetch; in fact, most modern microprocessors have introduced conditional opera-

tions to their instruction sets so that compilers may use them instead of expressing the 

same computation with conditional branches. 

2.1.4 Discussion 
In comparing graphics architectures to microprocessor architectures, the most important 

thing to note is that graphics architectures are constrained much less by the issues of in-

struction fetch and dependencies. 

In general, the amount of work specified by a graphics instruction is much greater 

than the amount of work specified by a microprocessor instruction.  A typical microproc-

essor instruction specifies a single operation such as a multiplication.  On the other hand, 

a typical graphics instruction such as drawing an entire triangle embodies hundreds of 

operations at the very least.  The lighting and transformation of the three vertices of a tri-

angle as well as the rasterization setup constitute a few hundred floating-point operations.  

Furthermore, each triangle can generate anywhere from a few to thousands to millions of 

fragments, and each fragment requires a few hundred fixed-point operation.  Because of 

the large number of operations per graphics instruction, instruction fetch is relatively easy 

compared to microprocessors.  Even so, as the number of execution units available on a 

graphics chip increases exponentially and the bandwidth into a graphics chip remains 

limited, modern graphics architectures are limited by a serial interface.  In Chapter 3, we 
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introduce thread-level parallelism to graphics architectures in order to alleviate this in-

struction fetch bottleneck. 

The relative lack of data dependencies in graphics instructions has a great impact in 

the design of graphics architectures.  This allows for, among other things, large amounts 

of latency toleration.  In Chapter 4, we will see how this plays a critical part in texture 

prefetching.  The scale of parallelism available from a graphics interface is several orders 

of magnitude larger than the amount of parallelism available in a microprocessor instruc-

tion set.  Not only do the individual instructions contain more operations in a graphics 

interface, but also the effects of minimal dependencies are enormous.  While a modern 

microprocessor keeps an instruction window of a few dozen instructions that are partially 

processed, modern parallel graphics architectures allow tens of thousands of outstanding 

triangles.  Each chip in such an architecture incorporates hundreds of execution units that 

may operate in parallel with little contention.  This is in direct contrast with the few exe-

cution found in microprocessors that are organized around alleviating contention to a 

general-purpose, shared register set.  Because the dataflow is unknown a priori in a gen-

eral-purpose microprocessor, much hardware is devoted to detecting data dependencies 

and extracting instruction-level parallelism whenever possible.  In graphics architectures, 

most data dependencies are known a priori, and most hardware resources are expended 

on exploiting the vast amounts of parallelism.  Handling control dependencies is one of 

the most difficult aspects of microprocessors: it adds a great deal of complexity to the 

designs, and in the end, the greatly limits the amount of parallelism in the computation.  

With graphics architectures, on the other hand, parallelism is not limited in any way by 

control dependencies, nor do they add any complexity to the designs.  The fact that 

graphics architects have devised so many distinct parallel graphics architectures is a di-

rect consequence of the dearth of dependencies in graphics architectures. 
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2.2 Scaling the Graphics Pipeline 
Graphics architects have devised numerous architectures that attempt to exploit parallel-

ism.  In order to build parallel systems out of components that may be manufactured us-

ing standard processes and leverage the economies of scale that result from using repli-

cated parts, a graphics architect must determine the division of labor between the various 

components of a parallel system and provide the necessary communication infrastructure.  

In this section, we first define a set of metrics that may be used in comparing the scalabil-

ity of different graphics architectures.  Then, we survey current parallel graphics architec-

tures and to what extent they scale in each category. 

2.2.1 Scalability Metrics 
We can examine the scalability of parallel graphics architectures in terms of both quanti-

tative and qualitative measures.  Qualitatively, a scalable architecture may imply certain 

semantic constraints on the graphics interface.  Often, systems sacrifice semantic flexibil-

ity for increased performance or simplicity in a scalable design.  Here are the major se-

mantic metrics to which a system may or may not adhere: 

• Mode Semantics.  If a system supports immediate-mode semantics, then the 

application submits commands to a graphics system one at a time, and the sys-

tem executes them more or less immediately.  Like the C programming lan-

guage, it is an imperative model of programming that tells the graphics system 

step-by-step instructions on how to draw the scene.  If a system supports re-

tained-mode semantics, then the application first gives a high-level description 

of the entire scene to the system, and then the application draws the scene.  

Just as a program dataflow graph gives more information than a CPU instruc-

tion sequence, such a high-level description gives a better understanding of 

the scene to the graphics system.  Furthermore, like the Prolog programming 

language, retained-mode is analogous to a declarative model of programming 

where the programmer specifies what is wanted rather than how it should be 
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computed.  A graphics system may support immediate-mode, retained-mode, 

or both.  In general, it is easy to provide a wrapper library around an immedi-

ate-mode system to provide a retained-mode interface, but not the other way 

around.  OpenGL requires immediate-mode semantics. 

• Ordering Semantics.  Ordering semantics define a graphics system’s ability 

to maintain a drawing order specified by the application programmer.  For ex-

ample, imagine a flight simulator that places heads-up display (HUD) infor-

mation on top of the rendered scene.  It is important for the programmer to be 

able to specify that the HUD be drawn after the scene is drawn.  In a strictly 

ordered graphics system, everything is drawn in an exact order as specified by 

the application.  However, a graphics system may choose to relax this con-

straint.  For example, if depth buffering is enabled and only opaque primitives 

are specified, then the drawing order of the primitives does not affect the final 

image on the screen.  With relaxed ordering, a graphics system is allowed to 

merge fragments into the framebuffer in any order, reducing dependencies in 

the graphics system.  A strictly ordered graphics system also supports relaxed 

ordering, by definition, and it is possible for a system to support both ordering 

semantics by switching between strict and relaxed modes.  OpenGL requires 

strict ordering semantics. 

• Frame Semantics.  Frame semantics define whether a graphics system must 

adhere to drawing images frame by frame.  In a system with frame semantics, 

frame boundaries must be explicitly defined, and once a frame is drawn, addi-

tional drawing may not occur to it.  In a system without frame semantics, 

drawing may occur incrementally on the framebuffer without specifying when 

a frame begins or ends, which is critical to single buffered applications.  Fur-

thermore, frame semantics introduce one frame of latency to the drawing 

process: none of the current frame may be drawn until the entire frame is de-

fined.  OpenGL does not impose frame semantics. 
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In addition to the above semantic metrics, parallel graphics architectures may also be 

evaluated according to several quantifiable performance metrics.  While most previous 

work focuses on triangle rate and pixel rate, it is important for parallel systems to scale in 

all aspects.  Here, we identify the critical metrics that are used in evaluating the perform-

ance of a graphics system from the point of view of the application: 

• Input Rate.  As a system scales, it is important to be able to increase the rate 

at which commands may be submitted to the graphics system.  In an immedi-

ate-mode interface, this means that the CPU, interconnect, and command 

processor must all scale their abilities to input commands.  In a retained-mode 

interface, the command processor and its bandwidth to the scene graph mem-

ory must scale.  Scaling the interface is the subject of Chapter 3 and consti-

tutes one of the main contributions of this thesis. 

• Triangle Rate.  The triangle rate is defined by the rate at which the graphics 

system may transform, light, and perform rasterization setup on primitives.  

Scaling the triangle rate allows graphics systems to model the environment in 

more detail, ideally to the point of using triangles that cover only a couple of 

pixels.  Furthermore, a high triangle rate is critical to advanced techniques that 

use multi-pass shading algorithms. 

• Pixel Rate.  The pixel rate of a system determines how fast a graphics system 

can rasterize primitives into fragments and merge those fragments into the 

framebuffer.  Scaling the pixel rate is important for high-resolution displays, 

high depth complexity, and multi-pass algorithms. 

• Texture.  As a system scales, it is important to scale the texture subsystem.  

First, in order to satisfy the requirements of an increased pixel rate, the band-

width of the texture subsystem must be scaled.  Furthermore, scaling the ac-

tual amount of texture memory allows applications to use more textures and / 

or textures with higher resolution.  Higher resolution textures are particularly 
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important on high-resolution displays.  Scaling the texture subsystem is the 

subject of Chapter 4 and constitutes a main contribution of this thesis. 

• Display.  Advances in technologies such as LCD’s and plasma displays are 

driving display resolutions upwards.  In addition, researchers are actively ex-

amining how interactive environments may be created by tiling large numbers 

of commodity displays.  Thus, it is important to scale the display capabilities 

of graphics systems, allowing larger numbers of displays as well as displays 

of higher resolution.  This entails scaling the amount of framebuffer memory, 

the bandwidth to that memory, and the number of output interfaces. 

While a parallel architecture either does or does not inherently support a particular 

mode, ordering, or frame semantic, its scalability in each of the above performance met-

rics may be classified in three ways.  If a system provides no scalability in a category, 

then no additional performance is realized by scaling the system.  In a system with lim-

ited scalability, scaling the system realizes increased performance up to a certain amount 

of parallelism, beyond which no performance gains are seen.  In a system with full scal-

ability, there are no inherent limits how high the system may scale.  In addition to raw 

scalability, it is also important to examine the parallel efficiency of systems as they are 

scaled: all else being equal, an architecture that scales up to 16 nodes with 90% parallel 

efficiency is more valuable than an architecture that scales up to 64 nodes with 20% par-

allel efficiency. 

2.2.2 Analysis of Scalable Architectures 
Many different interactive graphics architectures have been presented in the literature 

over the history of computer graphics.  Exploiting parallelism is a key component of 

graphics architectures, and the flexibility that arises from the dearth of dependencies in 

the graphics API leads to a wide variety of parallel implementation choices.  Ideally, an 

architecture should provide a division of work that is highly load balanced and has a 

minimal amount of redundant work in order to increase parallel efficiency.  The commu-
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nication mechanism necessary for supporting such a division of labor should be minimal, 

and the system should not compromise any of the semantical requirements of the graph-

ics interface (mode, ordering, frame).  Finally, the complexity of the algorithm should be 

low.  In this section, we examine how graphics architectures have made tradeoffs in these 

various requirements, resulting in various degrees of scalability according to the metrics 

set forth in Section 2.2.1. 

One taxonomy [Molnar et al. 1994] classifies the parallel architectures by the place 

where a “sort” occurs.  Primitives that begin on one node of a parallel machine must have 

their effects displayed on a particular location on the display, and an all-to-all communi-

cation based on image space location must occur at some point in the parallel graphics 

pipeline (i.e., a sort).  In this section, we present a modified version of this taxonomy, il-

lustrated in Figure 2.1.  As a general point of reference, we will assume that the architec-

tures are scaled by replicating several graphics “nodes”, where each node is an individual 

graphics pipeline consisting of a command unit, a geometry unit, a rasterization unit, a 
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Figure 2.1: The Sorting Classification 
A graphics architecture may be defined by the stage in the pipeline at which a 
sort, or all-to-all communication, occurs. 
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texturing unit, a composition unit, and a display unit.  Sort-first architectures sort 3D 

primitives; sort-middle architectures sort 2D primitives.  There are two variations of sort-

last architectures: fragment-sorting architectures distribute fragments generated by each 

primitive to the appropriate compositor while image-composition architectures distribute 

the post-rendering pixels of a framebuffer as part of the display process.  Finally, the 

Pomegranate architecture, a multi-sort architecture, performs all-to-all communication at 

multiple stages of the graphics pipeline in order to increase parallel efficiency. 

When we classify architectures according to it sorting methodology, it is important to 

understand how the framebuffer is divided amongst the various graphics nodes because 

this division determines how the sort must occur.  First, the framebuffer partitioning can 

be either static or dynamic.  While a static partitioning is typically simpler to implement, 

a dynamic partitioning can be desirable because the architecture is able to use scene-

dependent knowledge to minimize redundant work and load imbalance.  Second, the par-

titioning can be regular or irregular.  A regular partitioning could consist of equally sized 

rectangular tiles while an irregular partitioning would use rectangular tiles of various 

sizes.  On the extreme end of irregularity, a system could even use non-rectangular re-

gions.  Third, the granularity of partitioning could be fine-grained or coarse-grained.  On 

one end of the scale, each region in the partitioning consists of only one or a few pixels.  

On the other end of the scale, each region in the partition contains so many pixels that 

each node is responsible for only one or a few regions.  Fourth, the assignment of the re-

gions could follow various algorithms.  A graphics system could use a regular assignment 

algorithm (e.g., round-robin distribution), a random assignment algorithm, or even an as-

signment algorithm that distributes regions in an irregular pattern that results in one node 

being responsible for more pixels than other nodes.  Finally, the assignment of pixels to 

nodes can be either shared (more than one node for a pixel) or disjoint (one node for each 

pixel).  Some graphics architectures lend themselves more to certain framebuffer parti-

tioning algorithms, leading to various parallel efficiency issues. 
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2.2.2.1 Sort-First Architectures 
In a sort-first architecture, the command unit interprets the graphics commands and per-

forms a small amount of computation to determine where the resulting primitive will fall 

in the framebuffer.  Based on this, the primitive is transferred to the appropriate graphics 

node or graphics nodes where it goes through all of the rest of the stages of the graphics 

pipeline, including lighting, transformation, rasterization, texturing, and composition.  

These graphics pipelines unite again at the display stage: the disjoint regions of the 

framebuffer are combined to form a uniform display.  One of the largest advantages of 

sort-first architectures is that it may be constructed by adding a simple communications 

infrastructure to a standard graphics pipelines with little additional modifications.  In or-

der to minimize the number of pipelines to which each primitive is sorted (and hence, re-

dundant work), nearly all sort-first architectures utilize a coarse-grained partitioning of 
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Figure 2.2: Sort-First Architectures 
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the framebuffer.  Additionally, in order to minimize the amount of computation necessary 

for classifying primitives, the cost of computing overlap is usually amortized over groups 

of several primitives (e.g., their bounding box).  Many sort-first architectures have been 

described in the literature, and we will look at a few representative ones. 

Mueller [Mueller 1995] makes the case for sort-first architectures and examines load 

balancing issues in such architectures.  A sort-first architecture is outlined by this paper, 

although no actual architecture is implemented.  While strict ordering is supported, only 

retained-mode interface semantics are supported, and frame semantics are imposed.  By 

doing so, the system may take advantage of frame-to-frame coherence: an initial distribu-

tion of primitives is made according to the screen-space subdivision, and for each new 

frame, a small fraction of the primitives are redistributed according to the new scene pa-

rameters.  This makes the input rate of such a system scale, albeit with the caveats of lim-

ited interface semantics and ungraceful degradation when the assumption of frame-to-

frame coherence is violated.  This can happen when a new object pops into the view frus-

tum, or when the viewpoint rotation rate is too high to make use of frame-to-frame coher-

ence (in interactive applications, this is a feed-forward loop that becomes worse and 

worse once it occurs).  To avoid this, the screen needs to be subdivided into large regions.  

However, this has an adverse effect on load balancing to achieve scalable triangle and 

pixel rates.  A static algorithm and an adaptive algorithm are compared to determine that 

a maximum-to-average triangle load balance ratio of 1.5 or less can be achieved with 9-

25 static regions per processor or 1 adaptive region per processor.  The adaptive algo-

rithm made very good use of frame-to-frame coherence and required very little commu-

nication of primitives in its sort.  Unfortunately, this work does not consider pixel load 

imbalance, nor does it consider how the display system of an adaptively subdivided 

screen may be built and load balanced, particularly in a scalable fashion.  Though the pa-

per mentions the ability of sort-first to handle large display resolutions, no scalable tex-

ture system is described to address the increased texture resolution necessitated by such a 

large display, and texture load imbalance is not explored. 
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Samanta et al. [Samanta et al. 1999] examine the use of sort-first as an architecture 

for multi-projector systems.  In this system, the focus is on providing an end-to-end 

rendering system that leverages commodity PC processors, commodity graphics cards, 

and a commodity network.  A single client machine controls the rendering performed on 

eight server machines, each of which renders a single projector in a multi-projector 

display wall.  By using a sort-first architecture that tiles the display on a per-graphics-

card basis, the system is able to use unmodified graphics cards that were never intended 

for scalability.  The interface for this system provides strict ordering, imposes frame 

semantics, and requires retained-mode semantics.  The scene is described by a static 

scene graph hierarchy whose nodes contain approximately 100 polygons each.  At each 

frame, the client machine computes potential visibility for nodes and sends the 

appropriate node ID tags to each server based on overlap.  While the client machine is a 

point of serialization for this system, the amortization of a rendering instruction over 100 

polygons provides significant leeway.  However, the effects of a dynamic scene are 

unclear.  In addition to a static algorithm, three adaptive load-balancing algorithms are 

examined—the system allows pixels rendered on one machine to be moved to another 

machine for final display.  The scenes used for the study were all geometry-bound, so no 

conclusions are made regarding scalability in pixel rate, nor is texturing scalability 

addressed.  The system is able to scale triangle rate with a parallel efficiency of 0.33 to 

0.76 on eight PCs on a variety of scenes that tax the system by including frames that 

place the entire model on one projector.  Of course, because each server machine adds a 

new display subsystem, the architecture’s display scales extremely well. 

WireGL is a similar sort-first architecture based on PCs [Buck et al. 2000].  Again, 

this architecture leverages the use of unmodified graphics cards at commodity price 

points through standardized interfaces.  This system is unique in two significant ways.  

First, rather than using a retained-mode interface based on a scene hierarchy, the architec-

ture uses standard, unmodified OpenGL as its graphics interface.  In order to overcome 

interface serialization, the parallel graphics interface described in Chapter 3 is imple-

mented across many client machines, demonstrating the adaptability of such an interface 
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to a sort-first architecture.  Second, the architecture virtualizes the display system of each 

server by utilizing a fully scalable display system: Lightning2.  Lightning2 takes in mul-

tiple Digital Visual Interface (DVI) streams that are output from each graphics card, re-

shuffle the data in these streams in a flexible way, and output many DVI streams that can 

subsequently be connected to a commodity display device.  This efficient, display-speed 

pixel redistribution scheme allows for a high degree of scalability in triangle rate and 

pixel rate by utilizing a medium-grained, static partitioning of the screen, limited mainly 

by overlap.  Such a medium-grained partitioning is particularly important in immediate-

mode rendering systems because of temporal load imbalance effects—applications usu-

ally submit primitives in object-order, resulting in a pattern that draws many small trian-

gles in a small region of the screen before moving on to another portion of the screen.  

Furthermore, as demonstrated in Chapter 4, such a partitioning load balances texture ac-

cesses well.  Additionally, a client lazily sends texture data to a server only when re-

quired, allowing for some scalability in texture memory size.  Unfortunately, as the tiling 

of the screen partitioning is made smaller for better rendering load balancing, lazy texture 

updates become less effective.  

2.2.2.2 Sort-Middle Architectures 
In sort-middle architectures, as with sort-first architectures, each node is responsible for a 

fraction of the framebuffer.  When commands enter the pipeline, they are converted into 

3D primitives that are subsequently light and transformed into 2D screen-space primi-

tives.  Each of these 2D primitives is then sorted to the appropriate rasterization nodes 

based on the screen-space subdivision.  Here, texturing and composition occur.  A display 

system then combines this disjoint framebuffer into a unified display.  While most com-

mercial systems have used a finely interleaved framebuffer [Akeley & Jermoluk 1988, 

Akeley 1993, Deering & Nelson 1993, Montrym et al. 1997] because of better pixel load 

balancing and a simple ordering mechanism, several research systems have examined the 

advantages of a coarse-grained subdivision scheme in both a static and an adaptive set-

ting.  Here, we look at the scaling properties of three sort-middle systems. 
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Pixel-Planes 5 is a scalable sort-middle architecture that utilizes a unique SIMD ar-

chitecture for rasterization.  The system consists of several heterogeneous units connected 

together by a network.  A host interface creates and modifies the scene database through 

a retained-mode, frame-oriented API that provides strict ordering.  Upon specification of 

the view parameters, several geometry nodes transform and light their fraction of the 

scene database.  The screen is subdivided into coarse-grained virtualized tiles, the result-

ing 2D primitives are grouped according to the tiles they intersect, and a work queue of 

tiles is created.  Then, each rasterization node takes a tile of work from the work queue, 

and performs scan conversion, texturing, and composition.  Once the work of a tile is 

completed, the pixels of the resulting tile are transferred to a display node.  In this archi-

tecture, the input rate is limited by a single host interface, but the retained-mode interface 

semantics keeps input requirements to a minimum.  The triangle rate scales relatively 
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Figure 2.3: Sort-Middle Architectures 
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well because of three reasons.  First, transform and lighting are well distributed across the 

geometry nodes.  Second, the adaptive work queue algorithm load balances triangle work 

among the rasterizers.  Third, the coarse-grained tiles have a low overlap factor, so the 

per-triangle work is not repeated across many tiles.  At moderate levels of parallelism (10 

or so rasterizers), the rasterizers have a parallel efficiency of approximately 0.7 when us-

ing 128 x 128 tiles.  The pixel rate scales similarly to the triangle rate in this system, but 

the display was not built to be scalable, although it could be.  The Pixel-Planes 5 architec-

ture uses a non-scalable ring network that limits the maximum aggregate traffic that is 

available on the system, effectively placing a scalability limit on the triangle and pixel 

rates as well as the display. 

The RealityEngine [Akeley 1993] is a sort-middle architecture that is representative 

of most commercial graphics systems.  The interface unit receives commands from a host 

processor and distributes the resulting primitives among several geometry processors that 

perform transformation and lighting.  The resulting 2D primitives are broadcast across a 

bus to the rasterization units in the order specified by the interface.  Each rasterization 

unit is responsible for the scan conversion, texturing, and composition of a finely inter-

leaved fraction of the framebuffer.  The resulting pixels are then transferred to a display 

unit for final display.  This architecture supports a strictly ordered, immediate-mode, sin-

gle buffered interface.  Because of the single interface unit, the input rate cannot scale.  

