
SCALABLE GRAPHICS ARCHITECTURES:

INTERFACE & TEXTURE

A DISSERTATION

SUBMITTED TO THE COMPUTER SCIENCE DEPARTMENT

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Homan Igehy

May 2000

 ii

© Copyright by Homan Igehy 2000

All Rights Reserved

 iii

I certify that I have read this dissertation and that in my opinion

it is fully adequate, in scope and quality, as a dissertation for

the degree of Doctor of Philosophy.

 Pat Hanrahan (Principal Advisor)

I certify that I have read this dissertation and that in my opinion

it is fully adequate, in scope and quality, as a dissertation for

the degree of Doctor of Philosophy.

 Mark Horowitz

I certify that I have read this dissertation and that in my opinion

it is fully adequate, in scope and quality, as a dissertation for

the degree of Doctor of Philosophy.

 Bill Dally

Approved for the University Committee on Graduate Studies:

 iv

 v

Abstract
With today's technology, it is possible to place a significant amount graphics processing

power on a single chip. While this allows computers to render very impressive imagery,

many interactive graphics applications require several orders of magnitude more in proc-

essing power. Parallelism is one way of achieving increased power, and scalable solu-

tions achieve parallelism through the replication of a basic unit. In this dissertation, we

discuss scalable graphics architectures and present novel techniques for scaling two im-

portant aspects of graphics architectures that have not been addressed by the literature:

interface and texture.

First, we analyze parallelism in the graphics pipeline. By looking at the virtual ma-

chine defined by the graphics API and analyzing its dependencies, we are able to exam-

ine the sources of parallelism. We define the metrics of scalability and analyze the extent

to which existing graphics architectures are able to scale. Second, we present a novel

parallel graphics interface that allows for scalable input rates. This interface allows mul-

tiple graphics contexts to simultaneously submit commands to the graphics system while

explicitly ordering the drawing of graphics primitives. Even with scenes that require a

total order, fully scalable submission and rendering are demonstrated. Finally, we pre-

sent a scalable texture architecture based on a shared texture memory. In order to tolerate

the high and variable latencies of a shared texture memory, a novel texture prefetching

architecture is described. The effects of parallel texture caching are examined in detail,

demonstrating the applicability of such an approach across a wide variety of rasterization

architectures.

 vi

 vii

Acknowledgements
I would like to thank all the people who helped me through my years at Stanford. Be-

cause I did my undergraduate education here as well as my graduate education, I have

spent 9 years out of my 27 years of life here: one-third of my life. You’ll understand if I

forget someone….

First and foremost, I would like to thank my advisor, Pat Hanrahan. Stylistically, he

was very much a hands-off advisor that let me pursue my interests. Sometimes this

would mean video games and guitar, and sometimes this would mean fruitful research.

The research in this dissertation, as well as research beyond the scope of this dissertation,

was guided by a person who had the knowledge to push me in the right direction and the

wisdom to let me find my way from there. I would also like to thank Bill Dally and Mark

Horowitz, the other members of my reading committee. Mark’s comments over the years

have always been to the point and have helped me gain a greater technical understanding

of the work in this thesis. Bill’s viewpoints called into question many of my assumptions

and have helped me gain a better understanding of graphics architectures from a more

general perspective.

My colleagues in the Stanford graphics lab have been a source of fun and learning.

The course project of implementing a graphics pipeline in a class by Marc Levoy sparked

my interest in graphics architecture, and I still recall trying to keep up with the torrent

pace of lecturing by Leo Guibas in a couple of classes. I also owe a great debt to the

other students who helped me with my research over the years, particularly Matthew El-

dridge, Gordon Stoll, Kekoa Proudfoot, John Owens, Matt Pharr, Milton Chen, Ian Buck,

 viii

James Davis, Bill Mark, Maneesh Agrawala, Timothy Purcell, Lucas Pereira, Greg Hum-

phreys, Afra Zomorodian, and Phil Lacroute.

I would like to thank my parents, Jeff and Golie, for their love and support over the

years. I would like to thank my brother, Alex, and his fiancée, Dana, for looking out for

me over the years. I thank my friends, who have made me laugh through good times and

bad times, and I thank Sepi, who puts a smile on my face every day.

Finally, I would like to thank DARPA, under contract DABT63-95-C-0085-P00006,

and Intel Corporation for the financial support of my research.

 ix

Contents

Abstract v

Acknowledgements vii

Chapter 1 Introduction 1

1.1 Trends in Graphics Architecture .. 2

1.2 The Rendering Problem ... 5

1.2.1 Representations and Algorithms .. 5

1.2.2 Interactive Rendering ... 7

1.3 The Graphics Pipeline .. 8

1.4 Summary of Original Contributions... 14

Chapter 2 Analysis of Parallel Graphics 17

2.1 Sources of Parallelism.. 18

2.1.1 Instruction Set .. 19

2.1.2 Data Dependencies... 21

2.1.2.1 Dependencies and Parallelism.. 21

2.1.2.2 Data Dependencies in Graphics Architectures................................. 23

2.1.3 Control Dependencies .. 26

2.1.4 Discussion .. 27

2.2 Scaling the Graphics Pipeline .. 29

 x

2.2.1 Scalability Metrics.. 29

2.2.2 Analysis of Scalable Architectures .. 32

2.2.2.1 Sort-First Architectures .. 35

2.2.2.2 Sort-Middle Architectures.. 38

2.2.2.3 Fragment-sorting Architectures.. 42

2.2.2.4 Image-Composition Architectures ... 43

2.2.2.5 Pomegranate Architecture .. 45

2.3 Conclusion ... 48

Chapter 3 Scalable Graphics Interface 49

3.1 Introduction .. 50

3.2 Motivation.. 51

3.3 Related Work ... 53

3.4 The Parallel API Extensions .. 55

3.4.1 Existing Constructs .. 56

3.4.2 The Wait Construct .. 57

3.4.3 Synchronization Constructs.. 58

3.5 Using the Parallel Graphics API .. 59

3.5.1 Simple Interactive Loop ... 60

3.5.2 Marching Cubes ... 61

3.6 Implementations... 63

3.6.1 Argus: A Software Implementation ... 63

3.6.1.1 Architecture.. 63

3.6.1.2 Performance ... 67

3.6.2 Pomegranate: A Hardware Implementation... 73

3.6.2.1 Architecture.. 73

3.6.2.2 Performance ... 76

3.6.3 WireGL: A Transparent Implementation ... 77

3.7 Implementation Alternatives.. 79

 xi

3.7.1 Consistency and Synchronization .. 79

3.7.2 Architectural Requirements.. 80

3.8 Conclusion ... 82

Chapter 4 Scalable Texture Mapping 85

4.1 Prefetching in a Texture Cache .. 86

4.1.1 Introduction .. 87

4.1.2 Mip Mapping.. 88

4.1.3 Caching and Prefetching .. 89

4.1.3.1 Traditional Prefetching... 90

4.1.3.2 A Texture Prefetching Architecture ... 91

4.1.4 Robust Scene Analysis ... 94

4.1.4.1 Texture Locality ... 94

4.1.4.2 The Benchmark Scenes .. 96

4.1.5 Memory Organization .. 98

4.1.5.1 Cache Efficiency .. 100

4.1.5.2 Bandwidth Requirements ... 101

4.1.5.3 Memory Models ... 105

4.1.6 Performance Analysis .. 106

4.1.6.1 Intra-Frame Variability .. 108

4.1.6.2 Buffer Sizes .. 109

4.2 Parallel Texture Caching.. 112

4.2.1 Previous Work.. 113

4.2.2 Parallel Texture Caching Architectures ... 114

4.2.3 Methodology .. 117

4.2.3.1 Parallel Rasterization Algorithms .. 117

4.2.3.2 Scenes... 119

4.2.3.3 Simulation Environment .. 119

4.2.3.3.1 Data Organization ... 120

 xii

4.2.3.3.2 Performance Model ... 121

4.2.4 Results .. 122

4.2.4.1 Locality... 123

4.2.4.2 Working Sets .. 127

4.2.4.3 Load Imbalance .. 129

4.2.4.4 Performance ... 132

4.2.5 Texture Updates ... 136

4.3 Conclusion ... 137

Chapter 5 Conclusion 139

Bibliography 143

 xiii

List of Tables
Table 4.1: The Benchmark Scenes .. 96

Table 4.2: Memory Models ... 105

Table 4.3: Buffer Sizes .. 110

 xiv

 xv

List of Figures
Figure 1.1: The Graphics Pipeline ... 10

Figure 2.1: The Sorting Classification... 33

Figure 2.2: Sort-First Architectures ... 35

Figure 2.3: Sort-Middle Architectures... 39

Figure 2.4: Fragment-Sorting Architectures.. 42

Figure 2.5: Image-Composition Architectures .. 43

Figure 2.6: Pomegranate Architecture ... 46

Figure 3.1: The Parallel Graphics Interface Extensions .. 56

Figure 3.2: Parallelizing a Simple Interactive Loop .. 60

Figure 3.3: Parallel Marching Cubes Traversal ... 62

Figure 3.4: The Argus Pipeline.. 66

Figure 3.5: Argus Speedup Graphs.. 69

Figure 3.6: Argus Speedup Graphs without Rasterization .. 70

Figure 3.7: Effects Buffering and Granularity on Argus ... 72

Figure 3.8: Barriers in Pomegranate .. 75

Figure 3.9: Pomegranate Speedup Graph .. 77

Figure 4.1: Mip Mapping... 88

 xvi

Figure 4.2: A Texture Prefetching Architecture .. 93

Figure 4.3: Texture Data Organization .. 99

Figure 4.4: Cache Efficiency ... 102

Figure 4.5: Bandwidth Variation ... 104

Figure 4.6: Prefetching Performance ... 107

Figure 4.7: Time-Varying Execution Time Characterization.................................... 109

Figure 4.8: The Effects of Varying Buffer Sizes ... 111

Figure 4.9: A Base Graphics Pipeline.. 116

Figure 4.10: Dedicated and Shared Texture Memories ... 117

Figure 4.11: Shared Texture Data Organization.. 120

Figure 4.12: Bandwidth Due to Compulsory Misses... 126

Figure 4.13: The Effects of Cache Size ... 128

Figure 4.14: Bandwidth Requirements of a 16 KB Cache .. 129

Figure 4.15: Texture Load Imbalance.. 131

Figure 4.16: Breakdown of Serial Time .. 132

Figure 4.17: Speedup Graphs for Dedicated Texture Memory 134

Figure 4.18: Speedup Graphs for Shared Texture Memory... 135

 1

Chapter 1 Introduction

Introduction

The roots of this dissertation can be traced back a decade to my first experience, during

high school, with an interactive graphics architecture during high school. An exuberant

engineer was speaking during career day about his experiences at Silicon Graphics, Inc.

To convey this excitement to an otherwise unimpressed audience, he brought his graphics

workstation to demonstrate a simple flight simulator. When I first saw this demo, I truly

felt it was magic—here was an imaginary world in which I was immersed, controlled by

my whim! I could fly a plane, pause the world, and look at it from any angle with a few

flicks of the wrist. Little did I understand the underlying graphics architecture, let alone

the concept of computation in silicon. Looking back now, the experience was far from

realistic—the polygon counts were low, the surface detail was minimal, the lighting mod-

els were simplistic, aliasing was occurring on the edges, etc. Furthermore, years of study

have transformed the mystery of computers into mundane machinery. However, even

today when I load up the latest 3D game, I am in awe. The goal of this dissertation is to

advance the mundane machinery of graphics architectures that creates the magic of inter-

active 3D. In particular, this thesis examines techniques and algorithms for providing

scalability in two areas of interactive graphics architectures that have not previously been

addressed by the research community: interface and texturing.

2 CHAPTER 1. INTRODUCTION

1.1 Trends in Graphics Architecture
Interactive graphics architectures have improved dramatically over the past few decades

due to improvements in both algorithms and semiconductor technology. In addition to

improving raw performance, successive architectures incorporate additional features

aimed at improving visual quality. According to one classification of workstation graph-

ics [Akeley 1993], the first-generation graphics architectures of the late 1970s and early

1980s were able to transform and clip geometry at rates that enabled wire frame render-

ings of objects. In the late 1980s, second-generation architectures were able to incorpo-

rate enough memory and compute power to enable depth buffering for hidden surface

removal and Gouraud shading for smooth lighting. These capabilities opened the door

for applications such as computer-aided design, animation, and scientific visualization.

Then in the 1990s, third-generation architectures introduced texture mapping and an-

tialiasing capabilities that greatly enhance realism in virtual reality and simulation appli-

cations. During this same period, due to advances in semiconductor technology, archi-

tects were able to integrate compelling 3D graphics on a single chip, paving the way for

low-cost mass-market applications such as gaming and other forms of computer enter-

tainment. As an extension to this classification [Hanrahan 1997], we are moving towards

a fourth generation of interactive graphics architectures that include programmable shad-

ing and other advanced lighting models. Eventually, the paradigm of local shading mod-

els will be broken by fifth-generation architectures that are able to compute global illu-

mination in real time.

Rendering research deals with computationally efficient methods for image synthesis,

but the definition of computational efficiency is elusive due to exponential rates of in-

crease in available computational performance over the past several decades. As the size

of the devices that can be placed on a chip decreases, a chip architect can exploit the re-

sulting improvement in speed and density to increase computational power. Under the

current regime of semiconductor devices, computing power at a given price point has

doubled approximately every couple of years. Consequently, “computational efficiency”

1.1. TRENDS IN GRAPHICS ARCHITECTURE 3

is a moving target: computations and architectures that were impractical or impossible a

decade ago are now quite feasible. This rate of exponential growth in semiconductor

processing power, dubbed Moore’s Law, is expected to continue for at least another fif-

teen years using known manufacturing methodologies. Furthermore, it is quite conceiv-

able that improvements in semiconductors or another technology will allow this exponen-

tial growth for quite some time. Graphics architects have been able to increase perform-

ance at exponential rates by utilizing these semiconductor advances and will continue to

do so in the future.