The triangle rate, on the other hand, can scale by a limited amount: as more geometry 

processors are added, more triangles may be light and transformed.  However, because of 

the fine interleaving of the framebuffer across the rasterizers, every rasterizer must re-

ceive and process every primitive.  This is problematic because of two reasons.  First, 

broadcast communication does not scale well, whether it is implemented as a bus with 

electrical load limits or as a point-to-point network with quadratic growth characteristics.  

Second, because every rasterizer must receive and process every primitive, the overall 

system can never scale beyond a single rasterization unit’s triangle rate.  This fine inter-

leaving does have a large advantage, however: the pixel rate scales linearly even in the 

face of temporal effects.  This fine interleaving also has a negative effect on texture scal-
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ability—in Chapter 4, we will see how a finely interleaved framebuffer causes excessive 

texture bandwidth requirements.  Furthermore, in this architecture, texture memory is 

broadcast and replicated across the rasterizers, leading to no texture memory scalability.  

The display system of this architecture is also non-scalable. 

Argus [Igehy et al. 1998b] is a sort-middle architecture that provides a large degree of 

scalability by subdividing the framebuffer into coarse-grained tiles while retaining an 

immediate-mode, strictly ordered interface with no frame semantics.  Although Argus is a 

software system that runs on shared memory multiprocessors, many of its principles may 

be applied to hardware systems.  Argus supports a scalable interface by implementing the 

parallel graphics API described in Chapter 3.  Each of several interface units distributes 

blocks of 3D primitives to geometry units in a demand-driven fashion.  These primitives 

are lit and transformed, and the resulting 2D primitives are placed in the appropriate tiles’ 

reorder buffers.  Each rasterizer performs scan conversion, texturing, and composition for 

each of its tiles, and a dynamic stealing algorithm load balances the triangle and pixel 

work both spatially and temporally.  Display units then reassemble the tiles for final dis-

play.  Unlike sort-middle schemes that use a fine framebuffer interleaving, the triangle 

rate scales well because each triangle is distributed to only the tiles it overlaps.  Large 

triangles that overlap many tiles do not limit scalability because those triangles are lim-

ited by pixel work, a phenomenon described by Chen et al. [Chen et al. 1998].  The load 

balancing algorithm provides reasonable scaling in both pixel and triangle rates for mod-

erate levels of parallelism.  The texture bandwidth demands also scale well because of the 

large tile sizes, as shown in Chapter 4.  Because the underlying communication mecha-

nism is a scalable shared memory system [Laudon & Lenoski 1997], all the communica-

tion in the system scales well.  Shared memory is particularly useful in the trivial imple-

mentation of a scalable texture memory and a scalable display memory: the process of 

accessing texture and display data on another node is provided through a fast, simple 

mechanism. 
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2.2.2.3 Fragment-sorting Architectures 
In fragment-sorting architectures, each graphics pipeline is responsible for transforming, 

lighting, rasterizing, and texturing a fraction of the primitives in the scene.  The textured 

fragments generated by each node are then sorted by an all-to-all network based on the 

image-space subdivision.  These fragments are then composited into the framebuffer, and 

the display is generated by combining the pixels in each node’s framebuffer.  In order to 

ensure a highly balanced amount of pixel work, the framebuffer partitioning is usually 

very fine grained.  As we will see in Chapter 4, unlike sort-middle, a fine-grained parti-

tioning of the framebuffer does not increase texture bandwidth as the system scales be-

cause texturing occurs in object space independent of the framebuffer partitioning.  Addi-

tionally, a parallel graphics interface may be utilized with a fragment-sorting architecture, 

allowing for scalable input rate.  Unlike sort-first and sort-middle architectures, linearly 
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Figure 2.4: Fragment-Sorting Architectures 



2.2.  SCALING THE GRAPHICS PIPELINE 43 

 

scaling the triangle rate in a fragment-sorting architecture is trivial.  By distributing trian-

gles among pipelines in a round-robin fashion, each triangle is processed only once, and 

each pipeline transforms, lights, and performs rasterization setup on an equal number of 

triangles.  Scaling the pixel rate, however, is much more difficult.  After transformation 

to image space, each triangle can generate anywhere from a single fragment to millions 

of fragments, and this information is unknown a priori.  Thus, load imbalance leads to 

poor scalability in pixel rate.  Adaptive load balancing schemes are difficult to implement 

given strict ordering requirements.  Although a few fragment-sorting architectures have 

been implemented [Evans & Sutherland 1992, Kubota 1993], little technical detail is 

available on such systems.  As with the interface and texture memory, although fragment-

sorting can inherently support a scalable display system, no such systems have been built. 

2.2.2.4 Image-Composition Architectures 
Unlike the other architectures discussed thus far, image-composition architectures do not 
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Figure 2.5: Image-Composition Architectures 
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force disjoint regions of the framebuffer to be allocated to only one node.  Instead, each 

node draws into its own framebuffer (which may be as big as the display), and the frame-

buffers from each display are merged together through composition of the pixels.  Typi-

cally, a depth comparison is done on pixels from different nodes to determine the visible 

pixel.  As with sort-first architectures, a large advantage of image-composition architec-

tures is the ability to use relatively unmodified graphics pipelines for scalability.  Besides 

an interface network that allows distribution of primitives (which is usually provided by 

the host system), only a composition network needs to be built.  Because pixel-to-pixel 

dependencies inherently cannot be satisfied by image-composition architectures, these 

systems break strict ordering semantics required by common graphics interfaces such as 

OpenGL.  For many scenes, however, depth buffering alleviates the need for strict order-

ing. 

PixelFlow [Molnar et al. 1992, Eyles et al. 1997] is an architecture that combines a 

rasterization architecture similar to Pixel-Planes 5 with deferred shading and an image-

composition network to provide scalable rendering of scenes with advanced shading.  In 

this system, each geometry transforms a portion of the scene and sorts them by coarse-

grained tiles on the screen.  Each rasterizer then scan converts, textures, and composites 

its resulting primitives for a small number of tiles, and then the pixels of this region are 

merged over a composition network into a shading module that performs lighting.  Even-

tually, the regions are amassed into a framebuffer for display.  The interface to this sys-

tem can be immediate-mode or retained-mode, although frame semantics are required.  

The triangle rate scales linearly because primitives may be distributed round-robin and 

each primitive is handled only once.  As with fragment-sorting architectures, pixel load 

imbalance can severely inhibit scalability in pixel rate for image-composition architec-

tures if one node receives triangles that are much larger than other nodes.  Because of the 

SIMD rasterization architecture used in PixelFlow, this imbalance is negligible.  The 

rasterization node is able to rasterize a primitive covering an entire tile just as fast as a 

primitive covering a single pixel.  Such an architecture would be unrealistic, however, in 

systems where framebuffer bandwidth is at a premium.  The large-grained partitioning of 
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texture work balances texture bandwidth well, and a limited amount of scalability in tex-

ture memory can be achieved by only downloading texture data to shading nodes that re-

quire it, though no such algorithm is described in the literature.  The display of this archi-

tecture is completely un-scalable due to the fact that doubling the display size doubles the 

amount of memory on each node’s framebuffer as well as the rate at which it must be 

able to perform image-composition. 

VC-1 [Nishimura & Kunii 1996] is a image-composition architecture that virtualizes 

the framebuffer.  In this system, each node can hold only a fraction of the full frame-

buffer in a virtualized tile fashion.  As rendering proceeds, a node eventually exhausts all 

the free tiles in its local framebuffer memory.  At this point, some tiles are composited 

with the global framebuffer.  This process continues until an entire frame is assembled 

for display.  Additionally, because larger polygons take longer times to rasterize, it is im-

portant to load balance pixel work.  To address this, polygons that are deemed to be too 

large by a geometry processor are broadcast to all the geometry processors.  Although 

this algorithm breaks strict ordering constraints, it is irrelevant because VC-1 is an image-

composition architecture that does not support strict ordering in any case.  Although such 

a virtualized system reduces the amount of framebuffer memory required by each node in 

a scalable system, the display system does not scale because of the fixed bandwidth 

available on the image-composition network into the framebuffer. 

2.2.2.5 Pomegranate Architecture 
The Pomegranate architecture [Eldridge et al. 2000] is a novel architecture that maxi-

mizes parallel efficiency across all five scalability metrics while retaining a strictly or-

dered, immediate-mode API with no frame semantics.  This is accomplished by treating 

the sort in graphics architectures not only as a means of transferring data to its final loca-

tion, but also as a way of load balancing the work in a way that does not incur penalties 

for repeated work. 
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Pomegranate is driven by the parallel graphics interface described in Chapter 3 to al-

low linear scalability of input bandwidth.  Each interface unit is directly connected to a 

single geometry unit that transforms and lights all the primitives from an interface.  Be-

cause the triangle rate of modern graphics systems are limited by the input rate of a single 

interface, there is no need to redistribute triangles from a single interface to multiple ge-

ometry units, although such an algorithm could be added.  Each geometry unit then dis-

tributes groups of triangles in round-robin fashion among rasterization units that are re-

sponsible for scan conversion and texture mapping.  Large triangles are tiled into smaller 

pieces by the geometry units and treated as separate triangles ensure that the pixel work 

in the round-robin distribution is load balanced.  This all-to-all sort is not dependent on 
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Figure 2.6: Pomegranate Architecture 
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any screen-space subdivision because, like fragment-sorting architectures, scan conver-

sion is decoupled from composition into the framebuffer.  Thus, each triangle is commu-

nicated and processed exactly once by a rasterizer, and because of the round-robin distri-

bution, each rasterization unit receives a balanced number of triangles from each geome-

try unit that is fixed in sized regardless of the level of parallelism employed.  This scales 

triangle rate.  Each texturing unit may access texture memory attached to any other tex-

turing unit, requiring an all-to-all sort.  This scales the amount of texture memory line-

arly.  By distributing texture memory across the units in a finely interleaved fashion, tex-

ture bandwidth from each texture memory is load balanced equally to each texturing unit.  

Because the distribution of primitives from geometry units to rasterization units is done 

in groups of triangles, object-space coherence keeps texture bandwidth requirements low 

(see Chapter 4).  After texturing, the fragments are put through another all-to-all sort to 

place the them on the correct composition unit that merges fragments with the frame-

buffer.  The fine-grained interleaving of the framebuffer as well as the load balancing of 

triangle sizes by the geometry unit distribution algorithm allows for linear scalability in 

pixel rate.  Finally, each node’s display processor fetches pixels for display refresh 

through an all-to-all sort with the composition units.  Because each node linearly in-

creases the amount of framebuffer memory available, and because a display’s pixels are 

finely interleaved across the compositors in a way that balances refresh bandwidth re-

quirements perfectly, a linearly scalable display system is provided.  The several all-to-all 

sorts in Pomegranate are supported by a single scalable butterfly network.  Because the 

architecture balances communications requests very well, even over short periods of 

time, and because the algorithms employed are latency-tolerant (e.g., the texture prefetch-

ing architecture of Section 4.1), such a network works extremely well.  The system is 

thus able to scale performance linearly to large levels of parallelism, with a network that 

grows O(n log(n)). 
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2.3 Conclusion 
Large amounts of parallelism are available in graphics architectures.  The relative lack of 

dependencies in the graphics API is a direct source of this parallelism.  Even though the 

computation is very specialized, broad sets of implementation choices (classified by the 

sort taxonomy) are available to exploit this parallelism.  In doing so, one must scale all 

parts of the graphics system in order to achieve full scalability.  The rest of this disserta-

tion focus on techniques for scaling two particular aspects of graphics architectures: inter-

face and texture. 
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Chapter 3 Scalable Graphics Interface 

Scalable Graphics Interface 

It is increasingly difficult to drive a modern high-performance graphics system at full 

speed with a serial immediate-mode graphics interface.  To resolve this problem, re-

tained-mode constructs are integrated into graphics interfaces.  While retained-mode con-

structs provide a good solution in many cases, at times they provide an undesirable inter-

face model for the application programmer, and in some cases they do not solve the per-

formance problem.  In order to resolve these problems, this chapter presents a parallel 

graphics interface that may be used in conjunction with the existing API as a new para-

digm for high-performance graphics applications.  In a sense, we add thread-level paral-

lelism on top of the instruction-level parallelism described in Section 2.1.  

The parallel API extends existing ideas found in OpenGL and X11 that allow multi-

ple graphics contexts to simultaneously draw into the same image.  Through the introduc-

tion of synchronization primitives, the parallel API allows parallel traversal of an explic-

itly ordered scene.  We give code examples that demonstrate how the API can be used to 

expose parallelism while retaining many of the desirable features of serial immediate-

mode programming.  The viability of the API is demonstrated by the performance of a 

software implementation that achieves scalable performance on a 24 processor system 

and a simulated hardware implementation that achieves scalable performance on a 64 

processor system. 
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3.1 Introduction 
Computer graphics hardware is rapidly increasing in performance.  This has motivated 

immediate-mode graphics interfaces like OpenGL [Segal & Akeley 1992, Neider et al. 

1993] to adopt constructs such as display lists and packed vertex arrays in order to allevi-

ate system bottlenecks.  However, these constructs may impose an undesired paradigm 

shift for the application programmer, and they may not be useful in resolving the particu-

lar performance bottleneck.  Furthermore, with the increasing use of multiprocessor sys-

tems for graphics applications, a serial interface to the graphics system can be inelegant.  

A parallel graphics interface seeks to resolve these issues. 

There are many challenges to designing a good parallel graphics interface; in formu-

lating our design, we had several goals in mind.  First and foremost were the ability to 

issue graphics primitives in parallel and the ability to explicitly constrain the ordering of 

these primitives.  Ideally, the API should allow parallel issue of a set of primitives that 

need to be drawn in an exact order.  The parallel API should be a minimal set of exten-

sions to an immediate-mode interface such as OpenGL, and it should be compatible with 

existing features such as display lists.  The design is constrained by the presence of state; 

this is required for a large feature set.  A well designed parallel interface should be intui-

tive and useful in a wide variety of applications.  And finally, the new API should extend 

the current framework of graphics architectures to provide a rich set of implementation 

choices.  In the rest of this chapter, we present the motivations and issues involved in de-

signing a parallel extension to a serial immediate-mode graphics interface with strict or-

dering and state.  By adding synchronization commands (such as barriers and sema-

phores) into multiple graphics command streams, application threads can issue explicitly 

ordered primitives in parallel without blocking. 
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3.2 Motivation 
Although graphics systems are on the same technology curve as microprocessors, graph-

ics systems have reached a level of performance at which they can process graphics 

commands faster than microprocessors can produce them: a single CPU running an im-

mediate-mode interface cannot keep up with modern graphics hardware.  This is primar-

ily due to an increasing use of parallelism within graphics hardware.  Within a computer, 

there are three sources of bottlenecks in a graphics application.  First, performance may 

be limited by the speed of the graphics system.  In this case, the only solution is to use a 

faster graphics system.  Second, performance may be limited by the rate of data genera-

tion.  In this case, the programmer can use either a faster data generation algorithm or 

else, if the algorithm is parallelizable, multiple processors.  Third, performance may be 

limited by the interface between the host system and the graphics system.  Possible 

sources of this limitation are: 

1) Overhead for encoding API commands. 

2) Data bandwidth from the API host. 

3) Data bandwidth into the graphics system. 

4) Overhead for decoding API commands. 

There are several possible ways to extend a serial immediate-mode API in order to 

address the interface bottlenecks: 

• Packed Primitive Arrays.  A packed primitive array is an array of primitives 

that reside in system memory.  By using a single API call to issue the entire 

array of primitives instead of one API call per primitive, the cost of encoding 

API commands is amortized.  Furthermore, because the arrays may be trans-

ferred by direct memory access (DMA), bandwidth limitations from the API 

processor may be bypassed.  Nothing is done, however, about the bandwidth 

limitations into the graphics system.  Furthermore, although the decoding may 

be somewhat simplified, all the primitives in the array still have to be decoded 
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on the graphics system.  While packed primitive arrays are useful in a wide 

variety of applications, they may introduce an awkward programming model. 

• Display Lists.  A display list is a compiled set of graphics commands that re-

sides on the graphics system.  In a fashion similar to retained-mode interfaces, 

the user first specifies the list of commands to be stored in the display list and 

later invokes the commands within the display list.  Because they are essen-

tially command macros, display lists work well semantically with immediate-

mode interfaces.  In cases where the scene is small enough to fit in the graph-

ics system and the frame-to-frame scene changes are modest, display lists 

trivially resolve the first three bottlenecks.  If the scene is too large and there-

fore must reside in system memory, display lists are similar to packed primi-

tive arrays and only the first two bottlenecks are resolved.  Display lists pro-

vide an excellent solution for performance bottlenecks if the same objects are 

drawn from frame to frame.  But on applications that re-compute the graphics 

data on every frame (e.g., [Hoppe 1997, Sederberg & Parry 1986]), display 

lists are not useful.  Furthermore, the use of display lists burdens the pro-

grammer with the task of managing handles to the display lists. 

• Compression.  Whereas the idea of quantizing the data sent through the API 

has been used for quite some time, the idea of compressing the data has only 

recently been proposed.  One system compresses the geometric data sent 

through the API [Deering 1995]; other systems compress the texture data 

[Beers et al. 1996, Torborg & Kajiya 1996].  All compression schemes in-

crease the decoding costs, and systems that compress the data interactively in-

crease the encoding costs.  Systems that compress the data off-line, on the 

other hand, are useful only when the graphics data does not change. 

• Parallel Interface.  The motivation behind a parallel graphics interface is 

scalability: bottlenecks are overcome with increased parallelism.  If the graph-

ics system is too slow, it can be scaled by adding more graphics nodes.  If the 
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data generation is too slow, more processors can be used to generate the data 

in parallel.  Similarly, if the serial interface is too slow, then it should be 

parallelized.  In a system with a single graphics port, a parallel API can be 

used to overcome the first two interface limitations.  However, by building a 

scalable system with multiple graphics ports, all interface limitations can be 

overcome.  This is the solution proposed in this chapter. 

3.3 Related Work 
In the field of parallel graphics interfaces, Crockett introduced the Parallel Graphics Li-

brary (PGL) for use in visualizing 3D graphics data produced by message-passing super-

computers [Crockett 1994].  Due to the characteristics of its target architecture and target 

applications, PGL was designed as a retained-mode interface.  In parallel, each processor 

adds objects to a scene by passing pointers to graphics data residing in system memory.  

A separate command is used to render the objects into a framebuffer, and no ordering 

constraints are imposed by the interface.  PixelFlow [Molnar et al. 1992, Eyles et al. 

1997] is another system designed to support multiple simultaneous inputs from a parallel 

host machine, and PixelFlow OpenGL includes extensions for this purpose.  However, 

due to the underlying image composition architecture, PixelFlow OpenGL also imposes 

frame semantics and does not support ordering.  Because of these constraints, PGL and 

PixelFlow OpenGL do not meet the requirements of many graphics applications. 

The  X11 window system provides a parallel 2D graphics interface [Scheifler & Get-

tys 1986, Gettys & Karlton 1990].  A client with the proper permissions may open a con-

nection to an X server and ask for X resources to be allocated.  Among these resources 

are drawables (which are on- or off-screen framebuffers) and X contexts (which hold 

graphics state).  Since resources are globally visible, any client may subsequently use the 

resource within X commands.  Since X drawing calls always include references to a 

drawable and an X context, client requests are simply inserted into a global queue and 
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processed one at a time by the X server.  Though it is not explicitly encouraged, multiple 

clients may draw into the same drawable or even use the same graphics context. 

While a 3D graphics interface was beyond the scope of the original design of X, 

OpenGL is a 3D interface that has been coupled with X.  OpenGL is an immediate-mode 

interface whose state is kept within an X resource called the GLX context.  In the interest 

of efficiency, both display lists and packed primitive arrays are supported.  Furthermore, 

both texture data and display lists may be shared between contexts in order to allow the 

efficient sharing of hardware resources amongst related contexts [Kilgard 1996]. 

Strict ordering semantics are enforced in X and OpenGL: from the point of view of 

the API, every command appears to be executed once the API call returns.  However, in 

the interest of efficiency, both interfaces allow implementations to indefinitely buffer 

commands.  This introduces the need for two types of API calls.  Upon return from the 

flush call (XFlush, glFlush), the system guarantees that all previous commands will exe-

cute in a finite amount of time from the point of view of the drawable.  Upon return from 

a finish call (XSync, glFinish), the system guarantees that all previous commands have 

been executed from the point of view of the drawable. 

Since OpenGL and X solve different problems, programs often use both.  Because of 

buffering, however, a program must synchronize the operations of the two streams.  

Imagine a program that wants to draw a 3D scene with OpenGL and then place text on 

top of it with X.  It is insufficient to simply make the drawing calls in the right order be-

cause commands do not execute immediately.  Furthermore, a flush is insufficient be-

cause it only guarantees eventual execution.  A finish, on the other hand, guarantees the 

right order by forcing the application to wait for the OpenGL commands to execute be-

fore issuing X commands.  In a sense, however, the finish is too much: the application 

need not wait for the actual execution of the OpenGL commands; it only needs a guaran-

tee that all prior OpenGL commands execute before any subsequent X commands.  The 

call glXWaitGL provides this guarantee, and glXWaitX provides the complement. 
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Hardware implementations of OpenGL typically provide support for a single context, and 

sharing of the hardware is done through a context switch.  Though context switches are 

typically inexpensive enough to allow multiple windows, they are expensive enough to 

discourage fine-grained sharing of the graphics hardware between application threads.  A 

few architectures actually provide hardware support for multiple simultaneous contexts 

drawing into the same framebuffer [Kirkland 1998, Voorhies et al. 1988], but all com-

mands must go through a single graphics port.  Furthermore, these architectures do not 

have a mechanism for maintaining the parallel issue of graphics commands when an ex-

act ordering of primitives is desired. 