Although the technological forces greatly influence the way graphics architectures are

designed, market forces have an equally important role in shaping graphics architectures.

As three-dimensional graphics architectures have become increasingly mainstream, sig-

nificant changes have occurred in their designs. In the past, computational power was

relatively scarce, and graphics architects had to use tens to hundreds of chips to harness

enough power for a compelling 3D experience. These systems, though parallel, were not

very scalable: at best, one or two aspects of performance could be scaled by a factor of

two or four. Because of the large number of components, the cost of these systems was

very high, and consequently the volumes were limited to the few customers to whom in-

teractive graphics was mission-critical. Furthermore, as the amount of processing power

that can be placed on a single chip has increased, architects have been able to design

compelling graphics architectures at lower price points. The early graphics architectures

were aimed at a few high-end customers who were willing to pay millions of dollars for

flight simulators; however, later architectures, composed of a few to several chips, were

aimed at personal workstations, whose customers could afford price ranges in the tens of

thousands of dollars. Now, we are at a point where an impressive amount of graphics

power can be provided at consumer price points on a single chip.

This mass-market trend has had a profound impact on graphics architectures because

the engineering costs of designing mass-market architectures can be amortized over mil-

lions rather than thousands of units. The first and most obvious result is the massive

economies of scale that occurs. At low volumes, engineering costs make up the majority

4 CHAPTER 1. INTRODUCTION

of the cost of a graphics unit, and the cost of the silicon makes for a small fraction. At

high volumes, engineering costs are a fraction of silicon costs. Thus, high-volume de-

signs are able to provide processing power at a cheaper rate. Furthermore, the low per-

unit cost of engineering in high-volume designs allows for an increased engineering

budget. This means that mass-market graphics architectures tend to have highly opti-

mized designs that make better use of the silicon and faster product cycles. As a result,

graphics architectures aimed at the consumer market provide a much better price-

performance ratio than graphics architectures aimed at the professional market.

Because interactive graphics is still several orders of magnitude away from realism

because of limited performance, many high-end customers need performance beyond

what the consumer graphics chip can offer. The obvious answer is to make increased use

of parallelism: the amount of computational power that can be placed on multiple chips is

proportionally higher than that placed on a single chip, but these chips must be able to

communicate and coordinate their computations. The subdivision of computation among

different processing units is one of the main decisions for a graphics architect, whether it

is within a single chip, with area constraints, or across multiple chips, with cost and

bandwidth constraints. Traditionally, high-end graphics systems were composed of het-

erogeneous chip sets—one type of chip is built for command processing, another for

composition, etc. Furthermore, these architectures did not place a high premium on scal-

ability—at most one or two aspects of performance may be increased by adding more

chips to the system. Because of the large price-performance advantage offered by low-

end, single-chip graphics architectures, it is no longer cost-effective to engineer point so-

lutions for the high-end graphics system composed of heterogeneous chips. Instead, the

optimal way to build these high-end graphics architectures is by combining self-

sufficient, low-end graphics chips in a scalable fashion to realize scaled performance.

In this thesis, we examine the scalability of parallel graphics architectures. First, we

present a novel analysis of the graphics pipeline and a novel framework for the classifica-

tion of graphics architectures, examining how current architectures fit into these frame-

works. Then, we examine two aspects of scalability that have been largely ignored by

1.2. THE RENDERING PROBLEM 5

parallel graphics research: we look at how to scale the interface into graphics systems in a

way that is semantically compatible with existing interfaces; then, we will look at how

the texturing subsystem of graphics architectures may be scaled. In addition to present-

ing designs for scalable interface and texturing, we will quantify the effectiveness of our

approaches.

1.2 The Rendering Problem
Rendering is the field of study that deals with the synthesis of images from computer

models of the world; vision is the complementary problem that deals with the analysis of

images to create computer models of the world. While the two problems are inverses of

each other, the state of the two fields from the point of computation is quite different.

With vision, the computational process of creating a model of the world from real-world

imagery is extremely difficult because it is, in general, an artificial intelligence problem.

Thus, human-like understanding and reasoning are required, fundamental processes

whose computational algorithms are largely unknown, and much research focuses on un-

derstanding these processes. On the other hand, the fundamental process behind render-

ing, the physics of light transport, is well understood. This understanding is so detailed

that multiple levels of approximation must be applied to make image synthesis tractable.

Thus, rendering research mainly deals with computationally efficient algorithms and

models for image synthesis. Rendering systems can be classified according to two axes:

the representation used to describe the environment and the algorithm used to create the

images. In general, many algorithms may be used for a given representation, and many

representations may be used in conjunction with an algorithm.

1.2.1 Representations and Algorithms
The various representation formats of 3D environments may be loosely classified as sur-

face-based, volume-based, or image-based. Surface-based representations (e.g., NURBS,

subdivision surfaces, and triangle meshes) describe the environment as 2D manifolds in a

6 CHAPTER 1. INTRODUCTION

3D world and are by far the most common representation format because of their amena-

bility to animation. Volume-based representations describe characteristics of the 3D en-

vironment (e.g., opacity) as a function of a 3D position in space. Often, this function is

parameterized by uniformly spaced samples in space called voxels. A generalization of

volume-based representations that parameterizes the environment according to a 2D di-

rection in addition to 3D position leads to a 5D plenoptic function [McMillan & Bishop

1995]. Image-based representations, on the other hand, forgo a direct representation of

the 3D environment and describe it as a set of 2D images. Some examples of such repre-

sentations are 2D panoramas [Chen 1995] and 4D light fields [Levoy & Hanrahan 1996,

Gortler et al. 1996]. Given the plethora of representation formats, the “correct” choice

for an application depends on the ease of modeling the environment, the phenomena used

in the rendering, and the time constraints of rendering.

While the algorithms used for rendering are quite varied, often being closely tied to a

particular representation, they may be classified as projection-based or ray-based. With

projection-based algorithms, surface elements, volume elements, or image elements are

transformed onto the image plane according to a projective map. Because of regularity in

computation and access patterns, these types of algorithms tend to be fast. Ray-based

algorithms, on the other hand, compose images by tracing rays through the environment

and computing interactions between these rays and the intersected scene elements. Such

algorithms allow the description of much richer phenomena, but the higher computational

costs lead them to be much slower. Again, the “correct” choice for a rendering algorithm

depends on the phenomena and time constraints. For example, an animator may use an

interactive projection-based graphics system to set an animation’s key frames during the

day, and then she may use a Monte Carlo ray tracer to render the final animation over-

night. Because projection-based algorithms tend to be more efficient computationally,

most interactive rendering systems use such an algorithm because of the performance

level required by human interaction.