3.4 The Parallel API Extensions 
While OpenGL within X is not intended for multithreaded use due to the underlying im-

plementations, the interface provides mechanisms for having multiple application threads 

work simultaneously on the same image.  In this section, we first demonstrate how an 

interface like OpenGL may be used to attain parallel issue of graphics commands.  Then 

we show how additional extensions can be used to increase the performance of parallel 

issue.  The specification of the API extensions is given in Figure 3.1. 

The API extensions are most easily motivated through the use of an example.  Sup-

pose that we want to draw a 3D scene composed of opaque and transparent objects.  

Though depth buffering alleviates the need to draw the opaque primitives in any particu-

lar order, blending arithmetic requires that the transparent objects be drawn in back-to-

front order after all the opaque objects have been drawn.  By utilizing the strict ordering 

semantics of the serial graphics API, a serial program simply issues the primitives in the 

desired order.  With a parallel API, order must be explicitly constrained.  We assume the 

existence of two arrays, one holding opaque primitives and the other holding transparent 

primitives ordered in back-to-front order.  We also assume the existence of the following 

function: 
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 DrawPrimitives(prims(first..last)) 
 for p = first..last 
  glColor(&prims[p].color) 
  glPrimitive(&prims[p].coord) 
 glFlush() 

 

3.4.1 Existing Constructs 
As a first attempt at parallel issue, imagine two application threads using the same con-

text to draw into the same framebuffer.  In such a situation, a “set current color” com-

mand intended for a primitive from one application thread could be used for a primitive 

from the other application thread.  In general, the sharing of contexts between application 

threads provides unusable semantics because of the extensive use of state.  By using 

separate contexts, dependencies between the state-modifying graphics commands of the 

two streams are trivially resolved.  Given two application threads using separate contexts 

 glBarrierCreate(GLuint barrier, GLuint numCtxs) 
  barrier->reset = numCtxs; 
  barrier->count = numCtxs; 
 
glBarrierExec(GLuint barrier) 
  barrier->count--; 
  if (barrier->count = 0) 
   barrier->count = barrier->reset; 
   signal(all waiting contexts); 
  else 
   wait(); 
 
glBarrierDelete(GLuint barrier) 

glSemaphoreCreate(GLuint sema, GLuint initial) 
  sema->count = initial; 
 
glSemaphoreP(GLuint sema) 
  if (sema->count = 0) 
   wait(); 
  sema->count--; 
 
glSemaphoreV(GLuint sema) 
  sema->count++; 
  signal(one waiting context, if any); 
 
glSemaphoreDelete(GLuint sema) 

glWaitContext(GLXContext ctx) 
 All subsequent commands from the issuing context execute 
 after all prior commands from ctx have finished execution.  

Figure 3.1: The Parallel Graphics Interface Extensions 
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on the same framebuffer, the following code could be used to attain parallel issue of the 

opaque primitives:  

 Thread1 Thread2 
DrawPrimitives(opaq(1..256)) DrawPrimitives(opaq(257..512)) 
   glFinish() 
appBarrier(appBarrierVar) appBarrier(appBarrierVar) 
DrawPrimitives(tran(1..256)) 
glFinish()  
appBarrier(appBarrierVar) appBarrier(appBarrierVar) 
   DrawPrimitives(tran(257..512)) 

 
 

Both application threads first issue their share of opaque primitives without regard for 

order.  After synchronizing in lock-step at the application barrier, Thread1 issues its half 

of the transparent primitives.  These transparent primitives are guaranteed to be drawn in 

back-to-front order after Thread1’s share of opaque primitives through strict ordering 

semantics.  They are also guaranteed to be drawn after Thread2’s share of opaque primi-

tives through the combination of the finish and the barrier; the finish is used to guarantee 

the drawing of all previously issued commands.  Through this same synchronization 

mechanism, Thread2’s share of transparent primitives are then drawn in back-to-front 

order after Thread1’s share of transparent primitives. 

3.4.2 The Wait Construct 
One inefficiency in the above code is the use of the finish command; in a sense, it is too 

much.  Synchronization between the application threads does not require the actual exe-

cution of the graphics commands; it only requires a guarantee on the order of execution 

between the two graphics streams.  In a fashion similar to that used in synchronizing X 

and OpenGL, we introduce the wait context call in order to make guarantees about the 

execution of commands between contexts.  We refer the reader to Figure 1.1 for an exact 

specification.  In synchronization situations, the wait call is more efficient than the finish 

call because it does not require any application thread to wait for the completion of 

graphics commands.  The following code demonstrates how the example scene may be 

drawn using the wait command: 
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 Thread1 Thread2 
DrawPrimitives(opaq(1..256)) DrawPrimitives(opaq(257..512)) 
appBarrier(appBarrierVar) appBarrier(appBarrierVar) 
glWaitContext(Thread2Ctx)  
DrawPrimitives(tran(1..256))  
appBarrier(appBarrierVar) appBarrier(appBarrierVar) 
   glWaitContext(Thread1Ctx) 
   DrawPrimitives(tran(257..512)) 

 

3.4.3 Synchronization Constructs 
While the wait command provides an improvement, large problems remain in the above 

solution: the synchronization of the graphics streams is done by the application threads.  

Consequently, application threads are forced to wait for graphics streams.  Why should 

the application thread wait when it could be doing something more useful?  For example 

in the above code, the first thread must issue its entire half of the transparent primitives 

before the second thread can begin issuing its half.  Every time an explicit ordering is 

needed between primitives from different threads, the interface degrades to a serial solu-

tion. 

The answer to this problem is the key idea of our parallel API: synchronization that is 

intended to synchronize graphics streams should be done between graphics streams, not 

between application threads.  To this end, we introduce a graphics barrier command into 

the graphics API.  As with other API calls, the application thread merely issues the bar-

rier command, and the command is later executed within the graphics subsystem.  Thus, 

the blocking associated with the barrier is done on graphics contexts, not on the applica-

tion threads.  The code below achieves our primary objective, the parallel issue of explic-

itly ordered primitives: both application threads may execute this code without ever 

blocking. 

 Thread1 Thread2 
DrawPrimitives(opaq(1..256)) DrawPrimitives(opaq(257..512)) 
glBarrierExec(glBarrierVar) glBarrierExec(glBarrierVar) 
DrawPrimitives(tran(1..256))  
glBarrierExec(glBarrierVar) glBarrierExec(glBarrierVar) 
   DrawPrimitives(tran(257..512)) 
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We see the utility of the barrier primitive in the above code example, but what other 

synchronization primitives provide useful semantics within the realm of a parallel graph-

ics interface?  The barrier is an excellent mechanism for synchronizing a set of streams in 

lock-step fashion; however, it is not the best mechanism for doing point-to-point syn-

chronization.  Borrowing from the field of concurrent programming, semaphores provide 

an elegant solution for many problems [Dijkstra 1968].  Among them is a mechanism for 

signal-and-wait semantics between multiple streams.  The specification of the barrier and 

semaphore commands can be found in Figure 3.1. 

Barriers and semaphores have been found to be good synchronization primitives in 

the applications we have considered.  If found to be useful, other synchronization primi-

tives can also be added to the API.  It is important to note that the requirements for syn-

chronization primitives within a graphics API are somewhat constrained.  Because the 

expression of arbitrary computation through a graphics API is not feasible, a synchroni-

zation primitive’s utility cannot rely on computation outside of its own set of predefined 

operations (as do condition variables).  Also, we intentionally do not specify anything 

regarding the allocation of synchronization primitives, except to note that they need to be 

global resources at the level of contexts and drawables. 

3.5 Using the Parallel Graphics API 
The most obvious way to use the interface is to call it directly from a parallel application.  

For existing serial applications, the parallel graphics interface provides a new paradigm 

for high-performance command issue.  For existing parallel applications, it also provides 

a natural interface to the graphics system.  We present two examples that make direct use 

of the parallel API. 
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3.5.1 Simple Interactive Loop 
Figure 3.2a shows a simple interactive loop expressed in a strictly ordered serial inter-

face.  The goal in this example is to parallelize the compute and draw stage, yielding im-

proved performance in the application, the issue of the graphics commands, and the exe-

cution of the graphics commands. 

For parallel issue, a master thread (Figure 3.2b) creates a number of slave threads 

(Figure 3.2c) to help with the compute and draw stage.  The master first issues a clear 

command and gets the user input.  The application barrier ensures that the worker threads 

use the correct user input data for the rendering of each frame.  This synchronizes the ap-

plication threads, but not the graphics command streams.  The slaves issue wait com-

mands to ensure that the clear command issued by the master is executed first.  The mas-

ter is assured that the clear occurs first due to the strict ordering semantics of a single 

stream.  After each thread issues its graphics commands, a graphics barrier is issued to 

restrict the swap operation to occur only after all the graphics streams have finished 

drawing their share of the frame.  Finally, a finish operation is needed to ensure that the 

image is completed and displayed before getting user input for the next frame.  The finish 

 Serial 
loop: 
 glClear() 
 get user input 
 compute & draw 
 glXSwapBuffers() 
 glFinish() 

Master 
loop: 
 glClear() 
 get user input 
 appBarrier(appBarrierVar) 
 
 compute & draw 
 glBarrierExec(glBarrierVar) 
 glXSwapBuffers() 
 glFinish() 

Slave 
loop: 
 
 
 appBarrier(appBarrierVar) 
 glWaitContext(masterCtx) 
 compute & draw 
 glBarrier(glBarrierVar)  

(a) 

(c) (b) 

 
Figure 3.2: Parallelizing a Simple Interactive Loop 
Application computation and rendering are parallelized across slave threads, with 
a master thread coordinating per-frame operations. 
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itself is a context-local operation, only guaranteeing that all of the previous commands 

issued by the master are complete.  However, in conjunction with the graphics barrier, the 

finish guarantees that the commands of the slaves are also completed. 

3.5.2 Marching Cubes 
As a more demanding example, consider the marching cubes algorithm [Lorensen & 

Cline 1987].  Marching cubes is used to extract a polygonal approximation of an isosur-

face of a function sampled on a 3D grid.  In this example, we will discuss a simplification 

to 2D for brevity.  In Figure 3.3a, the mechanics of surface extraction and rendering are 

abstracted as ExtractAndRender.  ExtractAndRender operates on a single cell of the grid 

independently of any other.  If any portion of the desired isosurface lies within the cell, 

polygons approximating it are calculated and issued to the graphics system immediately.  

Note that a cell may consist of many voxels.  Due to the grid structure, it is fairly simple 

to perform the traversal in back-to-front order based on the current viewpoint, eliminating 

the need for depth buffering and allowing for alpha-based translucency.  In our example, 

this corresponds to traversing the grid in raster order. 

Due to the independence of the processing of different cells, marching cubes is easily 

parallelized.  In Figure 3.3b, traversal is parallelized by interleaving the cells of the vol-

ume across processing elements. Unfortunately, this simple approach sacrifices back-to-

front ordering.  Figure 3.3d illustrates the dependence relationships between cells and 

their neighbors that must be obeyed in the ordered drawing of primitives.  These depend-

encies can be expressed directly using semaphores injected into the graphics command 

streams.  An implementation is shown in Figure 3.3c.  Before processing a cell, the 

owner thread issues two P operations to constrain the rendering of a cell to occur after 

rendering of its two rear neighbor cells.  After processing the cell, it issues two V opera-

tions to signal the rendering of its other neighbors.  Note that the dependencies and tra-

versal order given here are non-ideal; another approach is to keep the same dependencies 

and submit cells back-to-front in order of increasing (i + j). 
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 MarchSerialOrdered (M, N, grid) 
 for (i=0; i<M; i++) 
  for (j=0; j<N; j++) 
   ExtractAndRender(grid[i, j]) 

MarchParallel (M, N, grid) 
 for (i=0; i<M; i++) 
  for (j=(myProc+i)%numProcs; j<N; j+=numProcs) 
   ExtractAndRender(grid[i,j]) 

MarchParallelOrdered (M, N, grid, sema) 
 for (i=0; i<M; i++) 
  for (j=(myProc+i)%numProcs; j<N; j+=numProcs) 
   if (i>0) glSemaphoreP(sema[i-1,j]) 
   if (j>0) glSemaphoreP(sema[i,j-1]) 
   ExtractAndRender(grid[i,j]) 
   if (i<M-1) glSemaphoreV(sema[i,j]) 
   if (j<N-1) glSemaphoreV(sema[i,j]) 

(a) 

(b) 

(c) 

(d) 

i 

j i,j 

Completed 
Cell 

Ready Cell Blocked Cell glSemaphoreV 
Operation 

glSemaphoreP 
Operation 

Eye 

 
Figure 3.3: Parallel Marching Cubes Traversal 
As rendering of cells completes, glSemaphoreV operations are performed by the 
graphics contexts to release dependent neighboring cells closer to the eye.  Ren-
dering of the white cells is still blocked on glSemaphoreP operations, waiting for 
rendering of their more distant neighbors. 
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3.6 Implementations 

3.6.1 Argus: A Software Implementation 
In order to test the viability of the parallel API extensions, we have implemented a soft-

ware graphics library that is capable of handling multiple simultaneous graphics contexts.  

The name of this implementation is Argus, and the performance achieved with the paral-

lel API using this system demonstrates the utility and feasibility of the ideas presented 

thus far. 

3.6.1.1 Architecture 
Argus is a shared memory multiprocessor graphics library that was designed to serve as a 

test-bed for various studies in graphics architecture.  Argus implements a subset of 

OpenGL as well as the parallel API extensions.  At the heart of Argus is a lightweight 

multiprocessor threads package.  We implement a graphics architecture by allocating a 

thread for each processing node (e.g., geometry processor).  A custom scheduler is used 

to schedule these threads onto system processors appropriately.  Furthermore, if a system 

processor running application code is blocked for some reason due to the graphics (e.g., a 

buffer fills up or a glFinish is pending), the threads package will run graphics threads on 

the otherwise idle application processor. 

There are three basic types of threads in the serial API version of Argus.  An applica-

tion thread runs application code and manages the graphics context.  A geometry thread 

transforms and shades the primitives encoded in the graphics instruction stream.  A 

rasterization thread is responsible for drawing these transformed primitives into the 

framebuffer.  The version of Argus that implements the serial API is a sort-middle tiled 

parallel graphics system [Molnar et al. 1994].  Graphics commands from a single applica-

tion thread fill a global command queue that is drained by many geometry threads.  The 

number of geometry threads is scalable since the data in this global command queue can 

be read in parallel.  Of course, the geometry threads must synchronize at a single point of 
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contention in order to distribute the work in the queue; however, because the contention 

is amortized over a large number of primitives, this cost is insignificant in our implemen-

tation.  After the appropriate computation, the geometry threads distribute the trans-

formed primitives among the appropriate tile rasterizers.  Though the details are beyond 

the scope of this thesis, reorder buffers in front of each rasterizer are used to maintain the 

ordering found in the global command queue across the rasterizers.  Since each tile 

rasterizer is responsible for a contiguous portion of the screen, no one rasterizer needs to 

see all of the primitives; thus, the rasterization architecture is scalable.  Argus supports a 

variety of schemes for load balancing tile rasterization.  For the results presented here, we 

used distributed task queues with stealing. 

The version of Argus that implements the parallel API extends the serial API archi-

tecture to allow multiple simultaneous graphics streams.  Each application thread is aug-

mented by a local command queue and a synchronization thread.  Instead of entering 

graphics commands onto the global command queue, each application thread fills its lo-

cal command queue.  The synchronization thread is then responsible for transferring 

commands from this local command queue onto the global command queue.  Since the 

global command queue may be written in parallel, the architecture is scalable. 

Figure 3.4 illustrates the pipeline in greater detail and explains how state management 

and synchronization commands are implemented within Argus.  The pipeline contains 

several threads, shown as gray boxes, which communicate through a variety of queues.  

In this example, two application threads are drawing into the same framebuffer through 

two different contexts.  The graphics data from the two contexts is shown with single- 

and double-underline type. 

One key design issue that comes up in implementing the parallel API is the handling 

of the graphics state since most commands affect rendering through state changes.  API 

commands are issued by the ‘App’ threads shown at the top of the diagram.  Commands 

that modify state that is not necessary for the rendering of the current GL primitive (e.g., 

the bottom entries of the matrix stack) are tracked in the context state (e.g., CS).  Com-

mands that modify state that is necessary for rendering the current GL primitive (e.g., the 
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top entry of the matrix stack) are tracked in the current geometry state (e.g., GS2), but old 

versions of the geometry state (e.g., GS1) are kept until they are no longer needed by the 

rest of the pipeline.  Commands that specify the current primitive (i.e., commands which 

are allowed within glBegin and glEnd, such as glNormal and glVertex) are grouped into 

fixed-size primitive blocks (denoted by Pi).  A primitive block and its related geometry 

state contain all the information necessary for the rendering of the primitives, and multi-

ple primitive blocks can share the same geometry state.  For example, primitive blocks P2 

and P3 both use the same geometry state GS2.  Every time a primitive block fills up or the 

geometry state changes, a pair of pointers (which are represented in the diagram by pa-

rentheses) is added to the local command queue (LCQ) by the ‘App’ thread; synchroniza-

tion commands (Sema) are inserted into this queue directly. 

Another key implementation design issue in any parallel API implementation is the 

merging of graphics streams and the resolution of synchronization commands.  In Argus, 

each context has a ‘Sync’ thread which is responsible for moving data from its LCQ onto 

a global command queue (GCQ).  ‘Sync’ threads execute the synchronization commands 

found in the LCQ (as illustrated by the dotted green line).  When ‘Sync’ threads are not 

blocked due to synchronization, they copy the pointers from their LCQ onto the GCQ.  

This creates a sequence in the GCQ that is strictly ordered with respect to any one context 

and consistent with the constraints imposed by the synchronization commands.  For ex-

ample, the sequence found in the GCQ of the diagram keeps the order {P1, P2, P3} and 

{P1, P2, P3}.  The sequence is also consistent with the semaphore pair (which requires an 

ordering that puts {P1, P2} in front of {P2, P3}). 

Beyond the GCQ, the Argus pipeline is similar to a graphics pipeline that implements 

a serial API.  The ‘Geom’ threads drain the GCQ and fill the triangle queue by converting 

the geometry state (GSi) and the 3D data from primitive blocks (Pi) into rasterization state 

(RSi) and 2D triangle blocks (Ti).  Each ‘Rast’ thread is responsible for drawing into one 

tile of the framebuffer, and the ‘Geom’ threads insert pointers into the appropriate rasteri-

zation buffers based on the tiles that are overlapped by the triangles in the triangle block.  

These reorder buffers are used as a mechanism for maintaining ordering. 
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App Application 
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Geom Geometry 
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Data Sizes 
Context State 4 KB 
Geometry State 1 KB 
Rasterization State 0.125 KB 
Primitive Block 16 KB 
Triangle Block 64 KB 
 

Queue Lengths 
Geometry State Queue 256 entries 
Primitive Block Queue 256 entries 
Local Command Queue 256 entries 
Global Command Queue 256 entries 
Triangle Queue 512 entries 
Rasterization Queue 256 entries 

Local Command Queue 

Global Command Queue 

Geometry State 

Context State 

Primitives 

Triangle 
Queue 

Tile Reorder Buffer 

 
Figure 3.4: The Argus Pipeline 
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3.6.1.2 Performance 
Because poor performance often hides architectural bottlenecks, Argus was designed 

with performance as one of its main criteria.  Although Argus can run on many architec-

tures, particular care was taken to optimize the library for the Silicon Graphics Origin 

system [Laudon & Lenoski 1997].  The Origin is composed of 195 MHz R10000 proces-

sors interconnected in a scalable NUMA architecture.  Depending on the rendering pa-

rameters, the single processor version of Argus is able to render up to 200K triangles per 

second; this rendering rate scales up to 24 processors.  In its original incarnation, Argus 

was designed for a serial interface and many serial applications were not able to keep up 

with the scalable performance of the graphics system.  Remedying this situation led us to 

the development of the parallel API. 

To study the performance of our parallel API implementation, we ran two applica-

tions: Nurbs and March.  Nurbs is an immediate-mode patch tessellator parallelized by 

distributing the individual patches of a scene across processors in a round-robin manner.  

By tessellating patches on every frame, the application may vary the resolution of the 

patches interactively, and because depth buffering is enabled, no ordering constraints are 

imposed in the drawing of the patches—synchronization commands are utilized only on 

frame boundaries.  Our second application, March, is a parallel implementation of the 

marching cubes algorithm [Lorensen & Cline 1987].  By extracting the isosurface on 

every frame, the application may choose the desired isosurfaces interactively.  Rendering 

is performed in back-to-front order to allow transparency effects by issuing graphics 

semaphores that enforce the dependencies described in Section 3.5.2.  One noteworthy 

difference between our implementation and the one outlined in Section 3.5.2 is that cells 

are distributed from a centralized task queue rather than in round-robin order because the 

amount of work in each cell can be highly unbalanced.  The input characteristics and pa-

rameter settings used with each of these applications are shown below: 
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 Nurbs March 
armadillo dataset skull dataset 
102 patches 256K voxels (64x64x64) 
196 control points per patch cell size at 16x16x16 
117504 stripped triangles 53346 independent triangles 
1200x1000 pixels 1200x1000 pixels 

 
 

Figure 3.5a and Figure 3.5b show the processor speedup curves for Nurbs and March, 

respectively.  The various lines in the graph represent different numbers of application 

threads.  The serial application bottleneck can be seen in each case by the flattening of 

the "1 Context" curve: as more processors are utilized, no more performance is gained.  

Whereas the uniprocessor version of Nurbs attains 1.65 Hz, and the serial API version is 

limited to 8.8 Hz, the parallel API version is able to achieve 32.2 Hz by using four con-

texts.  Similarly, the uniprocessor version of March gets 0.90 Hz, and the serial API ver-

sion of March is limited to 6.3 Hz, but the parallel API version is able to attain 17.8 Hz 

by utilizing three contexts.  These speedups show high processor utilization and highlight 

the implementation’s ability to handle extra contexts gracefully. 

One extension to Argus that we are considering is the use of commodity hardware for 

tile rasterization.  Although this introduces many difficulties, it also increases rasteriza-

tion rate significantly.  In order to simulate the effects of faster rasterization on the viabil-

ity of the parallel API, we stress the system by running Argus in a simulation mode that 

imitates infinite pixel fill rate.  In this mode, the slope calculations for triangle setup do 

occur, as does the movement of the triangle data between the geometry processors and 

the tile rasterizers.  Only the rasterization itself is skipped.  The resulting system in-

creases the throughput of Argus and stresses the parallel API: Figure 3.6a and Figure 3.6b 

show how a greater number of contexts are required to keep up with the faster rendering 

rate.  The parallel API allows Argus to achieve peak frame rates of 50.5 Hz in Nurbs and 

40.9 Hz in March.  This corresponds to 5.9 million stripped triangles per second in Nurbs 

and 2.2 million independent triangles per second in March.  These rates are approxi-

mately double the rate at which a single application thread can issue primitives into Ar-

gus even when no application computation is involved, thus demonstrating the impor-

tance of multiple input ports. 
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Figure 3.5: Argus Speedup Graphs 
The speedup curves for two applications, Nurbs and March, are drawn in (a) and 
(b) for a varying numbers of contexts. 
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Figure 3.6: Argus Speedup Graphs without Rasterization 
The speedup curves for Nurbs and March are drawn in (a) and (b) for a varying 
numbers of contexts assuming an infinite fill rate 
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One important aspect of any implementation of the parallel API is the amount of 

buffering required to make the API work.  Without enough buffering, the parallel API 

serializes: in Argus, if a local command queue fills up before its synchronization com-

mands are resolved, the application thread is forced to wait.  Intuitively, we expect the 

amount of buffering required to be sensitive to the amount of synchronization between 

different threads.  This is quantified in the speedup curves of Figure 3.7a for 24 proces-

sors.  The number of entries in the local command queue (each can point to a 16 KB 

block of primitive commands or hold a single synchronization command) was varied 

from 1 to 256.  The runs were performed on the  March application with the semaphores 

both enabled (the solid “Ordered” lines) and disabled (the dotted “Unordered” lines).  As 

one would expect, the ordered version requires significantly larger buffers. 

Another key aspect of any parallel API implementation is its ability to minimize the 

cost of synchronization.  If the granularity of the application is too fine, synchronization 

costs can dominate, and the application is forced to use a coarser subdivision of work.  If 

the work is subdivided too coarsely, load imbalance can occur within the application.  

The effects of granularity on Argus were tested by varying the dimensions of the cells on 

both the ordered and unordered versions of March.  The number of processors was held 

at 24 and timings were taken with varying numbers of contexts, as illustrated in Figure 

3.7b.  A granularity that is too fine deteriorates performance in both the application (as 

demonstrated by the unordered runs) as well as in the graphics system (as demonstrated 

by the extra performance hit taken by the ordered runs).  For the March application, there 

is a wide range of granularities (well over an order of magnitude in the number of voxels) 

that work well since Argus was designed to keep the cost of synchronization low.  When 

March is run without isosurface extraction and rendering (i.e., nothing but the synchroni-

zation primitives are issued), several hundred thousand semaphore operations are re-

solved per second. 
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Figure 3.7: Effects Buffering and Granularity on Argus 
The effects of varying buffer sizes for March are illustrated in (a), and the effects 
of synchronization granularity are illustrated in (b). 
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3.6.2 Pomegranate: A Hardware Implementation 
The Pomegranate architecture [Eldridge et al. 2000] is a hardware rendering system that 

achieves fully scalable performance in all the key metrics of Section 2.2.1 while retaining 

an ordered, immediate-mode interface.  A key enabler of this scalability is the parallel 

API.  By providing hardware support for multiple graphics contexts and the parallel API, 

the system is able to scale the input rate into the system. 

3.6.2.1 Architecture 
Hardware implementations of the parallel API pose a significant challenge.  While sup-

port for multiple state and the actual implementation of barriers and semaphores are not 

very difficult, the parallel API requires that some or all of the graphics resources to be 

virtualized, and more importantly, subject to preemption and context switching.  Imagine 

an application of (n +1) graphics contexts running on a system that supports only n simul-

taneous contexts in hardware.  If a graphics barrier is executed by these (n +1) contexts, 

at least one of the n running contexts will need to be context switched out to allow the (n 

+1)th context to run. Furthermore, the parallel API introduces the possibility of deadlock.  

Imagine a poorly written graphics application that executes a glSemaphoreP on a sema-

phore that never receives a corresponding glSemaphoreV.  At the very least, the system 

should be able to preempt the deadlocked graphics context and reclaim those resources.  

Performing this task in a software implementation is trivial due to the support for process 

preemption from the microprocessor and operating system. 

Resolving the preemption problem while maintaining scalability in hardware per-

formance was one of the most difficult challenges of the Pomegranate architecture.  One 

solution to the preemption problem is the ability to read back all of the state of a hard-

ware context and then restart the context at a later time. Although this may seem straight-

forward, it is a daunting task.  Because a context may block at any time, the preempted 

state of the hardware is complicated by partially processed commands, large, partially-

filled FIFOs, and in-flight network packets.  As a point of comparison, microprocessor 



74 CHAPTER 3.  SCALABLE GRAPHICS INTERFACE 

 

preemption—which has a much more coherent architecture compared to a graphics sys-

tem—is generally viewed by computer architects as a great complication in high-

performance microprocessors. 

A second approach to the preemption problem, used by Pomegranate, is to resolve the 

API commands in software, utilizing the preemption resources of the microprocessor. 

With this approach, even though ordering constraints may be specified to the hardware, 

every piece of work specified is guaranteed by the software to eventually execute.  Like 

Argus, each graphics context has an associated submit thread that is responsible for re-

solving the parallel API primitives.  The application thread communicates with the sub-

mit thread via a FIFO, passing pointers to blocks of OpenGL commands and directly 

passing synchronization primitives.  If the submit thread sees a pointer to a block of 

OpenGL commands, it passes this directly to the hardware.  If the submit thread sees a 

parallel API command, it actually executes the command, possibly blocking until the 

synchronization is resolved.  This allows the application thread to continue submitting 

OpenGL commands to the FIFO beyond a blocked parallel API command.  In addition to 

executing the parallel API command, the submit thread passes the hardware a sequencing 

command that maintains the order resolved by the execution of the parallel API com-

mand.  The important part of this hardware sequencing command is that even though an 

ordering is specified, the commands are guaranteed to be able to drain.  Therefore, the 

hardware sequencing command for a glSemaphoreP will not be submitted until the hard-

ware sequencing command for the corresponding glSemaphoreV is submitted.  As with 

Argus, a blocked context is blocked entirely in software, and software context switching 

and resource reclamation may occur. 

In order to keep hardware from constraining the total number of barriers and sema-

phores available to a programmer, Pomegranate’s internal hardware sequencing mecha-

nism is based on sequence numbers.  In Argus, a single global sequence number is used 

to order commands on a single global command queue.  There are two problems with this 

approach.  First, a global order is decided earlier than necessary in situations where no 

dependencies exist between graphics contexts.  Delaying this decision until a later stage 
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in the pipeline (e.g., ideally until fragment processing) could potentially lead to an im-

provement.  Second, and more importantly, while the cost of a single point of synchroni-

zation for the global sequence number is small in a software system when it is amortized 

over several dozen primitives, such a global synchronization would have been a perform-

ance limit in Pomegranate, whose performance is two orders of magnitude greater.  In 

order to avoid a global synchronization when only a point-to-point synchronization is 

necessary (i.e., semaphores), Pomegranate uses a single sequence number per hardware 

context.  Upon executing a glSemaphoreV operation, the submit thread increments the 

hardware context’s sequence number by one to indicate a new ordering boundary, anno-

tates the semaphore with a (ctx, seq) pair and issues an Advance(ctx, seq) command to 

the hardware.  Upon completing the glSemaphoreP operation, the signaled submit thread 

removes the corresponding (ctx, seq) annotation from the semaphore and issues an 

Await(ctx, seq) command to the hardware.  These commands are then executed just be-

fore the rasterization stage by the hardware.  A similar mechanism is used for barriers, as 

illustrated in Figure 3.8.  The sequence numbers are associated with a particular hardware 

context, not with a virtual graphics context, and when a context switch occurs, it is not 

reset.  This allows the expression of dependencies for contexts that are switched out of 

the hardware, and thus the system can execute the (n + 1) context barrier. 
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Figure 3.8: Barriers in Pomegranate 
This figure depicts the resolution of a parallel API barrier across four contexts 
once all the commands have reached the barrier.  Three contexts generate se-
quence points and a wait command for the last context.  The last context to arrive 
at the barrier submits wait commands for those three sequence points to ensuring 
that every hardware context has reached the barrier.  Additionally, context D 
emits a sequence point that signify its execution of the barrier, allowing the other 
contexts to move forward.  Alternatively, each context could wait on all the other 
contexts, but that requires order O(n2) communication, while this solution is O(n). 
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3.6.2.2 Performance 
The performance of both Nurbs and March were measured on Pomegranate’s cycle-

accurate simulator.  The system can be scaled from 1 to 64 pipelines, and each pipeline is 

capable of receiving input at the rate of 1 GB per second.  In order to tax the graphics 

system, CPU processing power is assumed to be infinite.  The triangle rate is approxi-

mately 20 million triangles per second (depending on the number of lights, etc.), and the 

pixel rate is 400 million pixels per second per pipeline.  In order to provide measurements 

at reasonable frame rates, the input scenes were scaled as follows: 

 Nurbs March 
armadillo dataset (textured) orangutan dataset 
1632 patches x 8 passes 64M voxels (400x400x400) 
512 triangles per patch cell size at 12x12x12 
6.68M stripped triangles 1.53M independent triangles 
2500x2000 pixels 2500x2000 pixels 

 
 

In order to demonstrate the system’s ability to speed up a dataset with a total order, 

semaphores are used between patches to enforce a total order on Nurbs.  The Nurbs data-

set uses stripped textured triangles, allowing for over 22 million triangles per second 

from the interface of each pipeline, and the single pipeline system is limited by transfor-

mation and lighting to just over 17 million triangles per second.  The March dataset uses 

untextured independent triangles, and a single pipeline system is limited by the input rate 

to around 10 million triangles per second. 

Figure 3.9 shows Pomegranate’s speedup on Nurbs and March.  As the number of 

pipelines and interfaces to the system are scaled from 1 to 64, near-linear speedup is 

achieved.  Pomegranate’s novel sorting architecture (Section 2.2.2.5) is critical to provid-

ing linear speedup in triangle rate, and the parallel API scales the input rate.  Even with a 

complete ordering specified, Nurbs is able to attain 99% efficiency at 64 pipelines.  

March attains a speedup of 58 at 64 pipelines.  Although ordering is less constrained in 

March than in Nurbs, March requires many more synchronization primitives than Nurbs 

(3 semaphore pairs per 123 voxel containing an average of 38.8 triangles vs. 1 semaphore 

pair per patch containing 512 triangles). 
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3.6.3 WireGL: A Transparent Implementation 
WireGL is a sort-first architecture based on PCs [Buck et al. 2000].  As described in Sec-

tion 2.2.2.1, this architecture achieves scalability by leveraging of unmodified graphics 

cards at commodity price points to render into a tiled display.  Because a PC graphics 

card can render as fast as commands can be submitted, the parallel API is critical to 

achieving scalable performance.  In this system, each application thread is a client hosted 

on a different PC, and graphics commands are sent across a network to the appropriate 

server PCs based on the screen-space subdivision where rendering occurs.  Because each 

rendering node is an unmodified PC graphics card that does not support the parallel API, 
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the parallel API must be implemented in software in a transparent layer on top of the 

standard OpenGL implementation supported by the hardware.  Parallel API commands 

are sent across the network, and the execution of the commands occurs in software on the 

servers by threads vying for the single graphics card. 

State tracking plays a critical role in providing scalability in WireGL, both on the cli-

ent side as well as on the server side.  On the client side, blocks of primitive commands 

(i.e., those appearing between glBegin and glEnd) are packed into a compressed format 

and sent to only the appropriate rendering servers based on a bounding-box computation.  

For state-modifying commands, the client application thread allocates a dirty bit for each 

rendering server for each piece of state.  For performance reasons, a hierarchical scheme 

is used to group each piece of state into one of 18 categories, and a dirty bit vector is kept 

for each category.  When the application calls a state command, all the bits in the state bit 

vector are set to 1, and all the bits in the category vector are set to 1, indicating that the 

virtual context of the application thread is possibly out of sync with all the rendering 

servers.  These bit changes accumulate until a primitive block is submitted to the applica-

tion thread.  At this point, the client computes the state difference between its virtual con-

text and only the servers that the primitive block overlaps and sends state updates.  The 

appropriate bits in the dirty bit vectors are then cleared.  This lazy update scheme is im-

portant because broadcasting state would limit scalability. 

On the server side, the same state tracking mechanism is used to support the parallel 

API.  Each client needs a unique graphics context to support the parallel API, but PC 

graphics cards typically support a single hardware context.  Because context switching on 

PC graphics cards is relatively slow (anywhere from a few dozen to several thousand 

context switches per second), context switching between client contexts would be pro-

hibitively expensive because ordering constraints from the parallel API would force fre-

quent switches.  To remedy this, state tracking is used to perform a software context 

switch.  A dirty bit vector is kept for each piece of state to indicate which clients contexts 

are out of sync with the hardware context.  Each time a client modifies a piece of state, 

the bit vector is set.  Then, when a client is context switched into the hardware because of 
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an ordering constraint, the appropriate bit of each vector is cleared if the client state is the 

same as the hardware state.  As before, a hierarchical scheme is used to minimize the 

number of tests required. 

3.7 Implementation Alternatives 
Argus, Pomegranate, and WireGL are three implementations of the parallel API that per-

form well.  Obviously, these architectures are not the only possible choices, and it is in-

structive to examine the design considerations of alternative implementations due to the 

special architectural requirements imposed by the extensions. 

3.7.1 Consistency and Synchronization 
Until now, we have not said much about how the operations of the parallel API can be 

interleaved.  Supporting multiple contexts that share a framebuffer means that the system 

must provide a consistency model.  We borrow the notion of sequential consistency from 

the field of computer architecture [Lamport 1979].  Imagine a system consisting of multi-

ple processes simultaneously performing atomic operations.  A sequentially consistent 

system computes a result that is realizable by some serial interleaving of these atomic op-

erations.  By making a single API command be the level of apparent atomicity, we define 

the notion of command-sequential consistency, the strongest form of consistency possible 

within the parallel API.  At the other end of the spectrum is framebuffer-sequential con-

sistency—only framebuffer accesses are atomic.  A whole spectrum of consistency mod-

els can be enumerated in such a fashion.  The OpenGL specification does not require an 

implementation to support any consistency model.  In order to support the parallel API, 

however, a graphics system should provide at least fragment-sequential consistency in 

order to support features that depend on an atomic read-modify-write operation on the 

framebuffer (such as depth buffering). 
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The consistency model which an architecture supports is related to the location in the 

pipeline where synchronization constraints between graphics streams are resolved.  The 

Argus pipeline described in Section 3.6.1 and the WireGL pipeline described in Section 

3.6.3 synchronize and merge multiple graphics streams early in the pipeline (before ge-

ometry processing), thus supporting command-sequential consistency.  One drawback 

with such architectures is that geometry processing cannot occur on primitives that are 

blocked due to synchronization constraints.  Another problem is that ordering dependen-

cies not required by the synchronization commands are introduced early in the pipeline.  

The Pomegranate pipeline described in Section 3.6.2, on the other hand, resolves final 

ordering dependencies just before the rasterization stage.  This results in sequential con-

sistency on the architecture’s 2D screen-space primitives. 

The choice of the point of synchronization has large implications for the overall ar-

chitecture.  For example, Argus originally merged graphics streams at the rasterizers.  

Because the system was in software, the entire pipeline up to and including the tile 

rasterization threads was replicated for each context.  Every tile thread executed every 

synchronization command, and threads that share the same tile merge their streams by 

obtaining exclusive access to the tile.  One disadvantage of this approach is the extra 

buffering requirements because the size of the graphics data expands as it gets farther 

down the pipeline.  Another problem with this alternate approach is the high cost of syn-

chronization since synchronization commands must be executed by every tile rasterizer—

this proved prohibitively expensive in the framework of Argus. 

3.7.2 Architectural Requirements 
While a graphics system which implements the parallel API is in many respects similar to 

one which implements a serial API, an architecture should take special care in addressing 

three particular areas.  First, the architecture must have a mechanism that efficiently han-

dles multiple simultaneous input streams.  Second, the state management capabilities of 

the architecture must be able to handle multiple simultaneous graphics states.  And third, 
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the rasterization system must be able to handle texture data for multiple streams effi-

ciently. 

In designing current systems, graphics  architects have gone to great lengths to allow 

the seamless sharing of the graphics hardware between multiple windows by significantly 

reducing the context switch time.  Although this same mechanism can be used for the 

parallel API, the context switch time must be reduced even further in order to handle 

multiple input streams at a much finer granularity.  Argus does this by making use of a 

thread library that can switch threads in less than a microsecond as well as allowing mul-

tiple input ports.  A hardware system could allow multiple input ports by replicating 

command processors.  Ideally, each of the command processors could handle either a 

single graphics stream at a high rate or multiple graphics streams at lower rates.  This 

would result in peak performance on serial applications and good performance on highly 

parallel applications. 

The parallel API imposes special requirements on the handling of state.  In past archi-

tectures, state changes have been expensive due to pipeline flushing.  Recent graphics 

architectures, however, have taken measures to allow large numbers of state changes 

[Montrym et al. 1997].  To a first order, the number of state changes for a given scene as 

issued by one application thread is the same as the number of state changes for the same 

scene as issued by multiple application threads since the number of inherent state changes 

in a scene is constant.  However, the parallel API increases the amount of state that has to 

be accessible to the different portions of the graphics system: the various graphics proc-

essors must be able to switch between the states of different graphics streams without 

dramatically affecting performance.  Hardware implementations that allow for multiple 

simultaneous contexts have already been demonstrated  [Voorhies et al. 1988, Kirkland 

1998].  In Argus, multiple simultaneous contexts are handled efficiently by taking advan-

tage of state coherence in the state management algorithm using shared memory and 

processor caching.  In Pomegranate, direct hardware support is provided.  In WireGL, a 

novel state tracking system is used. 
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One type of state that requires special attention is texture.  Unlike the rest of the state 

associated with a context (with the exception of display lists), texture state can be shared 

amongst multiple contexts, thus exposing the need for efficient download of and access to 

shared texture data.  The semantics of texture download are the same as all other graphics 

commands: it is susceptible to buffering, and synchronization must occur to guarantee its 

effects from the point of view of other contexts.  Efficient implementations of synchro-

nized texture download can be realized by extending the idea of the “texture download 

barrier” found in the SGI InfiniteReality [Montrym et al. 1997].  The access of texture 

memory may also require special care.  Since hardware systems have a limited amount of 

local texture memory, applications issue primitives in an order that exploits texture local-

ity.  The parallel API can reduce this locality since the rasterizers can interleave the ren-

dering of several command streams.  In architectures that use implicit caching [Hakura & 

Gupta 1997, Cox et al. 1998], the effectiveness of the cache can possibly be reduced.  In 

architectures that utilize local texture memory as an explicit cache, texture management 

is complicated.  In Argus, shared texture download is facilitated by shared memory, and 

locality of texture access is provided by the caching hardware.  In Pomegranate, shared 

texture download is ordered like all other graphics commands, and cache locality is pro-

vided by dividing texturing work into an appropriately sized granularity. 