1.2. THE RENDERING PROBLEM 7

1.2.2 Interactive Rendering
Key frame animation, modeling, computer-aided design, simulation, gaming, and many

other applications of rendering require the interaction of a human. Human interaction is

confined to a relatively constrained period [Foley et al. 1990]. The productivity of a hu-

man using a computer interactively for a task is dramatically dependent on the latency

between the user’s input and the computer display’s output. In particular, if the latency

exceeds beyond approximately 1 second, productivity drops dramatically: the computer’s

responses to the human’s actions are too slow for the human to interact seamlessly. At

the other end of the spectrum, the benefits of a low-latency system are limited by the

physiological characteristics of the human brain that give the illusion of a real-time phe-

nomenon. For example, the motion fusion rate is the frame rate required to fool the hu-

man eye into perceiving motion in discrete frames as a continuous motion. This is

around 20 Hz for humans. The flicker fusion rate is the rate at which a set of images that

are “flashed” onto a surface (akin to a strobe light) appears as a continuous source of il-

lumination. This tends to be between 50 and 80 Hz for most humans, depending on light-

ing conditions. Virtual reality researchers have also found that for a human immersed in

a virtual world, end-to-end latencies in the tens of milliseconds give the illusion of real-

time, while latencies over about a hundred milliseconds give nausea. In fact, the minimal

latency detectable by a human has been shown to be approximately ten milliseconds

[Regan et al. 1999]. Thus, we define interactive rendering as the process of creating im-

ages from 3D environments at rates between approximately 1 and 100 Hz.

The latency requirements of interactive rendering place unique constraints on graph-

ics architectures. First, because the utility of interactive computer graphics to most appli-

cations is related to a specific latency, performance increases are targeted at rendering

scenes that are more complex rather than rendering scenes at a faster rate. For example,

for a computer-aided design application, being able to render a machine part at several

hertz gives the designer a good sense of the object. While increasing the frame rate by an

order of magnitude makes the interaction noticeably smoother, in the end, the contribu-

8 CHAPTER 1. INTRODUCTION

tion of computer graphics to the design process does not increase significantly. Simi-

larly, in a virtual reality application, increasing the frame rate from 100 Hz to 1000 Hz is

not useful due to the perceptual characteristics of the human brain. Increasing scene

complexity, however, results in an appreciable improvement. Another result of latency

requirements on interactive graphics architectures is the focus on frame latency rather

than frame throughput. It is not very useful to provide a frame rate of 10 Hz if the la-

tency on each of those frames is 1000 milliseconds. Ideally, a frame rate of 10 Hz should

be provided with a frame latency of 100 milliseconds. This has particular implications on

how interactive graphics architectures should exploit parallelism—distributing each

frame to a distinct graphics pipeline is not practical beyond a couple of pipelines (e.g.,

Silicon Graphics’s SkyWriter). Thus, most parallel architectures focus on intra-frame

parallelism.

1.3 The Graphics Pipeline
The computer graphics community has settled on a general algorithm for performing in-

teractive rendering called the graphics pipeline. It defines a projection-based rendering

algorithm that mainly supports surface representation, although it can be extended to

support volume-based and image-based representations. The de facto standard that cur-

rently specifies the graphics pipeline is OpenGL (Open Graphics Library) [Segal & Ake-

ley 1992, Neider et al. 1993]. To programmers, OpenGL defines the application pro-

grammer’s interface (API) to the graphics system. To graphics architects, OpenGL speci-

fies the OpenGL machine model—a virtual machine that in essence defines the OpenGL

graphics pipeline. While many other graphics APIs and virtual graphics pipelines exist

(e.g., Direct3D), we will focus our attention on OpenGL. However, much of this thesis is

applicable to other APIs.

The most defining characteristic of the graphics pipeline is, as the name implies, that

it is a pipeline. In a pipeline, data flows linearly from one stage to the next in a fixed or-

der, and each stage processes some type of input data and produces some type of output

1.3. THE GRAPHICS PIPELINE 9

data for the next stage in the pipeline. Such a pipeline lends itself naturally to pipeline

parallelism, where each stage in the pipeline is implemented by a separate processing

unit optimized for that particular type of processing. A pipeline also provides for strict

ordering semantics, the idea that data is processed and its effects are realized in a serial

order as data moves along the pipeline. The graphics pipeline also has implications for

data dependence: one piece of data is processed independently of other pieces of data.

This characteristic is key for data parallelism, where data for any given stage of the pipe-

line can be distributed across a large number of processing units for parallel processing.

We will examine data dependence issues in greater detail in Chapter 2. Generally, the

lack of data dependencies carries with it many implications for graphics algorithms. For

example, the graphics pipeline supports only a local shading model where the lighting

calculations for one primitive must be computed independently of all other primitives.

This precludes global illumination effects such as shadows, indirect illumination, and

caustics.

The graphics pipeline is composed of several stages, as illustrated in Figure 1.1. The

application enters data into the graphics pipeline, and the data flows through the various

graphics stages. Each of these stages holds a certain amount of state that determines how

data passing through is processed. For example, the position, direction, intensity, etc. of

the light sources are held by the lighting stage; these parameters determine how the colors

of the vertices passing through it are modified. This lighting state is set according to the

application’s needs, and often the state changes are flowed through the pipeline alongside

the graphics data. We now will briefly go over each of the stages, which are roughly

grouped as geometry stages or rasterization stages.

10 CHAPTER 1. INTRODUCTION

• Command Processing. The command processor is responsible for process-

ing the input stream of graphics commands. Some of these commands are

state modifying commands that are simply propagated to the appropriate stage

of the pipeline. While there is great variety in the number of types of state

modifying commands, the frequency with which they occur is relatively low.

The majority of commands that the command processor sees are vertex com-

mands: commands that control the properties of vertices that are submitted to

the rest of the graphics pipeline in the form of 3D object-space triangles. The

amount of data associated with a vertex is approximately a couple hundred

bytes—this includes properties such as position, normal, texture coordinates,

color, and surface material. Because much of this data is not changing on a

Composition

Display

Texture Mapping

Scan Conversion

Transformation

Command Processing

Application

Lighting

G
eo

m
et

ry
 S

ta
ge

s

R
as

te
ri

za
tio

n
St

ag
es

graphics
commands

object-space
triangles

world- & screen-
space triangles

lit screen-space
triangles

untextured
fragments

textured
fragments

pixels

Figure 1.1: The Graphics Pipeline

1.3. THE GRAPHICS PIPELINE 11

per vertex granularity, the notion of a “current” vertex is used to minimize the

bandwidth required for the interface. The current vertex holds all of the ver-

tex properties except for position. As these various vertex properties are

specified, the values of the properties are modified in the current vertex.

Then, when a position is specified, the current vertex is emitted with the

specified position. The command processor is responsible for determining

how these vertices are connected to form 3D object-space triangles that are

submitted to the rest of the pipeline. The command processor is also respon-

sible for managing display lists, precompiled lists of commands that may be

invoked with a single command later.

• Transformation. The incoming 3D object-space triangles are transformed to

a world-space coordinate system according to a model-view matrix. This 4 x

4 matrix transforms homogenous coordinates in object-space to homogenous

coordinates in a canonical world-space where the eye is located at the origin

looking down the negative Z-axis. This matrix is able to express an arbitrary

series of transformations that include rotation, translation, scaling, shearing,

and projection. Surface normals are similarly transformed into world-space

coordinates. The resulting 3D world-space triangles are then transformed into

clipping coordinates according to another 4 x 4 projection matrix. In this

space, clipping occurs against the edges of a canonical view frustum. These

clip coordinates are then mapped to the screen by a perspective divide and a

simple transformation. Additionally, the texture coordinates of the vertices

are transformed according to another 4 x 4 matrix. These texture coordinates

may either be specified by the application or generated according to the posi-

tion of the vertices. Once all these transformations have occurred, we are left

with world-space triangles for lighting and screen-space triangles for

rasterization.