3.8 Conclusion 
In this chapter, we have shown how thread-level parallelism may be introduced to graph-

ics architectures by using a parallel API, addressing the performance limitations of a se-

rial API.  This parallel API consists of the simple addition of parallel synchronization 

constructs, like barriers and semaphores, to a standard interface such as OpenGL.  These 

synchronization commands may be used to explicitly order the drawing of primitives 

across different graphics contexts, and command submission can proceed in parallel, 

without any loss in performance, even if an exact ordering is necessary among the graph-

ics contexts.  Furthermore, because of the large amount of parallelism available in graph-
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ics commands due to a dearth of dependencies (as described in Section 2.1), fully scal-

able rendering rates for large numbers of graphics nodes are possible even when an exact 

ordering is required by the application.  Contrary to the notion put forth by many graphics 

architects (e.g., [Molnar et al. 1992]), there is no need to forgo ordering in graphics archi-

tectures in order to achieve scalability.  At worst, ordering introduces a manageable 

amount of complexity to the design of a graphics system. 
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Chapter 4 Scalable Texture Mapping 

Scalable Texture Mapping 

In this chapter, we present an architecture for scalable texture mapping and quantify its 

effectiveness.  There are two important considerations in scaling texture mapping capa-

bilities.  First, the texture subsystem must be able to scale the number of fragments it can 

texture per second.  An obvious scheme for this is to replicate the texturing unit to scale 

the amount of computational power available for texturing.   In parallel systems, two ef-

fects that limit scalability are load imbalance and redundant work.  Because each frag-

ment is textured exactly once, no redundant computation occurs.  Furthermore, so long as 

the parallel rendering algorithm is able to present an equal number of fragments to each 

rasterizer, the computational load to each texturing unit will be balanced.  This is only 

part of the story, however.  Modern texture mapping hardware relies heavily on texture 

caching to reduce the amount of bandwidth required for the texture subsystem.  Parallel 

rasterization techniques tend to reduce the amount of locality available in each texturing 

unit’s fragment stream, resulting in redundant work in terms of memory bandwidth.  Fur-

thermore, the bandwidth requirements of each texturing unit’s fragment stream may vary 

greatly, resulting in load imbalance.  These effects are studied in depth later in this chap-

ter. 

A second component of scalable texture memory is scaling the amount of texture 

memory available to an application.  If each texturing unit is given its own dedicated tex-
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ture memory, then textures downloaded by the application must be replicated across the 

texturing units, and the total amount of texture memory does not scale.  On the other 

hand, if each texturing unit is able to share its texture memory with other texturing units, 

the total amount of texture memory available to the application scales linearly.  Such a 

system presents two challenges.  First, the texture data must be spread across the texture 

memories in a fashion that minimizes load imbalance in the number of requests to each 

texture memory.  Second, unlike a dedicated memory system that delivers texture data 

with a fixed latency, network contention and memory contention in a shared texture 

memory system can cause highly variable latencies. 

In Section 4.1, we examine and measure a texture cache architecture that can tolerate 

arbitrarily high and highly variable latencies.  Such a system is applicable to serial textur-

ing units accessing a dedicated texture memory or a shared system memory as well as 

parallel texturing units accessing a dedicated or shared texture memory.  This architecture 

builds a foundation upon which a parallel texture architecture may be implemented.  In 

Section 4.2, we present a framework for scaling texture mapping and quantify its per-

formance across a variety of rasterization scheme. 

4.1 Prefetching in a Texture Cache 
Texture mapping has become so ubiquitous in real-time graphics hardware that most sys-

tems are able to perform filtered texturing without any penalty in fill rate.  The computa-

tion rates available in hardware are outpacing the memory access rates, and texture sys-

tems are becoming constrained by memory bandwidth and latency.  Caching in conjunc-

tion with prefetching can be used to alleviate this problem. 

In this section, we introduce a prefetching texture cache architecture designed to take 

advantage of the access characteristics of texture mapping.  The structures needed are 

relatively simple and are amenable to high clock rates.  To quantify the robustness of our 

architecture, we identify a set of six scenes whose texture locality varies over nearly two 

orders of magnitude and a set of four memory systems with varying bandwidths and la-
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tencies.  Through the use of a cycle-accurate simulation, we demonstrate that even in the 

presence of a high-latency memory system, our architecture can attain at least 97% of the 

performance of a zero-latency memory system. 

4.1.1 Introduction 
Texture mapping is expensive both in computation and in memory accesses.  Continual 

improvement in semiconductor technology has made the computation relatively afford-

able, but memory accesses have remained troublesome.  Several researchers have pro-

posed and demonstrated texture cache architectures that can reduce texture memory 

bandwidth.  Hakura and Gupta examine different organizations for on-chip cache archi-

tectures which are useful for exploiting locality of reference in texture filtering, texture 

magnification, and to a limited extent, repeated textures [Hakura & Gupta 1997].  Cox et 

al. extend this work to multi-level caching [Cox et al. 1998].  They demonstrate that on-

chip caches in conjunction with large off-chip caches can be used to exploit all of the 

aforementioned forms of texture locality as well as inter-frame texture locality.  Thus, 

memory bandwidth requirements can be dramatically reduced for scenes in which the 

working set of a frame fits into the off-chip cache. 

A second troublesome point about texture memory access (which is not addressed by 

Hakura or Cox) is the high latencies of modern memory systems.  In order to address this 

problem, several systems are described that make use of large pipelines that prefetch the 

texel data [Kilgard 1996, Torborg & Kajiya 1996, Anderson et al. 1997].  Two of the sys-

tems [Kilgard 1996, Anderson et al. 1997] do not use any explicit caching, although their 

memory systems are organized for the reference patterns of texture filtering, but one sys-

tem [Torborg & Kajiya 1996] does employ prefetching as well as two levels of caching, 

one of which holds compressed textures.  However, the algorithm that combines the pre-

fetching with the caching is not described.  Several other consumer-level architectures 

exist which undoubtedly utilize some form of prefetching, possibly with caching.  Unfor-

tunately, none of these algorithms are described in the literature.  In this section, we in-

troduce a texture architecture that combines prefetching and caching. 
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4.1.2 Mip Mapping 
Texture mapping, in its most basic form, is a process by which a 2D image is mapped 

onto a projected screen-space triangle under perspective.  This operation amounts to a 

linear transformation in 2D homogeneous coordinates.  The transformation is typically 

done as a backward mapping—for each pixel on the screen, the corresponding coordinate 

in the texture map is calculated.  The backward mapped coordinate typically does not fall 

exactly onto a sample in the texture map, and the texture may be minified or magnified 

on the screen.  Filtering is applied to minimize the effects of aliasing, and ideally, the fil-

tering should be efficient and amenable to hardware acceleration. 

Mip mapping [Williams 1983] is the filtering technique most commonly implemented 

in graphics hardware.  In mip mapping, an image pyramid is constructed from the base 

image which serves as the bottom of the pyramid.  Each successive level of the pyramid 

is constructed by resampling the previous level of the pyramid by half in each dimension, 

as illustrated in Figure 4.1.  For each screen-space fragment, the rasterization process 

computes a texture coordinate and an approximate texel-to-pixel ratio (also known as the 

level-of-detail value).  This ratio is used to compute the two closest corresponding mip 

map levels, and a bilinear interpolation is performed on the four nearest texels in each of 
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Reconstructed 
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Figure 4.1: Mip Mapping 
An image is filtered recursively into quarter-sized images.  Trilinear interpolation 
reconstructs a sample by linearly interpolating between two adjacent levels of the 
mip map, each of which is sampled with bilinear filtering on the four closest tex-
els in that level of the mip map. 
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the two adjacent levels.  These two values are then combined with linear interpolation 

based on the level-of-detail value, and the resulting trilinearly interpolated sample is 

passed to the rest of the graphics pipeline.  If a fragment falls beyond either end of the 

mip map pyramid, the algorithm performs bilinear filtering on the one closest level of the 

mip map. 

The popularity of mip mapping can be attributed to three characteristics.  First, mip 

mapping reduces many aliasing artifacts.  Although it is by no means an ideal filter, espe-

cially since it often blurs excessively, the results are quite acceptable for interactive ap-

plications.  Second, the computational costs of mip mapping, though by no means cheap, 

are reasonable and fixed for each fragment.  Finally, mip mapping is efficient with re-

spect to memory.  The additional space required for the pyramid representation is only 

one-third the space occupied by the original image.  Furthermore, because the level-of-

detail computation is designed to make one step in screen space correspond to approxi-

mately one step in the appropriate mip map level, the memory access pattern of mip 

mapping is very coherent. 

4.1.3 Caching and Prefetching 
For the past few decades, many aspects of silicon have been experiencing exponential 

growth.  However, not all aspects have grown at the same rate.  While memory density 

and logic density have seen tremendous growth, logic speed has experienced more mod-

erate growth, and memory speed has experienced slight growth.  These factors have made 

the cost of computation on a chip very cheap, but memory latency and bandwidth some-

times limit performance.  Even with the advent of memory devices with high-speed inter-

faces [Crisp 1997], it is easy to build a texturing system that outpaces the memory it ac-

cesses.  The problem of directly accessing DRAM in a texture system is aggravated by 

the fact that memory devices work best with transfers that do not match the access pat-

terns of texture mapping: DRAM provides high bandwidth when moving large contigu-

ous blocks of memory, but a fragment’s texture accesses typically consist of several small 

non-contiguous memory references. 
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An obvious solution to this problem is caching.  Many issues are resolved by integrat-

ing a small amount of high-speed, on-chip memory organized to match the access pat-

terns of the texture system.  According to our measurements (detailed in Section 4.1.5.1) 

as well as data found in other literature [Hakura & Gupta 1997, Cox et al. 1998], it is 

quite reasonable to expect miss rates on the order of 1.5% per access.  Many texture sys-

tems are capable of providing the computation for a trilinearly mip mapped fragment on 

every clock cycle.  Thus, because there are eight texture accesses per cycle, the per-

fragment texel miss rate is 12%.  Even if these misses could be serviced in a mere 8 cy-

cles each, a calculation of the average memory access time shows that overall perform-

ance is cut in half.  Clearly, this is not acceptable. 

While caching can alleviate the memory bandwidth problem, it does not solve the 

memory latency problem.  The latency problem with relation to texture caching is a spe-

cial one.  In current interactive graphics interfaces, texture accesses are read-only for 

large amounts of time, and address calculation for one texture access is never dependent 

on the result of another texture access.  Thus, there are no inherent dependencies to limit 

the amount of latency that can be covered.  This means that a prefetching architecture 

should be capable of handling arbitrary amounts of latency. 

4.1.3.1 Traditional Prefetching 
In the absence of caching, prefetching is very easy.  When a fragment is ready to be tex-

tured, the memory requests for the eight texel accesses are sent to the memory system, 

and the fragment is queued onto a fragment FIFO.  When the replies to the memory re-

quests arrive, the fragment is taken off the FIFO, and the fragment is textured.  The time 

a fragment spends in the FIFO is equal to the latency of the memory system, and if the 

FIFO is sized appropriately, fragments may be processed without ever stalling.  For 

greater efficiency, part of the fragment FIFO can actually be a fragment processing pipe-

line [Kilgard 1996, Anderson et al. 1997].  Note that this non-caching prefetching archi-

tecture assumes that memory replies arrive in the same order that memory requests are 
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made, and that the memory system can provide the required bandwidth with small mem-

ory requests. 

One straightforward way to combine caching with prefetching is to use the architec-

ture found in traditional microprocessors that use explicit prefetch instructions.  Such an 

architecture consists of a cache, a fully associative prefetch address buffer, and a memory 

request buffer.  A fragment in such a system is processed as follows: first, the fragment’s 

texel addresses are looked up in the cache tags, and the fragment is stored in the fragment 

FIFO.   Misses are forwarded to a prefetch buffer that is made fully associative so that 

multiple misses to the same memory block can be combined.  New misses are queued in 

the memory request buffer before being sent to the memory system.  As data returns from 

the memory system, it is merged into the cache.  When a fragment reaches the head of the 

fragment FIFO, the cache tags are checked again, and if all of the texels are found in the 

cache, the fragment can be filtered and textured.  Otherwise, additional misses are gener-

ated, and the system stalls until the missing data returns from memory.  Fortunately, the 

architecture works even in conjunction with an out-of-order memory system. 

There are three problems with using the traditional microprocessor prefetch architec-

ture for texture mapping.  First, if the product of the memory request rate and the memory 

latency being covered is large compared to the size of the caches utilized, a prefetched 

block that is merged into the cache too early can cause conflict misses.  Second, in order 

to support both reading and prefetching of texels at the full fragment rate, tag checks 

must be performed at twice the fragment rate, increasing the cost of the tag logic.  Fi-

nally, as the product of the memory request rate and the memory latency increases, the 

size (and therefore the associativity) of the prefetch buffer must be increased proportion-

ally. 

4.1.3.2 A Texture Prefetching Architecture 
While some of the problems with the traditional microprocessor prefetching architecture 

can be alleviated, we have designed a custom prefetching architecture that takes advan-

tage of the special access characteristics of texture mapping.  This architecture is illus-
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trated in Figure 4.2.  Three key features differentiate this architecture from the one de-

scribed in Section 4.1.3.1.  First, tag checks are separated in time from cache accesses, 

and tag checks are performed only once per texel access.  Second, because the cache tags 

are only checked once and always describe the future contents of the cache, a fully asso-

ciative prefetch buffer is not needed.  And third, a reorder buffer is used to buffer mem-

ory requests that come back earlier than needed. 

The architecture processes fragments as follows.  As each fragment is generated, each 

of its texel addresses is looked up in the cache tags.  If a tag check reveals a miss, the 

cache tags are updated with the fragment’s texel address immediately and the address is 

forwarded to the memory request FIFO.  The cache addresses associated with the frag-

ment are forwarded to the fragment FIFO and are stored along with all the other data 

needed to process the fragment, including color, depth, and filtering information.  As the 

request FIFO sends requests for missing cache blocks to the texture memory system, 

space is reserved in the reorder buffer to hold the returning memory blocks.  This guaran-

tee of space makes the architecture robust and deadlock-free in the presence of an out-of-

order memory system.  A FIFO can be used instead of the reorder buffer if responses 

from memory always return in the same order as requests sent to memory. 

When a fragment reaches the head of the fragment FIFO, it can proceed only if all of 

its texels are present in the cache.  Fragments that generated no misses can proceed im-

mediately, but fragments that generated one or more misses must first wait for their cor-

responding cache blocks to return from memory into the reorder buffer.  In order to guar-

antee that new cache blocks do not prematurely overwrite older cache blocks, new cache 

blocks are committed to the cache only when their corresponding fragment reaches the 

head of the fragment FIFO.  Fragments that are removed from the head of the FIFO have 

their corresponding texels read from the cache and proceed onward to the rest of the tex-

ture pipeline. 

Our simulated implementation can handle eight texel reads in parallel, consisting of 

two bilinear accesses to two adjacent mip map levels.  To support these concurrent texel 

reads, we organize our cache tags and our cache memory as a pair of caches with four 
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banks each.  Adjacent levels of a mip map are stored in alternating caches to allow both 

mip map levels to be accessed simultaneously.  Data is interleaved so that the four ac-

cesses of a bilinear interpolation occur in parallel across the four banks of the respective 

cache.  Cache tags are also interleaved across four banks in a fashion that allows the tag 

checks for a bilinear access to occur without conflict.  The details of this layout can be 

found in Figure 4.3 of Section 4.1.5. 

In order to make our architecture amenable to hardware implementation, we impose 

two limitations.  First, the number of misses that can be added to the request FIFO is lim-
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Figure 4.2: A Texture Prefetching Architecture 
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ited to one miss per cache per cycle.  Second, the number of cache blocks that can be 

committed to the cache from the reorder buffer is similarly limited to one block per cache 

per cycle.  These commits match up to the requests—groups of misses that are added to 

the request FIFO together are committed to the cache together.  This means that each 

fragment may generate up to four groups of misses.  Because our implementation can 

only commit one of these groups per cycle, a fragment that has more than one group of 

misses will cause the system to stall one cycle for every group of misses beyond the first. 

4.1.4 Robust Scene Analysis 
When validating an architecture, it is important to use benchmarks that properly charac-

terize the expected workload.  Furthermore, when validating interactive graphics 

architectures, an architect should look beyond averages due to various characteristics of 

the human perceptual system.   For example, if a graphics system provides 60 Hz 

rendering for the majority of the frames, but every once in a while drops to 15 Hz for a 

frame, the discontinuity is distracting, if not nauseating.  In designing a system, the 

graphics architect must evaluate whether or not sub-optimal performance is acceptable 

under bad-case conditions.  Accordingly, a robust set of scenes that cover a broad range 

of workloads, from good-case to bad-case, should be utilized to validate a graphics archi-

tecture. 
4.1.4.1 Texture Locality 
The effectiveness of texture caching is strongly scene-dependent.  For example, the size 

and distribution of primitives affect texture locality.  Texture locality is also affected by 

what we call the scene’s unique texel to fragment ratio.  Every scene has a number of 

texels that are accessed at least once; these texels are called unique texels.  Unless caches 

are big enough to exploit inter-frame locality (this requires several megabytes [Cox et al. 

1998]), every unique texel must be fetched at least once by the cache, imposing a lower 

limit on the required memory bandwidth.  If we divide this number by the number of 

fragments rendered for a scene, we can calculate the unique texel to fragment ratio.  Note 

that this value is dependent on the screen resolution.  A good-case scene will have a low 
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ratio, and a bad-case scene will have a high ratio.  Ideally, the number of texels fetched 

by the caching architecture per fragment will be close to the scene’s unique texel to 

fragment ratio. 

Three factors affect the unique texel to fragment ratio of a scene.  First, when a tex-

ture is viewed under magnification, each texel gets mapped to multiple screen pixels, and 

the ratio decreases.  Second, when a texture is repeated across a surface, the ratio also 

decreases.  This temporal coherence can be exploited by a cache large enough to hold the 

repeated texture.  Third, when a mip map texture is viewed under minification, the ratio 

becomes dependent on the relationship between texel area and pixel area.  This relation-

ship is characterized by the level-of-detail value of the mip mapping computation that 

aims to keep the footprint of a backward-mapped pixel equal to the size of a texel in a 

mip map level.  Although this value is normally calculated automatically, the application 

programmer may bias it in either direction, thus modifying the scene’s unique texel to 

fragment ratio. 

A more surprising effect that occurs even without biasing is characterized by the frac-

tional portion of the level-of-detail value.  The level-of-detail value determines the two 

levels of the mip map from which samples are taken; the fractional portion is proportional 

to the distance from the lower, more detailed level.  Given a texture mapped polygon that 

is parallel to the screen, a fractional portion close to zero implies a texel area to pixel area 

ratio of nearly one in the lower mip map level and a quarter in the upper mip map level, 

yielding a texel to fragment ratio near 1.25.  Likewise, a fractional portion close to one 

implies a texel area to pixel area ratio of four in the lower mip map level and one in the 

upper mip map level, yielding a texel to fragment ratio near 5.  The ratios are lower for 

polygons that are not parallel to the screen.  Normally, we expect a wide variation in the 

texel to fragment ratio due to the fractional portion of the level-of-detail value.  However, 

most scenes exhibit worst-case behavior for short amounts of time, and a few scenes ex-

hibit worst-case behavior for large amounts of time. 
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4.1.4.2 The Benchmark Scenes 
In order to validate our texture caching architecture, we chose six real-world scenes that 

span a wide range of texture locality.  These six scenes originated from three traces of 

OpenGL applications captured by glstrace, a tool implemented on top of the OpenGL 

Stream Codec.  In the future, we expect to see more texture for a given screen resolution; 

this will increase the unique texel to fragment ratio.  To simulate this effect, each of the 

traces was captured twice, once with the textures at original size, and once with the tex-

tures at double resolution.  Table 4.1 summarizes our six scenes, and high resolution im-

ages can be found in the Color Plate.  Our workloads span nearly two orders of magni-

tude in the unique texel to fragment ratio (0.033 to 2.83).  This is in contrast to the ratios 

in the scenes used by Hakura (0.2 to 1.1) [Hakura & Gupta 1997] and the animations 

used by Cox (0.1 to 0.3) [Cox et al. 1998].  These workloads result from the fact that ap-

plications programmers choose the way they use texture according to the needs of the ap-

plication and the constraints of the target systems.  We now give a brief summary of each 

scene and highlight the points relevant to texture caching: 

 

   

workload 
name quake quake2x flight flight2x qtvr qtvr2x 

screen 
resolution 

1280 x 
1024 

1280 x 
1024 

1280 x 
1024 

1280 x 
1024 

1280 x 
1024 

1280 x 
1024 

depth 
cmplxty. 3.29 3.29 1.06 1.06 1.00 1.00 

percent 
trilinear 30% 47% 38% 87% 0% 100% 

unique 
texels/frag 0.033 0.092 0.706 1.55 0.569 2.83 

Table 4.1: The Benchmark Scenes 
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• quake.  This is a frame from the OpenGL port of the video game Quake.  This 

application is essentially an architectural walkthrough with visibility culling.  

Color mapping is performed on all surfaces that are, for the most part, large 

polygons that make use of repeated texture.  A second texturing pass blends 

low-resolution light maps with the base textures to provide realistic lighting 

effects.  Approximately 40% of the base textures are magnified, and 100% of 

the light maps are magnified. 

•  quake2x.  In order to account for increasing texture resolutions needed for 

larger screen resolutions (Quake’s content was geared towards smaller 

screens), the texture maps in quake were zoomed by a factor of two to create 

quake2x.  This results in a scene that magnifies only the light maps. 

• flight.  This scene from an SGI flight simulator demo shows a jet flying above 

a textured terrain map.  The triangle size distribution centers around moder-

ately sized triangles, and most textures are used only once.  A significant por-

tion of the texture (62%) is magnified. 

• flight2x.  As texture systems become more capable of handling larger 

amounts of texture, applications will use larger textures to avoid the blurring 

artifact of filtered magnification.  In flight2x, the textures of flight were 

zoomed by a factor of two.  This results in a scene that only magnifies 13% of 

the texture. 