• Lighting. Using world-space positions and normals in conjunction with the

material properties, the vertices of the triangles are lit from a number of light

12 CHAPTER 1. INTRODUCTION

sources according to a local lighting model: the lighting of any one vertex is

independent of any other vertices. Light parameters typically include a posi-

tion, various intensity coefficients, attenuation factors, and spotlight parame-

ters.

• Scan Conversion. Scan conversion takes the three vertices of a screen-space

triangle and generates samples from the interior of the triangle (fragments)

everywhere there is a screen pixel. The values for these fragments are gener-

ated by linearly interpolating between the three vertices of a triangle. Typical

interpolated values include color, depth, and texture coordinates. Because the

projected triangles are being viewed under perspective, care must be taken to

correctly interpolate the parameters, particularly texture coordinates. The re-

sulting untextured fragments are then passed on for texture mapping.

• Texture Mapping. In its most basic form, the texture subsystem pastes an

image onto a triangle that is viewed in perspective. This involves performing

a lookup in the texturing unit’s texture memory based on the incoming frag-

ment’s texture coordinates. Because the texture coordinate does not usually

map exactly to a sample in the texture map (a texel), some sort of filtering

must occur. Point sampling takes the nearest neighbor, while bilinear sam-

pling takes a weighted average of the four closest texels. However, this can

still result in aliasing artifacts because an arbitrary number of texels may fall

within the region between adjacent pixels. Intuitively, one should use a

weighted average of the texels within and around this region. A common ap-

proximation to this is mip mapping. For each texture, multiple pre-filtered

copies of the texture are stored: one at full resolution, one at half the width

and height, one at quarter the width and height, and so on, down to a single-

texel texture. A typical pre-filtering technique utilized is a simple box filter—

just take the average of the four corresponding pixels in the higher resolution

image of the mip map. Then, when rendering occurs, not only are the texture

coordinates for a fragment calculated, but also an approximation of the texel-

1.3. THE GRAPHICS PIPELINE 13

to-pixel ratio. This ratio is used to pick a level of the mip map from which bi-

linearly interpolated sample are taken. A ratio of one corresponds to full reso-

lution, a ratio of two corresponds to half resolution, a ratio of four corresponds

to quarter resolution, and so on. Because the texel-to-pixel ratio usually falls

in between two mip map levels, a linearly interpolated average of bilinearly

interpolated samples from the two adjacent mip map levels may be taken, re-

sulting in trilinear mip mapping.

• Composition. Given a textured fragment with color, depth, and coverage, the

composition unit’s responsibility is to merge this fragment with the various

buffers (color buffer, depth buffer, stencil buffer) that are collectively known

as the framebuffer. Depth occlusion is usually resolved by comparing the

fragment’s depth with the depth stored for the pixel in the depth buffer and

conditionally rejecting the fragment. A variety of blending modes and logic

ops define how a fragment is combined with the color currently in the color

buffer. The pixel coverage information is used in conjunction with the stencil

buffer according to a stencil op to implement a variety of effects.

• Display. Many modern interactive display technologies are based on a raster

scan. The display is in the state of constant refresh where the color on a cer-

tain portion of the display must be re-displayed every fraction of a second. In

a monitor, for example, an electron gun starts out at the upper-left corner of

the screen and scans out the first row of pixels. A horizontal retrace then

moves the electron gun beam from the right side back to the left side, and an-

other row is scanned out. This continues until the bottom row is reached, at

which time a vertical retrace occurs and the whole process is repeated. The

implication that this has on graphics architectures is that its color buffer must

constantly be accessed to drive the display. Furthermore, if adjacent pixels of

the color buffer are stored in logically separate locations, the pixels must be

reassembled for scan-out.

14 CHAPTER 1. INTRODUCTION

These stages of the graphics pipeline form a basis for the work presented in this the-

sis. Our work relates to the scaling of the graphics pipeline—given the basic stages of

the pipeline, we examine ways of distributing work amongst multiple copies of each

stage in a way that gives scalable performance increases. This thesis focuses on provid-

ing scalability in two stages of the pipeline that have been previously ignored by the re-

search community: the interface to the command processing unit and the texturing unit.

1.4 Summary of Original Contributions
The original contributions of this thesis fall in three areas. First, we present a novel

analysis of parallelism in graphics architectures in Chapter 2:

• Sources of Parallelism. A lot of work has been done in microprocessor ar-

chitecture that analyzes various aspects of computer systems. We present a

novel analysis of the graphics pipeline that comparatively applies concepts

found in computer architecture. We focus on examining how parallelism is

exposed and constrained by architectural structures, semantics, and dependen-

cies.

• Analysis of Scalability. We define the five parameters of a graphics architec-

ture that benefit the end user (and hence, those that should be scaled) and the

various semantics that a parallel architecture may support. Based on this, we

examine the extent to which existing parallel graphics architectures scale with

respect to these categories.

Then, we present and quantify algorithms for two aspects of scalability that have not

been addressed by previous research in computer graphics. In Chapter 3, we present a

novel scheme for parallelizing the interface to the graphics system:

• Parallel Graphics Interface. The rate of performance improvement in

graphics architectures has outstripped the rate of performance improvement in

microprocessor and computer architectures. As a result, the interface has be-

1.4. SUMMARY OF ORIGINAL CONTRIBUTIONS 15

come a major bottleneck to improving the overall graphics system. To allevi-

ate this bottleneck, we present a novel parallel interface for graphics systems.

By introducing simple, well-understood synchronization constructs into the

graphics interface, we are able to parallelize the submission of graphics com-

mand by the application, the bandwidth between the application and the

graphics system, and the processing of graphics commands by the graphics

system. These parallel interface extensions are compatible with the semantics

applications have come to expect from a graphics interface, and we demon-

strate that the interface can be used to attain near-linear speedup in graphics

performance in three varieties of implementations. Much of this work was

described in [Igehy et al. 1998b], and some was described in [Eldridge et al.

2000] and [Buck et al. 2000].

In Chapter 4, we examine and quantify the scaling of the texture subsystem. In par-

ticular, we focus on two aspects of making parallel texturing work:

• Prefetching in a Texture Cache. Texture subsystems have come to rely on

caching to greatly reduce the bandwidth requirements of texture mapping. In

a parallel texture caching architecture, particularly one that shares texture

memory across many texturing units across a scalable network, memory la-

tency can be both high and highly variable. We present a texture prefetching

architecture that works in conjunction with texture caching. This architecture

is able to eliminate virtually all the latency of a memory system. While this

architecture is useful when a texture unit accesses a single texture memory

with a small, fixed latency, it is critical for texturing units accessing a poten-

tially shared memory across a potentially shared network. Much of this work

was described in [Igehy et al. 1998a].