• qtvr.  This scene comes from an OpenGL-based QuickTime VR [Chen 1995] 

viewer looking at a panorama from Mars.  This huge panorama, which meas-

ures 8K by 1K, is mapped onto a polygonal approximation of a cylinder made 

of tall, skinny triangles.  Even though all of the texture is magnified, the lack 

of repeated texture keeps the number of unique texels per fragment high. 

• qtvr2x.  The texture of qtvr was scaled up to 16K by 2K.  This increases the 

number of unique texels accessed by the scene since all the texture is minified.  

Furthermore, the fractional portion of the level-of-detail value is always high 
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in qtvr2x because the panorama is viewed more or less head-on at just the 

wrong zoom value.  Note that these same effects would occur if qtvr was run 

at quarter-sized screen resolution, and that qtvr2x is by no means a hand-

tailored pathological case.  In fact, it was while gathering trace data on qtvr 

that we first observed the texture locality effects of a level-of-detail fraction 

close to one.  This scene is representative of a bad-case frame in a real-world 

application. 

4.1.5 Memory Organization 
In designing our prefetching cache architecture, we carefully chose the proper parameters 

for the cache and the memory system.  To narrow our search space, we leveraged Ha-

kura’s findings on blocking [Hakura & Gupta 1997].  First, Hakura demonstrates the 

importance of placing texture into tiles according to cache block size.  This addressing 

scheme is referred to as 4D blocking.  Furthermore, tiles should be organized in a 2D 

blocked fashion according to the cache size in order to minimize conflict misses.  This is 

called 6D blocking.  In accordance with these guidelines, we employ 6D blocking for tex-

ture maps according to the cache block size and the cache size.  The layout of texture data 

is illustrated in Figure 4.3.  Figure 4.3 also illustrates how texture data is banked in both 

the cache tags as well as the cache memory in order to allow conflict-free access for bi-

linear interpolation.  Additionally, rasterization also occurs in a blocked fashion rather 

than in scan line order, and we rasterize triangles in 8 pixel by 8 pixel blocks that are tiled 

in a 4 by 4 fashion.  Note that for the purposes of this study, all texture data is stored as 

32-bit RGBA values. 
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Figure 4.3: Texture Data Organization 
In our architecture, textures are stored using a 6D blocking pattern.  Each mip 
map level is divided into cache-sized superblocks, with each superblock further 
divided into blocks.  Each block is a rectangular, linearly-addressable region of 
the original mip map level.  Each of eight texel addresses is computed by adding 
an offset (formed by permuting the texel’s coordinates) to a corresponding texture 
base address.  The eight resulting texel addresses, four from each of two adjacent 
mip map levels, are then directed to two caches, each of which has four banks and 
services alternating levels of the mip map.  Within each superblock, tags are inter-
leaved on a block basis, causing all 2x2 texel accesses to fall onto one, two, or 
four adjacent blocks, with each block’s tag stored in a separate bank of the tag 
memory.  This interleaving is accomplished by permuting the bits of the block in-
dex, yielding a tag bank and a tag index for each texel address.  Similarly, texels 
are interleaved within each block, causing all 2x2 texel accesses to fall into sepa-
rate banks of the cache memory even if the texels of the 2x2 access do not all fall 
into the same block.  A permutation of the block offset results in a cache bank and 
a sub-block offset for every texel address; used in conjunction with the block in-
dex, these values locate each texel in the cache memory.  Note that both of these 
permutations extract the least significant bit of the corresponding s and t fields to 
determine the tag or cache bank. 
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4.1.5.1 Cache Efficiency 
Since we have decided to provide a separate cache for each of the bilinear accesses that 

need to occur during every trilinear texture access, three cache parameters need to be 

chosen.  The first choice is the cache block size.  A small block size increases miss rates, 

but keeps bandwidth requirements low.  A large block size can decrease miss rates, but 

bandwidth requirements and latency can skyrocket.  An additional factor that needs con-

sideration is that modern DRAM devices require large transfer sizes to sustain band-

width.  Hakura found that 16 texel tiles (64 bytes) work well, and most next-generation 

DRAM chips can achieve peak efficiency at such transfer sizes [Crisp 1997]. 

Given a 16 texel block size, we are left with choices for cache associativity and cache 

size.  Figure 4.4 shows the miss rates for our six test scenes.  We see that increasing asso-

ciativity does not decrease the miss rate significantly.  Intuitively, this make sense since 

having a separate cache for alternate levels of a mip map minimizes conflict misses.  

Thus, a direct-mapped cache is quite acceptable if we use 6D blocking when alternate 

levels of the mip map are cached independently.  According to Hakura, if a unified cache 

is used for trilinear accesses (and thus the bilinear accesses do not occur simultaneously), 

a 2-way set associative cache is appropriate.  In the more general case of multi-texturing, 

m independent n-way set associative caches are well suited towards providing texture ac-

cesses at the rate of m bilinear accesses per cycle to m*n textures (in this scheme, trilinear 

accesses count as two accesses to two textures).  Since we are limiting our study to a sin-

gle trilinear access per cycle, two independent direct-mapped caches are appropriate. 

Figure 4.4 also illustrates the effects of modifying the total cache size on the miss 

rates of the various scenes.  We see that for scenes in which texture locality is not de-

pendent on repeated textures (flight, flight2x, qtvr, qtvr2x), the miss rate curves flatten 

somewhere between a total cache size of 4 KB and 16 KB.  This cache size represents the 

working set for filtering locality when rasterization is done in 8 by 8 blocks.  On scenes 

that contain repeated texture (such as quake and quake2x) the miss rates are lower, but 

the miss rate curves flatten later (at 32 KB and 128 KB, respectively).  These points cor-
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respond to the working set sizes of the repeated textures in each scene.  The miss rate re-

alized once any of the curves flattens corresponds closely to the unique texel to fragment 

ratio of the respective scene. 

We chose to use a 16 KB cache (composed of two direct-mapped 8 KB caches) for 

our study.  According to our workloads, this size is large enough to exploit nearly all of 

the coherence found in scenes that demonstrate poor locality (such as flight2x and 

qtvr2x), and even though a larger size could help in scenes with repeated textures (such as 

quake and quake2x), these scenes already perform very well.  Though we stress that dif-

ferent choices can also be reasonable, we assume a cache architecture with two direct-

mapped 8 KB caches (interleaved by mip map level) with 64-byte blocks for our study. 

4.1.5.2 Bandwidth Requirements 
In formulating bandwidth requirements, we can relate the number of texels of memory 

bandwidth required per fragment to the cache miss rate by the cache block size.  These 

equivalent measures are shown as left- and right-axes in Figure 4.4.  One key point of 

Table 4.1 and Figure 4.4 is that even though caching can work well sometimes, there are 

cases when the bandwidth requirements are extremely high.  In the case of qtvr2x, nearly 

3 texels have to be fetched for each fragment no matter what size on-chip cache is util-

ized.  This is quite high considering that eight texels are required to texture a trilinearly 

mip mapped fragment.  However, this should not be seen as an argument for not having a 

cache: the cache still provides a way of matching the access patterns of mip mapping 

with the large block requests required for achieving high memory bandwidth.  If a system 

wants to provide high performance robustly over a wide variety of scenes, it needs to 

provide high memory bandwidth even with the use of caching.  If a system’s target appli-

cations have high texture locality, or if cost is a primary concern, a memory system with 

lower memory bandwidth can be employed. 
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Figure 4.4: Cache Efficiency 
Block size was set to 4 by 4 texels, and the six workloads were sent through the 
cache simulator with various cache sizes and cache associativities.  Results are 
reported in terms of cache block misses per fragment rather than in terms of 
misses per access since most texturing architectures have clock cycles based on 
fragments.  The cache block miss rate corresponds to a memory bandwidth re-
quirement that can be expressed in terms of texels fetched per fragment. 
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Figure 4.4 can also be a bit misleading because the average bandwidth requirement 

does not tell the whole story.  From the data, one could falsely infer that a memory sys-

tem which provides enough bandwidth to supply 1 texel per fragment will perform per-

fectly on quake2x since, according to the graph, only 0.63 texels per fragment are re-

quired given the 16 KB cache size.  Figure 4.5 illustrates why this is not the case.  The 

average cache miss rate does not properly encapsulate temporal variations in bandwidth 

requirements.  Even though the average bandwidth requirement is 0.63 texels per frag-

ment over the whole frame, large amounts of time exist when the system needs double 

that bandwidth, and large amounts of time exist when the system does not need most of 

that bandwidth (i.e., when light maps are drawn).  Because of the large separation in time 

between these two phases, a system cannot borrow from one to provide for the other, and 

thus the overall performance will decrease. 
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Figure 4.5: Bandwidth Variation 
Even though the required memory bandwidth can be low on average, this value 
can vary widely over time.  The graphs above show this variation with a pair of 
direct-mapped 8 KB caches.  Each data point is a windowed average over 30,000 
fragments in quake and 10,000 fragments in flight and qtvr.  The variance in the 
required bandwidth is quite extreme in the cases of quake and quake2x as the ap-
plication transitions from applying color maps to applying light maps. 
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4.1.5.3 Memory Models 
In order to validate our texture prefetching architecture more precisely, we now explore 

the bandwidths and latencies provided by memory systems.  For our study, we examine 

an architecture that can sustain the texturing performance projected for the near future.  

At the time of this study (1998), high-end architectures such as the SGI InfiniteReality 

[Montrym et al. 1997] provided approximately 200 million trilinear fragments per second 

from a single board.  Low-end professional-level architectures provided approximately 

30 million trilinear fragments per second [Kilgard 1996], as do many consumer-level 

graphics accelerators.  Given these rates, we decided to set our nominal fragment clock 

rate at 200 MHz, meaning that under optimal memory conditions, the architecture pro-

vides a trilinearly sampled fragment every 5 nanoseconds.  Based on this fragment clock 

rate, we decided to simulate four memory models, summarized by bandwidth and latency 

histogram in Table 4.2. 

• agp.  This models a system in which the texture cache requests blocks from 

system memory over Intel’s Advanced Graphics Port [Intel 1998].  The AGP 

4X standard can provide a sustained bandwidth of 800 MB/sec.  Because sys-

tem memory is shared with the host computer, we estimate that the latency of 

agp varies between 250 nsec and 500 nsec. 

 agp rdram rdram2x numa 

period 16 8 4 4 

latency 

50 100  20  20  50 150 250  
Table 4.2: Memory Models 
The values reported here are in terms of a fragment clock cycle of 200 MHz, 
which corresponds to 5 nsec.  The memory period determines the rate at which 64 
byte blocks of memory can be provided.  Thus, bandwidths of 1, 2, 4, and 4 texels 
per fragment are provided on agp, rdram, rdram2x, and numa, respectively. 
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• rdram.  Direct RDRAM from Rambus [Crisp 1997] will serve as our baseline 

dedicated texture memory.  These devices provide extremely high bandwidth 

(a sustainable 1.6 GB/sec) with reasonable latency (90 nsec) at high densities 

for commodity prices.  We estimate that on-chip buffering logic adds 10 nsec 

of latency to this memory. 

• rdram2x.  In order to sustain the high and variable bandwidth requirements of 

scenes such of flight2x and qtvr2x, a texture architecture may choose to utilize 

2 RDRAM parts for double the bandwidth of rdram at the same latency. 

• numa.  Although not based on any existing specification, we use the numa 

memory model to examine the feasibility of our prefetching architecture in 

novel and exotic texture memory architectures.  The bandwidth of this mem-

ory model is the same as the bandwidth of rdram2x, but the latency of such a 

system is extremely high and highly variable.  It can range anywhere between 

250 nsec and 1.25 usec.  This latency is in the range of what can be expected 

if texture is distributed across the shared memory of a NUMA multiprocessor 

[Laudon & Lenoski 1997] and is typical of the behavior that will be seen in 

shared texture memory systems analyzed in Section 4.2. 

4.1.6 Performance Analysis 
A cycle-accurate simulator was written to validate the robustness of the prefetching tex-

ture cache architecture proposed in this section.  We analyze the architecture by running 

each scene with each memory model.  First, the architecture is compared against an ideal 

architecture and an architecture with no prefetching.  We then account for all of our exe-

cution time beyond the ideal execution time, demonstrating the architectures ability to 

hide nearly all the latency in the system. 

Figure 4.6a presents the execution time for each of the scenes with each of the mem-

ory models on both our architecture and an architecture with no prefetching.  Perform-

ance is normalized to the ideal execution time of 1 cycle per fragment.  In all cases, our 
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architecture performs much better than an architecture lacking prefetching.  However

do not achieve an ideal 1 cycle per fragment across many of the scenes when running

agp and rdram memory models. 

In order to account for lost cycles, we enumerate four components of our archi

ture’s execution time: 
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Figure 4.6: Prefetching Performance 
In (a), we compare our prefetching architecture and one in which no prefetching
takes place against an ideal architecture (one in which a fragment is generated on
every clock cycle) on a logarithmic scale.  On many configurations, the prefetch-
ing architecture is able to achieve near-ideal performance (as indicated by the
near-total absence of a dark gray bar).  Configurations that do not achieve near-
ideal performance are bandwidth-limited, as illustrated in (b).  This graph charac-
terizes the architecture’s execution time by useful work, pipeline stalls, limited
memory bandwidth, and uncovered latency across the four memory models and
the six scenes.  For all of the cases in which near-ideal performance was not at-
tained, memory bandwidth is by far the limiting factor.  Thus, the architecture is
able to hide nearly all of the latency of the memory system with little overhead. 
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1) A cycle is required to move each fragment through the texture pipeline. 

2) If either cache has more than one miss for any fragment, the pipeline must 

stall. 

3) The pipeline may stall due to insufficient texture memory bandwidth. 

4) Cycles may be lost to uncovered latency in the prefetching architecture. 

Each of these components can be calculated as follows.  The number of cycles spent 

moving fragments through the pipeline is simply the number of fragments in the scene.  

The number of pipeline stalls attributed to multiple misses per fragment can be measured 

by counting the number of misses per cache per fragment beyond the first miss.  Stalls 

occur infrequently, and our experiments show the performance lost to such pipeline stalls 

is typically less than 1%.  Performance lost to insufficient memory bandwidth is deter-

mined by the execution time of the trace with the memory latency set to zero.  Finally, 

when the scene is simulated with our memory latency model, any additional cycles not 

attributed to the first three categories are counted as uncovered latency in our architec-

ture.  Experimental results show that most of the latency of the memory system is indeed 

covered by our architecture, with at least 97% utilization of hardware resources using 

nominal sizes for the fragment FIFO, the memory request FIFO, and the reorder buffer.  

Most of the performance difference from an ideal system is caused by insufficient mem-

ory bandwidth.  The breakdowns of the execution times for our configurations are pre-

sented in Figure 4.6b. 

4.1.6.1 Intra-Frame Variability 
A typical scene provides both an overall memory bandwidth demand over the course of 

the frame (several milliseconds) as well as localized memory bandwidth demands over 

several microseconds, as illustrated in Figure 4.5.  Figure 4.7 shows how this translates 

into lost performance.  The performance of the quake2x scene on the agp memory system 

is very different in the first and second half of the frame due to switching between color 

map textures and light maps.  As predicted in Section 4.1.5.2, the fragment rate while 

drawing the color texture is limited by memory bandwidth while the pipeline runs at full 
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speed while drawing the light maps.  This does indeed cause an overall performance pen-

alty even though the 1 texel per fragment bandwidth of agp far exceeds the average texel 

per fragment bandwidth requirement of quake2x.  Figure 4.7 also illustrates that the per-

formance of our architecture closely tracks the performance of a zero-latency memory 

system over time. 

4.1.6.2 Buffer Sizes 
The data in Figure 4.6 and Figure 4.7 was derived with a specific set of buffer sizes for 

each memory model.  These sizes are presented in Table 4.3, and in all cases the buffers 

are reasonable in size when compared to the 16 KB of cache employed. 

We determined the sizes of the three buffers—the fragment FIFO, the request FIFO, 

and the reorder buffer—by inspection and then validated them by experimentation.  The 

fragment FIFO primarily masks the latency of the memory system.  If the system is not to 

stall on a cache miss, it must be able to continually service new fragments while previous 

fragments are waiting for texture cache misses to be filled.  Thus, the fragment FIFO 
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Figure 4.7: Time-Varying Execution Time Characterization 
As predicted in Section 4.1.5.2, the performance of a workload can vary greatly 
over time if not enough memory bandwidth is provided.  The graph above charac-
terizes the execution time of the quake2x workload on the agp memory system.  
Even though the 1 texel per fragment bandwidth of agp by far exceeds quake2x’s 
average requirement of 0.63 texels per fragment, performance suffers due to the 
time-varying bandwidth requirements of quake2x. 
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depth should at least match the latency of the memory system.  The fragment FIFO also 

provides elasticity between the burstiness of texture misses and the constant rate at which 

the memory system can service misses, and therefore should be larger than just the mem-

ory system latency.  The memory request FIFO also provides elasticity between the po-

tentially bursty stream of miss addresses generated by the fragments and the fixed rate at 

which the memory system can consume them.  The size of this buffer was determined 

primarily by experimentation.  Finally, in order to provide a robust, deadlock-free solu-

tion that can handle out-of-order memory responses, our architecture requires that a reor-

der buffer slot be reserved when a memory request is made.  Since a memory response 

will not be received and applied to the cache at least until after the memory latency has 

passed, the reorder buffer should be sized to be at least the ratio of the memory access 

time (latency) to the memory cycle time (period) entries deep. 

The above guidelines were used to determine the approximate buffer sizes for each 

memory model, and then the choices were adjusted by measuring the performance of the 

system.  We fine-tuned the buffer sizes by holding two of the buffer sizes constant and 

varying the third.  If the buffer is sized appropriately, the performance of the overall sys-

tem should decrease significantly when the buffer is made much smaller, and perform-

ance should increase very slowly if the buffer is made larger.  The data for this process 

with the flight2x workload is shown in Figure 4.8.  This process provided useful informa-

 Fragment 
FIFO Size 

Request 
FIFO Size 

Reorder 
Buffer Size 

agp 
128 slot 
2.0   KB 

  8 slot 
 64 byte 

  8 slot 
576 byte 

rdram 
 64 slot 
1.0   KB 

  8 slot 
 64 byte 

  8 slot 
576 byte 

rdram2x 
 64 slot 
1.0   KB 

 16 slot 
128 byte 

 16 slot 
1.1   KB 

numa 
256 slot 
4.0   KB 

 16 slot 
128 byte 

 64 slot 
4.5   KB 

Table 4.3: Buffer Sizes 
The numbers in each entry represent the sizes of the various buffers used in the 
various memory systems.  Fragment FIFO entries are 16 bytes, memory request 
FIFO entries are 8 bytes, and reorder buffer entries are 72 bytes. 
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tion in the cases of the rdram and rdram2x memory systems.  The fragment FIFOs were 

originally sized to be 32 entries deep.  However, simulation revealed that this did not 

provide enough elasticity, and increasing the FIFO depth to 64 entries improved perform-

ance by several percent.  Similarly, simulation revealed that performance increased 

slightly when the reorder buffer size was increased to 8 slots and 16 slots for rdram and 

rdram2x, respectively. 

 Fragment 
FIFO Size 

Request 
FIFO Size 

Reorder 
Buffer Size 

agp 

1 4 16 64 256
0.0

0.5

1.0

fp
c

1 4 16 64 256
0.0

0.5

1.0

fp
c

4 16 64 256
0.0

0.5

1.0

fp
c

 

rdram 

1 4 16 64 256
0.0

0.5

1.0

fp
c

1 4 16 64 256
0.0

0.5

1.0

fp
c

4 16 64 256
0.0

0.5

1.0

fp
c

 

rdram2x 

1 4 16 64 256
0.0

0.5

1.0

fp
c

1 4 16 64 256
0.0

0.5

1.0

fp
c

4 16 64 256
0.0

0.5

1.0

fp
c

 

numa 

1 4 16 64 256
0.0

0.5

1.0

fp
c

1 4 16 64 256
0.0

0.5

1.0

fp
c

4 16 64 256
0.0

0.5

1.0

fp
c

 
Figure 4.8: The Effects of Varying Buffer Sizes 
The graphs above show the effects of varying buffer sizes on the flight2x work-
load across the different memory models.  For each graph, one buffer size is var-
ied while the other two are held fixed (at the values specified in Table 4.3).  The 
results are reported in fragments per cycle (fpc), and the dot on each graph repre-
sents the final values used for the architecture on each memory model.  The 
memory models whose fragments per cycle values do not approach 1.0 are band-
width-limited. 



112 CHAPTER 4.  SCALABLE TEXTURE MAPPING 

 

One note should be made about the performance analysis of this section.  In formulat-

ing a model for measuring the performance of our prefetching texture cache architecture, 

we assumed that the entire scene is rasterized by a renderer that is able to provide a frag-

ment to the texture subsystem on every clock cycle.  In a real system, this may not be the 

case.  When triangles are smaller, caching does not work as well; but smaller triangles 

may also imply a lower fill rate (i.e., the scene is geometry limited), thus alleviating some 

of the penalty associated with the caching.  A more detailed analysis of bandwidth re-

quirements in a rasterization architecture can take this effect into account. 

4.2 Parallel Texture Caching 
The creation of high-quality images requires new functionality and higher performance in 

real-time graphics architectures.  In terms of functionality, texture mapping has become 

an integral component of graphics systems, and in terms of performance, parallel tech-

niques are used at all stages of the graphics pipeline.  Two types of parallel texturing sub-

systems may be created: in a system with dedicated texture memory, each texturing unit 

has a dedicated texture memory that replicates all of the texture data in the system.  As 

we demonstrated in Section 4.1, nearly all the latency of a texture cache may be hidden, 

thus making texture bandwidth the critical bottleneck in the texture memory subsystem.  

However, parallel rasterization divides work across multiple functional units, thus de-

creasing the locality of texture references and increasing the amount of texture bandwidth 

required in a parallel system.  This can have an adverse effect on the scalability of the 

texturing performance, and in this section, we examine scalability related to this phe-

nomenon.   In a system with shared texture memory, each texturing unit may access 

shared texture memory from anywhere in the system, thus scaling the amount of texture 

memory in the system.  However, this introduces two additional issues: variable latency 

for texture requests and load imbalance among the texture memory due to data distribu-

tion.  We addressed latency in Section 4.1, and we will address data distribution in this 

section. 
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Specifically, we quantify the effects of parallel rasterization on texture locality for a 

number of rasterization architectures, representing both current commercial products and 

proposed future architectures.  A cycle-accurate simulation of the rasterization system 

demonstrates the parallel speedup obtained by these systems and quantifies inefficiencies 

due to redundant work, inherent parallel load imbalance, insufficient memory bandwidth, 

and resource contention.  We find that parallel texture caching works well and is general 

enough to work with a wide variety of rasterization architectures. 

4.2.1 Previous Work 
Until recently, it had been difficult to provide the amount of computation required for 

texturing at high fragment rates within a single chip, so solutions were naturally parallel.  

Although texturing was used in the earlier dedicated flight simulators, one of the first 

real-time texture mapping workstations was the SGI RealityEngine [Akeley 1993].  This 

system parallelizes rasterization by interleaving vertical stripes of the framebuffer across 

5, 10, or 20 fragment generator units.  Each fragment generator is coupled with an inde-

pendent texture memory.  Because texture access patterns are independent of framebuffer 

interleaving patterns, any fragment generator needs to be able to access any texture data, 

so each fragment generator replicates the entire texture state.  The successor to the Reali-

tyEngine, the InfiniteReality [Montrym et al. 1997], uses 1, 2, or 4 higher performance 

fragment generators, and thus replicates texture memory up to 4 times, instead of up to 20 

times.  The texture subsystems of these architectures made minimal use of texture local-

ity.  The stripe interleaving of rasterization used in aforementioned high-end machines 

has recently appeared as scan-line interleaving in consumer-level graphics accelerators 

such as the Voodoo2 SLI from 3Dfx.  As with the SGI systems, texture memory is repli-

cated across all the rasterizers. 

One other class of scalable graphics architectures in which texture mapping has been 

implemented is the image composition architecture, as exemplified by PixelFlow [Molnar 

et al. 1992].  In such a system, multiple independent pipelines each generate a subset of 

the pixels for a scene, and these pixels are merged for display through an image composi-
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tion network.  Because each of the independent pipelines has its own texturing unit and 

texture memory, the amount of texture memory available to an application could be 

scaled.  However, the problem is not straightforward since there must be explicit software 

control to only send primitives to the particular pipeline holding its texture data.  Such a 

scheme is greatly at odds with dynamically load balancing the amount of work in each 

pipeline, particularly given the irregularities of human interaction.  If shading (and thus, 

texturing) is deferred until after the pixel merge is completed, the problem of dynamically 

load balancing shading work according to texture accesses is equally, if not more, chal-

lenging.  There have been no published works to date that address these challenges.  As 

with other parallel hardware architectures, the PixelFlow replicates texture memory 

[Molnar 1995]; furthermore, the locality of texture access is not exploited. 

Vartanian et al. [Vartanian et al. 1998] have evaluated the performance of texture 

caching with both image-space parallel and object-space parallel rasterizers.  They find 

that while object-space parallelism provides good speedup in a caching environment, im-

age-space parallelism generates poor speedup.  We believe that these results can be at-

tributed to focused architectural choices and benchmark scenes that favor object-space 

parallelism both in terms of caching and rasterizer load balancing.  In contrast, we find it 

more insightful to separate rasterizer load imbalance from texture load imbalance, and by 

exploring a more complete set of architectural choices, we find efficient design points for 

texture caching with both types of parallelism. 

4.2.2 Parallel Texture Caching Architectures 
A serial graphics pipeline is illustrated in Figure 4.9; performance can be increased by 

deploying multiple copies of some or all of the stages.  Parallel rasterization distributes 

rasterization work amongst multiple copies of the rasterization stages.  Looking at the 

texturing stage specifically, the role of the texture mapping units in a system is to take as 

input untextured fragments with texture coordinate information, access the appropriate 

data in the texture memory based on these coordinates and filtering modes, filter the data, 

and combine this filtered texture value with the value of the untextured fragment.  In or-
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der to scale the fragment rate (i.e., the rasterization performance), the number of texturing 

units must be increased to provide the necessary processing power.  Additionally, the 

number of texture memories must also be scaled to provide the correspondingly increased 

bandwidth requirements. 

Figure 4.10a shows a dedicated texture memory scheme for scaling the texture sub-

system of a graphics pipeline.  Each additional rasterization pipeline brings with it a 

dedicated texturing unit and texture memory.  As the system scales, the total amount of 

texture memory increases, but due to replication, the unique texture memory remains 

constant.  Figure 4.10b diagrams a shared texture memory scheme for scaling the graph-

ics pipeline.  In this architecture, an all-to-all texture-sorting network is introduced be-

tween the texturing units and the texture memories.  This allows any texturing unit to ac-

cess the data in any texture memory, allowing a single shared image of the texture data to 

be present across all of the texture memories.  Many topologies exist for such networks 

[Duato et al. 1997], and highly scalable networks can be built if the system balances the 

data going in and out of the network.  We will not focus on the network in this thesis, but 

the specifics of such a network can be found in other works [Eldridge et al. 2000]. 
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With the architectures of Figure 4.10a and Figure 4.10b, as with any parallel system, 

it is important to minimize the amount of redundant work introduced by parallelization 

and to balance the amount of work in each processing unit.  Efficient parallel rasteriza-

tion algorithms deal with presenting each texturing unit with a balanced number of untex-

tured fragments that minimizes redundant work; this problem has been extensively stud-

ied, and we make use of a few such algorithms, as described in Section 4.2.3.1.  The main 

focus of this section is to study the effects of parallel rasterization on texture locality.  

Assuming that the number of untextured fragments presented to each texturing units is 

balanced, one requirement for good parallel performance is that the redundant fetching of 
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Figure 4.9: A Base Graphics Pipeline 
The above diagram illustrates a typical graphics pipeline.  A parallel rasterization 
architecture replicates the rasterization pipeline to achieve higher performance. 
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the same texture data across texturing units be minimized.  Furthermore, it is important to 

load balance the texture bandwidth required by each texturing unit, and in the case of a 

shared texture memory, the texture bandwidth required from each texture memory. 

4.2.3 Methodology 
While it is clear that the parallel architectures of Figure 4.10a and Figure 4.10b do poten-

tially increase performance, the actual performance gains are still unclear in terms of tex-

ture bandwidth.  In this section, we lay out a framework that will allow us to evaluate the 

performance of a parallel texture caching architecture. 

4.2.3.1 Parallel Rasterization Algorithms 
The characteristics of parallel texture caching are highly dependent on the parallel 

rasterization algorithm because this algorithm determines which fragments are processed 

by which texturing units and in what order.  There are a great number of different rasteri-
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Figure 4.10: Dedicated and Shared Texture Memories 
Multiple graphics pipelines simultaneously draw a scene by coordinating work 
over a graphics network.  To apply texture, a fraction of the untextured fragments 
is distributed to each texture unit that holds a replicated version of the scene’s tex-
ture data in a dedicated texture memory (a).  In a shared texture memory system 
(b), each texturing unit can access the texture data of any texture memory, allow-
ing for a single copy of the texture data system-wide   Texture is cached to reduce 
texture memory bandwidth. 
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zation algorithms, and each algorithm has a number of parameters that can be varied.  

Because of the large number of variables, it is impractical to analyze every rasterization 

algorithm, and thus we choose a few representative algorithms. 

Parallel rasterization algorithms can be characterized along three axes with regard to 

texturing.  The first distinction to be made is whether work is partitioned according to 

image-space (each texturing unit is responsible for a subset of the pixels on the screen) or 

object-space (each texturing unit is responsible for a subset of the fragments generated by 

triangles).  The second distinction is whether the texturing unit processes fragments im-

mediately in the order primitives are submitted or buffers fragments and processes them 

in a different order.  The third distinction is whether fragments destined for the same lo-

cation in the framebuffer are processed in the order presented by the application.  For this 

paper, all of the algorithms we present preserve application order. 

• tiled.  In a tiled architecture, the screen is subdivided uniformly into fixed-size 

square or near-square tiles and each texturing unit is responsible for a stati-

cally interleaved fraction of tiles.  We have empirically found that 32 pixel by 

32 pixel tiles work well up to moderate levels of parallelism, and for this pa-

per, we will assume that tile size.  In tiled-prim, fragments are processed in 

primitive order.  This means that if a triangle overlaps several tiles belonging 

to the same rasterizer, the fragments of that triangle are completely processed 

before moving on to the fragments of the next triangle.  In tiled-frame, the 

fragments of a frame are processed in tile order.  This means that a texturing 

unit processes all of the fragments for its first tile before moving on to any of 

the fragments that fall in its second tile. 

• osi.  Algorithms that subdivide work according to object-space usually dis-

tribute groups of primitives in a round-robin fashion amongst rasterizers, giv-

ing each rasterizer approximately the same amount of per-primitive work.  

Because the number of fragments generated by each primitive can vary 

greatly, it is important to also load balance fragment work either by dynami-
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cally distributing primitives, by subdividing large primitives, or by combining 

the two techniques.  In object-space ideal (osi), we idealize the load balancing 

of fragments.  First, we serially rasterize all the primitives to form a fragment 

stream, and then we round-robin groups of 1024 fragments amongst the tex-

turing units. 

• striped.  Similar to both the RealityEngine and the InfiniteReality, fragments 

are subdivided according to an image-space subdivision of 2 pixel-wide verti-

cal stripes.  Each texturing unit is responsible for an interleaved fraction of the 

stripes, and processing is done in primitive order, as in tiled-prim. 

4.2.3.2 Scenes 
In order to quantify the effectiveness of parallel texture caching, we need to choose a set 

of representative scenes that cover a wide range of texture locality.  A good measure of 

texture locality is the scene’s unique texel to fragment ratio, and this ratio varies over 

nearly two orders of magnitude in our test scenes, which are identical to those presented 

in Section 4.1.4.2 and Table 4.1.  All of these scenes make use of mip mapping for tex-

ture filtering.  Mip mapping is crucial for providing locality in texture access patterns un-

der minification, a characteristic that all texture caching rasterization architectures de-

pend upon to run at full speed.  Scenes that lack mip mapping will experience significant 

performance degradations under texture minification.  The scenes we use in this section 

load balance fragment work relatively well with respect to the parallel rasterization algo-

rithms of Section 4.2.3.1, as will be quantified in Section 4.2.4.3.  Because these scenes 

load balance well under our parallel rasterization algorithm, texture bandwidth imbalance 

will not be hidden by fragment imbalance. 

4.2.3.3 Simulation Environment 
A cycle-accurate simulator of a parallel texturing subsystem was written in C++ to pro-

vide an environment for collecting the data presented in this paper.  Our simulation infra-

structure is based on a methodology for simulating hardware architectures [Mowry 1999].  
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The simulator takes as input texture data and untextured fragment data, and produces 

rendered images as well as trace data on the texture subsystem.  The simulator is able to 

partition this fragment data among multiple instances of texturing units in accordance 

with the parallel rasterization algorithms of Section 4.2.3.1.  Each texturing unit and each 

texture memory is made up of multiple functional units that run as threads in the C++ en-

vironment.  The forward progress of each functional unit and the communication between 

functional units adhere to a simulation clock by making clock-awaiting function calls 

within each thread at the appropriate points in the code.  This allows us to simulate a 

graphics architecture with cycle-accuracy at varying levels of detail and collect data from 

the system in a non-intrusive fashion. 

4.2.3.3.1 Data Organization 

Given the high-level architecture of parallel texturing units that are connected to memo-

ries through a texture cache, we must decide how data is organized throughout the sys-

tem.  In accordance with Section 4.1, we group 2D texture data into 4D tiles so that each 
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Figure 4.11: Shared Texture Data Organization 
The above diagram correlates a location in the shared texture memory with an ad-
dress, expressed in hexadecimal.  An ‘x’ represents an arbitrary hexadecimal 
number.  In this example, we are illustrating 16 texture memories with a block 
size of 16 texels.  The left block shows the layout of a 4x4 cache block.  A 4x4 
grid of these 2D blocks gives rise to a 16x16 image laid out in the shared texture 
memory, illustrated in the center.  The least significant hexadecimal digit of any 
texture address determines the pixel within the cache block, and the second least 
significant hexadecimal digit determines the texture memory holding that block. 
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cache block holds a square or near-square region of texture and use an additional level of 

tiling (6D tiling based on the number of cache sets) to reduce conflict misses.  As before, 

we rasterize according to screen-aligned 8 by 8 tiles and another level of tiling to 

rasterization (every 32 by 32 pixels), resulting in 6D tiled rasterization.  To give a 

consistent rasterization order across the studies in this paper, a serial rasterizer generates 

untextured fragments in this order and distributes them to the appropriate texturing unit 

according to the parallel rasterization algorithm. 

For the shared texture memory architecture, we must decide on the distribution of tex-

ture data across the multiple texture memories.  Texture data should be distributed in a 

finely interleaved fashion to prevent hot-spotting on any single memory for any signifi-

cant period of time.  In order to minimize the chance that nearby texture tiles fall onto the 

same texture memory, we distribute each cache block of texture data across the texture 

memories in a 4D tiled fashion.  The exact parameters for this tiling are dependent on the 

cache block size and the number of texture memories used for a particular simulation.  

For example, with 16 texel cache blocks (organized in a 4 by 4 tile) and 16 texturing 

memories, each cache block in a 4 by 4 tile of cache blocks is given to a different texture 

memory.  This is illustrated in Figure 4.11. 

4.2.3.3.2 Performance Model 

While caching characteristics may be analyzed statically without a performance model, 

such a model must be introduced in order to analyze resource contention and parallel 

speedup.  Our simulated texturing unit is capable of texturing a single fragment every cy-

cle, and we provide 2 texels per cycle of bandwidth to each texture memory, an amount 

large enough to cover most of the bandwidth demands of our scenes.  This is a typical 

bandwidth in modern systems – see, for example, a calculation by Kirk [Kirk 1998].  The 

latency of each texture memory is set to 20 fragment clocks, and a 64 fragment FIFO is 

used to hide the latency of the memory, values we replicate from Section 4.1.  Because 

arbitrary amounts of latency can be hidden using prefetching and a fragment FIFO, our 

results are not dependent on these values. 
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In a serial texturing unit, a fragment FIFO serves not only to hide the latency of the 

memory system, but also to smooth out variations in temporal bandwidth requirements.  

Even if a scene’s overall bandwidth requirement is low, temporal bandwidth require-

ments can get extremely high when several consecutive fragments miss in the texture 

cache.  If this temporal imbalance is microscopic (e.g., over tens of fragments), then a 

fragment FIFO can smooth out the contention for the memory system.  However, this im-

balance is often macroscopic (e.g., over tens of thousands of fragments): a fragment FIFO 

is unable to resolve the fragment-to-fragment contention for the texture memory and per-

formance suffers. 

In a parallel texture caching system with shared texture memories, contention can 

also occur between texturing units for the texture memories, and thus, the network.  In 

order to reduce the number of free variables in this paper, we choose to model the net-

work as perfect (no latency and infinite bandwidth) and therefore focus on memory con-

tention effects.  Network contention is related to memory contention in a fully simulated 

system, and prefetching is able to successfully hide arbitrary amounts of network latency 

in texture caching (e.g., [Eldridge et al. 2000]). 

4.2.4 Results 
Parallel texture caching can be analyzed according to common parallel algorithm idioms.  

First, parallel texture caching incurs redundant work in the form of repeated texture data 

fetching.  This reduction in locality is quantified in Section 4.2.4.1.  The effect of multi-

ple caches on working set size is described in Section 4.2.4.2.  Second, it is essential that 

parallel texture caching be load balanced, and we quantify this in Section 4.2.4.3.  Fi-

nally, in Section 4.2.4.4, we use a cycle-accurate simulation to demonstrate that good 

parallel speedup does in fact occur. 

Contrary to traditional microprocessor cache studies, we present cache efficiency data 

in terms of bandwidth per fragment rather than miss rate per access.  In microprocessor 

architecture, miss rate is of primary importance because only one or a few outstanding 
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misses can be tolerated before the processor stalls.  Because of the lack of write hazards, 

texture caching can tolerate arbitrary numbers of outstanding reads (Section 4.1), and 

thus, performance is related more to its bandwidth demands. 

4.2.4.1 Locality 
As with most parallel algorithms, parallel texture caching induces inherent overhead be-

yond that found in a serial algorithm due to redundancies.  For parallel texture caching, 

this is best characterized by the redundant fetching of the same texture data by multiple 

texturing units—a reduction of locality.  In a serial graphics system, an ideal texture 

cache would fetch each texel used in the scene only once (assuming the cache is sized to 

exploit only intra-frame locality).  The bandwidth required for such a cache can be com-

puted by counting the number of compulsory misses (i.e., cold misses) taken by the cache 

that employs a block size of a single texel.  As we make the block size larger, fewer 

misses are taken, but the amount of data read by each miss increases.  Overall, we expect 

the total amount of data fetched due to compulsory misses to increase with the block size 

because of edge effects.  Whenever a texture falls across the edge of a screen, the silhou-

ette edge of an object, or the edge of a parallel work partitioning, larger block sizes force 

the cache to fetch larger portions of the texture data that are never used.  By measuring 

the bandwidth attributable to compulsory cache misses, Figure 4.12 illustrates the reduc-

tion of locality caused by the various rasterization algorithms as the number of texturing 

units and block size are varied. 

The lightest portions of the bars in Figure 4.12 indicate the average bandwidth re-

quired to satisfy the compulsory misses of a serial texture cache for the various rasteriza-

tion algorithms.  For a serial texturing unit, all of the algorithms perform equally because 

the number of compulsory misses is scene-dependent.  We see that as block size is in-

creased, the bandwidth requirement for a serial rasterizer increases slightly for the flight 

data set pair and negligibly for quake and qtvr data set pairs.  In qtvr, the edge effects oc-

cur only near screen edges, which accounts for a negligible portion of the total work.  In 
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quake, the texture used at the edge of polygons is repeated from the middle of the poly-

gons, thus negating edge effects from polygons. 

The bottom portion of each bar represents the optimal bandwidth requirements of a 

serial texture cache, and each successive portion of the bar represents the additional 

bandwidth required to satisfy additional texturing units.  We simulate an infinite number 

of texturing units, the top-most portion of each bar, by assigning the smallest granularity 

of work for each rasterization algorithm to a unique texture unit.  For a tiled architecture 

this quantum of work corresponds to a single tile, for object-space interleaving this corre-

sponds to a single contiguous block of fragments.  This defines the locality present in a 

rasterization algorithm’s minimal unit of work.  Also note that because we are counting 

compulsory misses, the order in which fragments are processed has no effect, and thus 

the results for tiled-prim and tiled-frame are identical. 

As a detailed example, for a tiled architecture on the flight2x scene, we see that for a 

block size of 16 texels (arranged in a 4 by 4 tile), a single texturing unit requires ap-

proximately 1.67 texels per fragment.  If work is distributed amongst two texturing units, 

then the bandwidth required increases to approximately 2.17 texels per fragment.  This 

occurs because edge effects are introduced at the boundaries of tiles, reducing the tile-to-

tile locality.  For four texturing units, the bandwidth requirement slightly increases to 

2.26 texels per fragment, but as work is distributed amongst additional texturing units, the 

bandwidth requirements do not increase significantly.  The reason for this is that most of 

the texture in the scene is unique, and while the tiles of a two-way parallel system touch 

at their corners and thus share some of the texture data of an object (tile-to-tile locality), 

this adjacency goes away completely in four-way parallel and larger systems.  We also 

see that as block size is increased from 1 to 16 to 64 texels, the bandwidth requirements 

increase significantly because the over-fetching of larger block sizes is multiplied by the 

large number of tile edges.  These aforementioned behaviors are all mirrored in flight, 

qtvr, and qtvr2x. 

Although the effects of larger block sizes are the same, the bandwidth requirements of 

quake and quake2x on the tiled architecture are quite different as the number of rasteriz-
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ers is increased.  The first thing to notice about these scenes is the low bandwidth re-

quirements of the serial case due to the heavy use of repeated textures.  Furthermore, as 

opposed to the other scenes, as the number of texturing units is increased, the bandwidth 

requirements always increase.  The use of repeated textures causes this because the same 

texture data is used repeatedly across the image-space partitioning.  However, even with 

an infinite number of texturing units, the total bandwidth requirement is still quite lim-

ited.  In effect, although parallel rasterization diminishes texture locality due to repeated 

texture, locality due to filtering remains.  This means that texturing subsystems that are 

designed to perform well only in conjunction with repeated textures do not parallelize 

well. 

The behavior of osi largely mirrors the performance of tiled, with the exception that 

bandwidth requirements continue to increase as additional texturing units are utilized.  