• Parallel Texture Caching. The concept of a parallelizing the texturing sub-

system is simple: each texturing unit is responsible for accessing and applying

texture to a fraction of the fragments generated by a scene. Additionally, the

16 CHAPTER 1. INTRODUCTION

texture data may be shared across the texture memories of the texture units in-

stead of being replicated in a dedicated texture memory for each texturing

unit. We present a detailed study of both shared and dedicated texture mem-

ory architectures, focusing in particular on quantifying how well texture cach-

ing parallelizes across a variety of parallel rasterization architectures. We find

that texture caching works well with a variety of parallel rasterization schemes

given the proper choice of parameters. Much of this work was described in

[Igehy et al. 1999].

Finally, we conclude the thesis in Chapter 5.

 17

Chapter 2 Analysis of Parallel Graphics

Analysis of Parallel Graphics

Interactive graphics architectures have evolved over the past few decades to a canonical

graphics pipeline, which we briefly outlined in Section 1.3. OpenGL [Segal & Akeley

1992] formally specifies such a graphics pipeline and has gained widespread acceptance

throughout the research, professional, and consumer communities as a de facto standard.

This specification forms a formal starting point for our research, and its role in graphics

architectures is quintessential. As the specification says, “To the programmer, OpenGL

is a set of commands that allow the specification of geometric objects in two or three di-

mensions, together with commands that control how these objects are rendered into the

framebuffer.” By using this set of commands, the programmer is able to write a graphics

program that renders images on any computer that supports OpenGL, regardless of the

underlying hardware. Conversely, a graphics architect is able to design a system that can

perform the rendering of any program written using OpenGL, regardless of the original

target system of the graphics programmer. In this view of OpenGL, the graphics API is a

language for graphics architectures. In Section 2.1, we analyze the virtual graphics ma-

chine implicitly specified by this language, examining how this model exposes parallel-

ism in some ways and constrains parallelism in other ways. Then, in Section 2.2, we pre-

sent the relevant criteria for scaling in graphics architectures, and we evaluate how exist-

ing parallel graphics architectures scale with respect to these different criteria.

18 CHAPTER 2. ANALYSIS OF PARALLEL GRAPHICS

2.1 Sources of Parallelism
From the point of view of the graphics architect, an API such as OpenGL defines much

more than just a language—it defines the virtual graphics machine that must be imple-

mented. In this section, we analyze this virtual graphics machine. We take the novel ap-

proach of applying concepts found in traditional computer architecture (e.g., [Hennessy

& Patterson 1996]) to graphics architectures. A formal understanding of this conceptual

framework helps direct the graphics architect, whose job is to implement a specific in-

stantiation of the virtual graphics machine under the constraints of cost, performance,

time, and complexity. One of the main technical factors that has led to the proliferation

of graphics architectures is the fact that the virtual graphics machine is significantly dif-

ferent from a traditional microprocessor—the specialized computation of graphics ex-

poses parallelism that traditional architectures are not optimized to exploit.

Typically, microprocessor architectures are made up of four essential structures:

processing units, instructions, registers, and memory. Processing units define the compu-

tation that can be performed; instructions define the control of the microprocessor; and

registers and memory define the state of the system. While both registers and memory

represent the state, the main distinction between the two is that registers are fixed and fi-

nite in number. Thus, registers can be addressed with much fewer bits, can be imple-

mented with much faster logic, and are often given specialized functionality. An instruc-

tion stream forms a sequence of commands executed by the microprocessor. Each com-

mand instructs one or more of the processing units to modify the state of the system

based on the contents of the registers and / or the memory. This modified state can be

registers or memory. As with the microprocessor, the virtual graphics machine may be

viewed in terms of the same four essential structures. The sequence of graphics com-

mands from the API defines the instruction stream that the processing units execute.

Memory is specialized into specific domains such as the framebuffer (color, depth, sten-

cil), texture memory, display list memory, and the accumulation buffer. The graphics

context, which determines how incoming primitives are combined with the various

2.1. SOURCES OF PARALLELISM 19

memories (e.g., lighting state, blend mode, texturing mode), corresponds to the register

set. Like the register set, the graphics context has an architecturally specified number of

components.

2.1.1 Instruction Set
A basic premise of all microprocessor instruction sets is the idea of serial ordering

semantics: even though many instructions may be processed simultaneously, the result of

such processing must be identical to the result of processing the instructions serially.

OpenGL and most other widely accepted graphics APIs also require this strict ordering

semantics. Such semantics give the application programmer a clear, simple understand-

ing of the underlying system. Individual instructions may expose parallelism by them-

selves, and adjacent instructions may expose parallelism in a way that does not violate

strict ordering semantics.

Instruction sets are often classified with a certain design philosophy. In the early

days of the integrated circuit, memory was the scarcest resource in a system. Conse-

quently, microprocessors were designed with the CISC (complex instruction set comput-

ing) philosophy. Instructions were of variable size, with the most common instructions

taking the fewest bytes; instructions treated registers non-orthogonally, often tying a spe-

cific register to a specific instruction, requiring additional bytes to use a different register;

a single instruction could cause a large number of operations (e.g., cosine function, string

copying instructions). Typically, each instruction took several cycles to compute. As

compiler technology improved and pipelining became possible, instruction sets moved to

the RISC (reduced instruction set computing) philosophy. Instructions were of fixed

size; the number of registers increased and instructions could address them orthogonally;

each instruction specified a single operation. Now, instruction fetch has become a critical

bottleneck in microprocessor architecture—it is very difficult to keep all the execution

units busy with useful work from the instruction stream. As a consequence, we are see-

ing a move towards VLIW (very long instruction word) instruction sets that allow a fixed

20 CHAPTER 2. ANALYSIS OF PARALLEL GRAPHICS

number of RISC instructions per instruction word and effectively move much of the de-

pendency analysis to the compiler.

Within this framework, OpenGL is a CISC instruction set. In a certain sense,

OpenGL instructions follow the CISC philosophy to a greater extent than microprocessor

CISC instructions. The size of instructions can be anything from a few bytes to specify a

change in the current color to dozens of bytes to specify a matrix to millions of bytes to

specify a texture. The register set specified by the graphics context state is highly non-

orthogonal. Each instruction accesses only specific registers in the graphics context,

sometimes with special side effects. The amount of work specified by each instruction

can vary by an enormous amount, anywhere from writing a single value into the current

color to modifying every pixel in the framebuffer.

Graphics instructions can be broadly classified into four categories. By far, the most

common type of command is the context-modifying instruction. Examples of such com-

mands are: color, normal, material, and texture coordinate commands that specify the

vertex attributes of the current vertex; commands that specify the lighting, commands

that specify the blending modes, etc. The second type of command is the buffer-

modifying instruction that reads some of the system state and modifies one or more of the

buffers based on this state. The most common of these is the vertex command, which can

specify the drawing of a triangle; however, clears, bitmap downloads, texture downloads,

and display list downloads all fall into this category. Readback commands in the graph-

ics interface allow the querying of state by the application program, and no analogue ex-

ists for this type of command in the microprocessor world. Finally, special instructions

such as flush and finish commands fulfill a special need in the graphics interface. While

the view exported to the application program by the graphics interface is a machine that

executes commands serially, one at a time, with the modifications of all previous com-

mands visible to the current command, the view exported to the display device is com-

pletely different. In order to synchronize the display to the state expressed by the com-

mand stream, one of two commands may be used. A flush command may return imme-

diately but guarantees that all previous commands will execute in a finite amount of time.