This is explained by the fact that osi is fragment-interleaved, and the chance that a textur-

ing unit’s consecutive fragment groups utilize adjacent portions of a texture map de-

creases smoothly as the number of texturing units is increased.  For both tiled and osi, we 

see that a block size of 16 texels provides reasonable locality given the granularity of ac-

cess needed for efficient memory utilization and efficient network utilization.  Thus, for 

the remainder of the section, we assume a block size of 16 texels for tiled and osi. 
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Figure 4.12: Bandwidth Due to Compulsory Misses 
This study shows the bandwidth requirements (measured in average number of 
texels fetched per fragment) associated with compulsory misses as a function of 
rasterization algorithm, scene, block size, and number of texturing units.  The top 
row represents the data for the tiled rasterization architecture, the middle row for 
the osi architecture, and the bottom row for the striped architecture.  Scenes are 
sorted left to right by their unique texel to fragment ratio, which indicates the 
minimum bandwidth required.  Each bar chart shows the bandwidth requirements 
for a different block size, and the shades of gray show the bandwidth require-
ments for differing numbers of texturing units.  The shades of gray increase in 
darkness as the number of texturing units is increased, and the bandwidth required 
for greater numbers of texturing units increases monotonically.  Finally, note that 
the bandwidth values for striped rasterization are shown with a split scale axis. 
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The behavior of the striped rasterization algorithm is markedly different from both tiled 

and osi.  The most important thing to notice is that bandwidth requirements increase dra-

matically with increased block size.  Because interleaving is done at every 2 pixels in the 

horizontal direction, edge effects occur very frequently.  As block size is increased, a 

drastically larger number of texels that fall beyond a stripe’s required set of texels are 

fetched.  Thus, striped architectures reduce texture locality drastically.  Even at a block 

size of 1 texel for striped, locality is much worse than at a block size of 16 for tiled or osi.  

We note that a single texel is a very small granularity of access for modern networks and 

memories, and that most modern devices perform highly sub-optimally at such 

granularities.  Nonetheless, this is the only block size that preserves a modicum of local-

ity for striped, and for the remainder of the section, we assume a block size of 1 texel for 

the striped architecture. 

4.2.4.2 Working Sets 
Now that we have an understanding of the effects of cache block size on locality under 

parallel rasterization, we move onto the effects of parallel rasterization on working set 

sizes by using limited-size caches that suffer misses beyond compulsory misses.  As the 

number of texturing units is increased, the total amount of cache in the system increases, 

and thus we expect better performance.  Figure 4.13 quantifies this notion by showing the 

bandwidth requirements of the various architectures with differing numbers of texturing 

units for the flight2x data set as the total cache size is varied.  In general, there is a corre-

lation between an algorithm’s working set size and the point of diminishing returns in 

increasing cache size, illustrated as the “knee” in the curves of Figure 4.13.  We see that 

as the number of texturing units increases, the working set size for each texturing unit 

decreases. 

These same characteristics were found for all of the data sets.  Because we want to 

pay attention to low levels of parallelism and systems that scale a serial texturing unit, we 

focus on a single cache size that works well for a serial algorithm.  Choosing such a pa-

rameter outside of hardware implementation constraints is a bit of a black art, and thus 
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we use parameters from Section 4.1.5.1 for consistency’s sake and allocate a cache size 

of 16 KB (configured as two direct-mapped 8 KB caches) for the remainder of this paper.  

Figure 4.14 shows the bandwidth requirements of the various algorithms on the various 

scenes with a 16 KB cache.  The first trend we notice is that while there is an initial jump 

in bandwidth demand when going from one texture unit to two texture units, the band-

width demands are largely flat with increasing numbers of texture units.  Moreover, for 

some traces, particularly flight and flight2x, the bandwidth demands actually decrease 

after the initial increase.  This is a well-known phenomenon from parallel systems 

wherein the aggregate cache size increases more rapidly than the aggregate miss rate, re-

sulting in improved cache behavior with increasing parallelism. 
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Figure 4.13: The Effects of Cache Size 
The total bandwidth (measured in average number of texels per fragment) re-
quired to render flight2x is plotted as a function of the cache size.  Each chart 
shows a different rasterization architecture, and each curve represents a different 
number of texturing units.  Block size is set to 16 texels for all the graphs except 
striped, which has a block size of 1 texel. 
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One interesting result is that although tiled-frame performs better than tiled-prim for 

the flight and qtvr data set pairs, the opposite is true for the quake data set pair.  In flight, 

and to a lesser extent qtvr, the disjoint drawing of triangles in image-space makes it ad-

vantageous to wait until all of the triangles of a tile are present before texturing due to 

increased temporal locality.  In quake, however, it is more advantageous to texture large 

polygons that fall into multiple tiles immediately because the different regions of the 

polygon all use the same repeated texture data. 

4.2.4.3 Load Imbalance 
The performance of any parallel system is often limited by load imbalance: if one unit is 

given significantly more work than the other units, it will be the limiting factor, and per-
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Figure 4.14: Bandwidth Requirements of a 16 KB Cache 
In these graphs, bandwidth is displayed as a function of the number of rasterizers.  
Both the normal and the 2x resolution versions of each scene are shown on the 
same graph.  Block sizes are the same as in Figure 4.13, and each curve shows the 
bandwidths for a different parallel rasterization algorithm. 
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formance will suffer.  In parallel texture caching, load imbalance can occur in one of 

three ways.  First, the number of untextured fragments presented to each texturing unit 

can differ.   Second, the bandwidth required for texturing the fragments of a texturing 

unit may vary.  Third, the bandwidth required from each texturing memory can differ.  In 

a dedicated texture memory system, the last two sources of imbalance are identical be-

cause each texturing unit is paired with a single texture memory. 

Figure 4.15 shows the various types of load imbalance of the various scenes on the 

different architectures.  The first trend to note is that all of the configurations load bal-

ance well in all respects when there are 16 or fewer texturing units (the worst imbalance 

is 9.7%).  However, as the number of texturing units is increased to 32, and especially 64, 

there is a large imbalance in the bandwidth requirements of the texturing units.  This im-

balance is significantly larger than fragment imbalance, and the trend occurs in all of the 

rasterization algorithms except striped and on all of the data sets except the qtvr pair, 

which exhibits extreme regularity in texture access patterns.  The striped algorithm is 

highly load balanced even at high numbers of texturing units because of its fine interleav-

ing pattern.  However, this positive result is moderated by the fact that the baseline for 

the striped data includes significantly more redundant bandwidth than the other rasteriza-

tion algorithms.  

The second important trend in Figure 4.15 is the effect of shared texture memory on 

texture memory load imbalance.  In a dedicated texture memory system, the load imbal-

ance between texture memories is equal to the load imbalance between texturing units.  

In a shared texture memory architecture, the load imbalance between texture memories is 

relatively small.  Thus, we see that distributing blocks in a tiled fashion across the texture 

memories does in fact balance texture load well, usually to such an extent that shared tex-

ture memory imbalance is much lower than the dedicated texture memory imbalance. 
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Figure 4.15: Texture Load Imbalance 
Each graph shows load imbalance for different numbers of rasterizers.  The y-axis 
of each graph shows the percent difference in the work performed by the busiest 
unit and the average unit.  Each row shows a different scene, and each column 
shows a different parallel rasterization algorithm.  The rows and columns have 
been sorted so that the scenes and rasterization algorithms that perform best are at 
the upper left and the ones that perform worst are at the lower right.  Three types 
of load imbalance are shown.  Fragment load imbalance is the maximum number 
of fragments given to a texturing unit divided by the average number of fragments 
per texturing unit.  Miss load imbalance is the worst rasterizer’s number of misses 
per fragment divided by the average number of misses per fragment.  Bank load 
imbalance is the maximum number of access per texture memory in a shared 
memory architecture divided by the average number of accesses per memory.  For 
these experiments, we use the same cache and block sizes as Figure 4.14. 
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4.2.4.4 Performance 
While the experiments of the previous sections illuminate many characteristics of parallel 

texture caching, they say nothing about realized performance.  In particular, the temporal 

effects of erratic intra-frame bandwidth demands are ignored.  Even though a scene’s 

memory bandwidth demands may be low when averaged over an entire frame, its mem-

ory bandwidth demands averaged over a few fragments can actually be quite high.  

Figure 4.16 divides the execution time of a serial texturing unit into three categories: time 

spent on fragment processing, time lost due to insufficient memory bandwidth, and time 

lost due to fragment-to-fragment contention for the memory.  We see that only flight2x 
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Figure 4.16: Breakdown of Serial Time 
This graph breaks down the execution of a serial texturing unit across different 
scenes and rasterization algorithms.  Execution time is normalized to cycles per 
fragment, and the light gray bar shows the ideal cost, assuming one fragment is 
processed per cycle.  The dark gray bar shows the cost of insufficient memory 
bandwidth for a 2 texel per cycle memory system.  If the ratio of a scene’s aver-
age memory bandwidth requirement to the memory system’s bandwidth supply is 
greater than one, then this cost is tallied.  The black bar represents the cost of 
fragment-to-fragment memory contention incurred by the 64-entry fragment 
FIFO’s inability to smooth out temporal bandwidth variations.  These experiments 
use the same cache parameters as used in Figure 4.14. 
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and qtvr2x have average memory bandwidth requirements beyond 2 texels per fragment, 

and thus even perfect smoothing of fragment-to-fragment contention could not achieve a 

performance of one cycle per fragment.  We also see that contention time is nearly uni-

form across all rasterization architectures with the exception of striped, which performs 

better due to smaller block sizes.  In general, uncovered contention occurs in scenes that 

have large variations in macroscopic bandwidth requirements.  Whenever bandwidth re-

quirements peak beyond 2 texels per fragment over large periods of time, temporal mem-

ory contention cannot be resolved by the 64-entry fragment FIFO.  This occurs most in 

flight2x, and to a lesser extent, in flight and quake2x.  In qtvr2x, temporal bandwidth re-

quirements are always over 2 texels per fragment, and in quake and qtvr, bandwidth re-

quirements are consistently under 2 texels per fragment, resulting in little temporal con-

tention that is not covered by the 64-entry fragment FIFO. 

The serial runs of Figure 4.16 serve as a baseline for computing speedup of parallel 

texture caching runs.  In Figure 4.17, we graph the speedup of dedicated texture memory 

architectures.  Across all of the runs, excellent speedup is achieved through 16 texturing 

units.  For the scenes whose bandwidth requirements are usually met by the 2 texel per 

cycle memory system – quake, quake2x, flight (except in striped), and qtvr – the speedup 

is near-linear.  For the scenes that exceed this bandwidth – flight2x and qtvr2x – the 

speedup efficiency is dictated by the inefficiency of the cache with respect to a serial 

cache, as graphed in Figure 4.16.  Beyond 16 texturing units, some of the speedup curves 

exhibit lower speedup efficiency.  Referring back to the load imbalance graphs in Figure 

4.15, we see that this occurs in the configurations that exhibited significant load imbal-

ance in the amount of bandwidth requested by each texturing unit.  As expected intui-

tively, the fragment-to-fragment memory contention plays an insignificant role in 

speedup efficiency. 
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In Figure 4.18, we graph the speedup of a shared texture architecture.  The speedup 

efficiencies realized are almost identical to a dedicated texture architecture at or below 16 

texturing units.  At higher numbers of texturing units, however, these speedup efficien-

cies are generally better than a dedicated architecture for the configurations that exhibited 

large load imbalance.  This can be explained by the fact that in a shared texture architec-
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Figure 4.17: Speedup Graphs for Dedicated Texture Memory 
These speedup graphs show speedup as a function of the number of texturing 
units for dedicated texture cache architectures.  The curves on each graph show 
speedup for a different scene. 
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ture, the texturing unit with the highest miss rate spreads its memory requests across 

many texture memories, and thus performance becomes dependent on load imbalance 

amongst the texture memories, which is much lower than texturing unit imbalance.  In 

effect, the busiest texture unit is able to steal memory bandwidth that would go unused in 

a dedicated texture memory system. 
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Figure 4.18: Speedup Graphs for Shared Texture Memory 
These speedup graphs show speedup as a function of the number of texturing 
units for shared texture cache architectures.  The curves on each graph show 
speedup for a different scene. 
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4.2.5 Texture Updates 
One reason parallel texture caching is so straightforward to implement is that texture 

mapping is a read-only operation, except for texture downloads.  This allowed us to use 

multiple caches on the same data without the need for a complex coherence protocol to 

detect changes in the texture memory caused by another texturing unit.  However, any 

real system with a shared texture memory will have to deal with such texture updates.  

There are two potential hazards when a texture is updated.  First, a texture read for a 

fragment generated by a polygon submitted before the texture update could read the new 

contents of the texture rather than the old contents.  The converse could also occur when 

a fragment generated by a polygon submitted after a texture update reads texture values 

that are stale.  These problems arise both because texture updates are large events that do 

not necessarily occur atomically, and, more simply, because the work being performed at 

any point in time by one texture unit (e.g., downloading a texture) is generally not tightly 

coupled with the work being performed by another texture unit (e.g., processing frag-

ments). 

One solution to these hazards is to force texture updates to occur atomically and to in-

troduce a strict ordering of operations between the texturing units during texture update.  

This is most naturally expressed by performing a barrier operation across all of the graph-

ics system at the start of the texture update to ensure that previous accesses to the old tex-

ture have completed.  Then, a second barrier operation at the end of the texture update 

ensures that the new texture is in memory before any new fragments access it.  The barri-

ers could be implemented either in hardware via a shared signal among the texturing 

units, thus allowing the rest of the pipeline to make progress, or in the software driver, 

forcing a flush of the graphics pipelines.  Additionally, texturing units must flush stale 

data from their caches in conjunction with texture updates. 
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4.3 Conclusion 
In this chapter, we have demonstrated two key components to making scalable texture 

mapping hardware.  First, we have shown that any amount of latency may be hidden by a 

proper texture prefetching architecture, even in conjunction with caching.  The complete 

lack of data dependencies between different fragments for the texturing operation, as 

noted in Section 2.1, allows us to transform the texture memory access problem into one 

of bandwidth rather than latency.  Applying this idea in general, we see that while latency 

is the critical factor in systems with a high degree of data dependency (e.g., microproces-

sors), bandwidth is the critical factor in systems with low amounts of data dependency 

(e.g., texturing).  Second, we have shown that parallel texture caching works given the 

proper choice of algorithms and parameters.  In particular, it is important to consider the 

effects of parallelization algorithms on texture caching.  Algorithms that lead to good 

load balancing in fragment work (e.g., the striped architecture) also reduce the amount of 

texture locality significantly, crippling texture caches.  Moderate granularity of work bal-

ances this tradeoff well.  Even with this tradeoff, we noticed a surprisingly large amount 

imbalance in texture load at high degrees of parallelism (e.g., tiled on the flight dataset).  

Besides the obvious benefit of scaling the amount of texture memory available, a shared 

texture memory architecture balances this load among the texture memories significantly. 
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Chapter 5 Conclusion 

Conclusion 

In this thesis, we have examined scalability in graphics architectures from a novel point 

of view and provided ways of scaling two aspects of graphics architectures that have been 

ignored by previous work.  We will review these contributions and describe several areas 

for future work. 

In Chapter 2, we examined parallelism in graphics architectures.  The graphics API 

defines the instruction set of a virtual graphics machine.  Compared to a microprocessor 

architecture, we saw that graphics instructions define a much greater amount of computa-

tion: each instruction that specifies a triangle requires hundreds of floating-point opera-

tions, and each of the potentially millions of fragments generated by a triangle requires 

hundreds of fixed-point operations.  Furthermore, few data dependencies exist within and 

between these graphics instructions, allowing graphics architectures to exploit large 

amounts of parallelism.  The sorting taxonomy classifies the ways existing architectures 

have tried to exploit this parallelism, and the large variety in types of parallel architec-

tures is related to the flexibility afforded by this parallelism. 

In Section 2.2, we examined scalability in graphics architectures.  Traditionally, re-

searchers only looked at triangle rate and pixel rate in determining the scalability of 

graphics architectures.  However, by only concentrating on these metrics, many research-

ers overlook other important aspects of scalability.  In this dissertation, we presented a 
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novel set of quantitative (input rate, triangle rate, pixel rate, texture memory, display) and 

qualitative (mode semantics, frame semantics, ordering semantics) metrics on which 

graphics architectures may be compared, and we described techniques for scaling two of 

the metrics that have been ignored by previous work: input rate and texture memory.  In 

fact, by using the techniques described in this dissertation in conjunction with a novel 

multi-sort algorithm, Pomegranate is able to achieve full scalability in all five quantita-

tive metrics while satisfying all the qualitative semantic constraints required by OpenGL. 

In Chapter 3, we described a novel parallel immediate-mode graphics interface.  By 

introducing synchronization commands into the API, ordering between multiple graphics 

streams could be explicitly constrained.  Since synchronization is done between graphics 

streams, an application thread is able to continue issuing graphics commands even when 

its graphics stream is blocked—this allows the application to specify, fully in parallel, a 

scene that requires even an exact ordering.  Several implementations of the parallel API 

were described, and with the Pomegranate implementation, we demonstrated that order-

ing does not constrain performance.  Even on data sets that required a total ordering of 

primitives, we were able to demonstrate a speedup efficiency of 99% using 64 graphics 

streams, allowing the hardware implementation to achieve 1.10 billion triangles per sec-

ond, largely due to 64 GB per second of input bandwidth from the parallel interface.  

Given that we are now at the point where a graphics card costing less that a couple of 

hundred dollars can render triangles faster than the system can specify them, the parallel 

API is critical for scaling graphics beyond even the cheapest of graphics architectures. 

The parallel API provides a new paradigm for writing parallel graphics applications, 

but, in general, parallel applications are difficult to write.  Many graphics algorithms that 

need an immediate-mode interface are limited by application computation speed (e.g., 

[Sederberg & Parry 1986, Hoppe 1997]), and parallelizing the graphics commands along-

side the computation is straightforward.  However, there are two other uses of the parallel 

API that are of special interest because they present the application programmer with a 

simple serial interface.  Scene graph libraries such as Performer [Rohlf & Helman 1994] 

are parallel libraries that traverse, cull, and issue scenes on multiple processors on behalf 
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of a serial application.  Pipeline parallelism is currently used to distribute different tasks 

among different processors, but Performer is limited on most applications by the single 

processor responsible for the issuing of the graphics commands.  The parallel API can be 

used to write such libraries in a homogeneous, scalable fashion.  A second novel use of 

the parallel API is to write a “compiler” that can automatically parallelize the graphics 

calls of a serial graphics application.  Recent advances in compiler technology allow 

automatic parallelization of regular serial applications [Amarasinghe et al. 1996], and ex-

tending this work to encompass graphics applications would be an interesting research 

direction. 

In Chapter 4, we presented two key contributions that allow for scalable texture map-

ping subsystems.  Two aspects of texture mapping must be scaled: performance and 

amount of texture data.  Multiple texturing units with caches accessing a shared texture 

memory across a scalable network served as the basis of such a scalable subsystem.  In 

such a subsystem, two main challenges were addressed. 

First, in Section 4.1, we presented and analyzed a prefetching texture cache architec-

ture for a single texturing unit.  This is critical to a shared texture memory system be-

cause of the highly variable latencies.  We designed the architecture to take advantage of 

the distinct memory access patterns of texture mapping.  In particular, caching works 

well because mip mapping guarantees small strides across texture memory.  Furthermore, 

because no dependencies exist in the stream of read-only texture accesses, arbitrary 

amounts of latency may be tolerated by the prefetching architecture that separates the 

cache tags from the cache data temporally.  We demonstrated the architecture’s ability to 

hide the memory latency with a 97% utilization of the available hardware resources.  The 

ability to tolerate memory latency is important in serial texture systems and parallel tex-

ture systems with dedicated texture memories because of the latencies of modern memo-

ries.  Furthermore, such a system is critical for shared texture memory architectures that 

scale the amount of texture memory through texture caching because of the highly vari-

able latencies introduced by a system with non-uniform memory access times. 
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In Section 4.2, we demonstrated that parallel texture caching is able to load balance 

texture memory requirements well without incurring excessive amounts of redundant 

work given the proper choice of various parameters.  We demonstrated that parallel tex-

ture caching works well across nearly two orders of magnitude of parallelism, from a se-

rial texture unit up to 64 texture units.  An interesting discovery was that even though 

fragment work may be well balanced across texturing units, significant imbalance can 

exist in the texture bandwidth requirements.  However, a shared texture memory in which 

data is interleaved balances this bandwidth across the multiple texture memories very 

well. 

While this thesis demonstrated how two major aspects of a graphics system may be 

scaled, attaining ideal amounts of scalability requires the modification of the serial graph-

ics system.  For example, although WireGL transparently implements the parallel API on 

top of serial graphics architectures, a layer of software is responsible for implementing 

the parallel API.  Compared to the hardware implementation of Pomegranate, this system 

resolves parallel API commands much more slowly, partially due to the fact that it is in 

software, and partially due to the fact that API commands are broadcast to the renderers.  

In the realm of scalable texturing, although the results of Chapter 4 demonstrate rasteriza-

tion algorithms that are able to scale texturing performance based on unmodified serial 

graphics pipelines, the scalability of the amount of texture memory requires special sup-

port for a shared texture store in the graphics pipeline.  In the microprocessor space, a 

minimal set of additions to a non-scalable microprocessor (e.g., cache coherency hard-

ware) is the basis of scalability.  Pomegranate demonstrates that one set of additions to a 

non-scalable graphics architecture allow for a fully scalable graphics architecture.  An 

open question is whether or not these additions are minimal—if not, what is? 
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