2.1. SOURCES OF PARALLELISM 21

A finish command does not return control to the application program until all previous

commands are executed.

2.1.2 Data Dependencies
The instruction set of a machine greatly influences how much parallelism an implementa-

tion may exploit. While the instruction set may allow multiple operations to occur simul-

taneously, it can also introduce dependencies that inhibit parallelism. Here, we review

general concepts in data dependencies and their relationship to different types of parallel-

ism.

2.1.2.1 Dependencies and Parallelism
A well-understood source of parallelism in microprocessor instruction sets is bit-level

parallelism: the processing units operate on multiple bits of data at a time. For example,

a 1-bit addition instruction takes in two 1-bit numbers along with a carry-in bit to produce

a 1-bit result and a carry-out bit. An 8-bit addition may be computed by eight applica-

tions of the 1-bit add instruction. However, if the instruction set defines an 8-bit add in-

struction, the implementation may parallelize the computation in novel ways (e.g., a

chain of 1-bit adders, a 16-bit table lookup). Similarly, the instruction set may define a

SIMD (single-instruction multiple-data) operation that allows eight 8-bit adds of eight

distinct sets of values with a single instruction. This instruction exposes data parallelism

to the architect by allowing the simultaneous use of eight adders on eight sets of distinct

operands. Even if the eight additions were specified by eight separate instructions, the

same parallelism is available, albeit at the cost of a more complex instruction fetch, be-

cause no data dependencies exist between the eight operations. Data parallelism is pos-

sible whenever there is a lack of data dependencies between instructions requiring opera-

tions of similar type, whether it is a simple addition or the entire transformation and light-

ing stage of the graphics pipeline.

However, not all instructions expose parallelism in such a straightforward manner.

For example, a multiply-accumulate instruction is defined as the sum of a number with

22 CHAPTER 2. ANALYSIS OF PARALLEL GRAPHICS

the product of two other numbers. However, the two individual operations of multiplica-

tion and addition may not be executed simultaneously because of intra-instruction data

dependencies: the multiplication must occur before the addition. Even with these de-

pendencies, significant pipeline parallelism is exposed. If the system has enough func-

tional units for a single addition and a single multiplication per instruction, the multiply-

accumulate operations may be pipelined to allow a single multiple-accumulate instruction

per cycle. On the first cycle, the multiplication for the first instruction occurs using the

multiplication unit. On the second cycle, the first instruction uses the addition unit,

thereby completing its execution, and the second instruction uses the multiplication unit.

On the third cycle, the second instruction moves to the addition unit, and a third instruc-

tion starts using the multiplication unit, and so on. This pipelined execution can occur so

long as there are no inter-instruction data dependencies: if the second instruction uses the

result of the first multiply-accumulate instruction as an operand for its initial multiplica-

tion, it cannot be pipelined with the first instruction.

Instruction streams also expose what are known as false dependencies. A false de-

pendency occurs when a dependency exists between instructions because of the use of the

same registers (resource conflict), but no true dependency exists in the underlying data

flow. For example, imagine an add instruction that uses a register as one of its operands

followed by an add instruction that uses the same register to store the result of its opera-

tion. From the point of view of the register set, those operations must be done sequen-

tially. However, from the point of view of the underlying computation, the second in-

struction does not require the results of the first instruction. This is called a write-after-

read hazard (anti-dependency). If an add instruction that writes its result to a register is

followed by an add instruction sometime later that also writes its result into the same reg-

ister, a write-after-write hazard has occurred (output dependency). Virtualization is one

solution for removing these dependencies: microprocessors typically provide more physi-

cal registers than the number of architectural registers specified by the instruction set and

perform register renaming to provide a virtualized mapping between the two to address

the problem of false dependencies.

2.1. SOURCES OF PARALLELISM 23

2.1.2.2 Data Dependencies in Graphics Architectures
By examining how the various instructions of the graphics API are dependent on other

instructions, we can understand the sources of parallelism in graphics architectures.

Here, we look at the dependencies exposed by the four types of graphics commands:

buffer-modifying commands, context-modifying commands, readback commands, and

special commands.

Buffer-modifying commands perform read-modify-write operations on one or more

of the buffers based on the content of the graphics context. A triangle-drawing command

requires that the triangle first be transformed, light, and setup for rasterization according

to the graphics context. A large amount of parallelism may be exploited at this level.

Beyond the abundant bit-level parallelism available in the floating-point operations, sig-

nificant data parallelism exists in the fact that most operations occur on four-element vec-

tors (e.g., position, normal, color, texture) in SIMD fashion. Furthermore, many of the

operations for a single triangle have no intra-instruction data dependencies: the projection

matrix may be applied independent of the lighting; the contribution of each light may be

calculated independently; etc. Even operations that cannot take advantage of this data

parallelism because of intra-instruction data dependencies may utilize pipeline parallel-

ism to an extremely large degree: e.g., one matrix-multiply unit may be transforming a

vertex with the projection matrix while another matrix-multiply unit is transforming the

next vertex with the model-view matrix. Because absolutely no inter-instruction data de-

pendencies exist between triangles except at the framebuffer (we will look at this in more

depth later), data parallelism may be used across multiple triangle instructions in addition

to pipeline parallelism. In fact, many implementations chose to exploit inter-instruction

data parallelism by distributing triangles amongst many units because infrequent clipping

operations can cause excessive stalling in pipelined implementations.

Subsequent to the rasterization setup stage, triangles are broken up into fragments that

correspond to individual pixels on the screen. Each fragment is then put through a series

of steps that access the various buffers: texturing, alpha testing, depth testing, stencil test-

24 CHAPTER 2. ANALYSIS OF PARALLEL GRAPHICS

ing, blending, etc., some of which may terminate further processing on the fragment. As

with transform, lighting, and setup, large amounts of SIMD parallelism exists for each

fragment in addition to basic bit-level parallelism: texturing computes coordinates based

on vectors, and all color operations compute on four components at a time. Additionally,

many of the operations of a single fragment may be done in parallel: e.g., the texture

lookup, the depth test, the alpha test, and the blending operation may all be performed

simultaneously. The only dependencies exposed are the actual writes to the depth, sten-

cil, and color buffers—everything else may be performed speculatively.

Across the different fragments of a single triangle, absolutely no dependencies exist.

Reads to the texture memory may occur in any order because they are non-destructive,

and modifications to the framebuffer may occur in any order because by definition each

fragment from a triangle accesses a different location in memory. Similarly, the texture

accesses of fragments from different triangles may be done in any order. Therefore, the

only dependencies that exist between the fragments can be summarized as follows: the

buffer modifications of fragments falling on the same pixel be done in-order with respect

to the commands that generated the triangles. Other commands that modify the frame-

buffer (clears, bitmap downloads, etc.) also have similar characteristics.

Dependencies also exist between these framebuffer-modifying commands and com-

mands that modify the texture data. When texturing is enabled, a true data dependency

exists between the texture download and subsequent fragment-generating commands that

use the texture data during the fragment pipeline. Additionally, a false data dependency

exists between the texture download and previous fragment-generating commands that

used the texture object; a renaming scheme (akin to register renaming) could be used to

eliminate this false dependency. Of course, as with individual pixels in buffer modifica-

tions, dependencies exist at the level of individual texels rather than the whole texture.

Therefore, it is possible to allow the texture access of a subsequent triangle to occur in a

downloaded sub-region of a texture even before the entire texture is downloaded.

The interaction between buffer-modifying commands and context-modifying com-

mands is quite interesting. A true data dependency exists between a buffer-modifying

2.1. SOURCES OF PARALLELISM 25

command and previous context-modifying commands that modify parts of the context

used by the buffer-modifying command. For example, a vertex command (which causes

a triangle to be drawn) is dependent on a previous color command (which sets the color

of the vertex). In the other direction, however, a false dependency exists. Imagine a se-

quence of commands that first sets the color, then draws a triangle, then sets the color,

and then draws a second triangle. Although there is a true dependency between the first

two commands as well as true dependency between the last two commands, there is a

write-after-read hazard (anti-dependency) between the middle two commands. The first

triangle command needs to read the “current color” register before the second color

command writes it, but from a data-flow perspective, there is no dependency, and a re-

naming scheme may be used to eliminate this false dependency. Of course, no depend-

ency exists between context-modifying commands and buffer-modifying commands that

do not access that particular part of the graphics context.

The interaction between context-modifying commands and other context-modifying

commands can be similarly characterized. Context-modifying commands nearly always

modify independent portions of the graphics context in a write-only fashion, and thus no

dependencies exist between distinct context-modifying commands. Between context-

modifying commands of the same flavor, false dependencies exist. Again, imagine a se-

quence of commands in the following order: color, triangle, color, triangle. The second

color command cannot set the “current color” register until after the first color command

has done so. However, an architect can provide a virtualized view of the “current color”

register to remove the output dependency (i.e., write-after-write hazard). This can be

done with nearly all context-modifying commands, and the major exception to this rule

has to do with the matrix state. In particular, matrix-modifying commands are truly de-

pendent on previous commands that modified the current matrix because matrix trans-

formations are cascaded with multiplies to the current matrix (matrix loads break this de-

pendency chain). Similarly, many commands modify the graphics context in a way that

depends on the current model-view matrix (e.g., light positions, clip plane coordinates,

26 CHAPTER 2. ANALYSIS OF PARALLEL GRAPHICS

etc.). As with buffer-modifying commands, true dependencies exist in one direction and

anti-dependencies exist in the other direction.

Readback commands expose obvious data dependencies. Readback of a part of a

context is truly dependent on a previous command that set the corresponding state.

Readback of one of the buffers is truly dependent on the execution of buffer-modifying

commands that write the corresponding buffer. Again, this dependency exists at the indi-

vidual pixel level. From a data-flow point of view, the reverse direction (readback of the

current color followed by a write) exposes an write-after-read anti-dependency, but such

a situation cannot actually occur because readback commands are synchronous: the read-

back does not return (and hence, no other commands may be submitted) until the queried

valued is given to the program. The finish command is directly dependent on the execu-

tion of all buffer-modifying commands, but the flush command introduces no data de-

pendencies.

2.1.3 Control Dependencies
One cornerstone of microprocessors and general purpose computing is the dependence of

the instruction stream on memory and registers. First, because instructions typically re-

side in memory, the ability to modify memory gives the ability to modify actual instruc-

tions. This practice is uncommon, if not prohibited, on modern microprocessors. Sec-

ond, and much more commonly, the memory address of the current instruction resides in

an auto-incremented register that can be modified by the execution of certain instructions.

The ability to modify the instruction stream conditionally based on the current state of the

system gives the programmer the ability to use the microprocessor for general-purpose

computation. As a simple example, a first instruction subtracts two numbers and a sec-

ond instruction conditionally branches the location from which instructions are fetched if

the result of the subtraction is non-zero. The control logic of the instruction fetch is de-

pendent on a computation and thus exposes a control dependency. Extracting parallelism

in the face of these conditional branches is of great difficulty to microprocessor archi-

tects.

2.1. SOURCES OF PARALLELISM 27

Control dependencies are minimal in a graphics system. First, and most importantly,

the graphics instruction stream presented by the graphics interface to the graphics system

does not contain any control dependencies: the system CPU gives a series of instructions

that all need to be executed, and the location of the next instruction is never dependent on

previous instructions. Second, a graphics command may specify conditionality, but this

conditionality is always in the form of conditional execution. The most common exam-

ple of this is depth buffering: a fragment is merged into the framebuffer only if its depth

value is less than the depth of the current pixel in the framebuffer. Dealing with a condi-

tional operation is much simpler than dealing with a conditional branch that diverges in-

struction fetch; in fact, most modern microprocessors have introduced conditional opera-

tions to their instruction sets so that compilers may use them instead of expressing the

same computation with conditional branches.

2.1.4 Discussion
In comparing graphics architectures to microprocessor architectures, the most important

thing to note is that graphics architectures are constrained much less by the issues of in-

struction fetch and dependencies.

In general, the amount of work specified by a graphics instruction is much greater

than the amount of work specified by a microprocessor instruction. A typical microproc-

essor instruction specifies a single operation such as a multiplication. On the other hand,

a typical graphics instruction such as drawing an entire triangle embodies hundreds of

operations at the very least. The lighting and transformation of the three vertices of a tri-

angle as well as the rasterization setup constitute a few hundred floating-point operations.

Furthermore, each triangle can generate anywhere from a few to thousands to millions of

fragments, and each fragment requires a few hundred fixed-point operation. Because of

the large number of operations per graphics instruction, instruction fetch is relatively easy

compared to microprocessors. Even so, as the number of execution units available on a

graphics chip increases exponentially and the bandwidth into a graphics chip remains

limited, modern graphics architectures are limited by a serial interface. In Chapter 3, we

28 CHAPTER 2. ANALYSIS OF PARALLEL GRAPHICS

introduce thread-level parallelism to graphics architectures in order to alleviate this in-

struction fetch bottleneck.

The relative lack of data dependencies in graphics instructions has a great impact in

the design of graphics architectures. This allows for, among other things, large amounts

of latency toleration. In Chapter 4, we will see how this plays a critical part in texture

prefetching. The scale of parallelism available from a graphics interface is several orders

of magnitude larger than the amount of parallelism available in a microprocessor instruc-

tion set. Not only do the individual instructions contain more operations in a graphics

interface, but also the effects of minimal dependencies are enormous. While a modern

microprocessor keeps an instruction window of a few dozen instructions that are partially

processed, modern parallel graphics architectures allow tens of thousands of outstanding

triangles. Each chip in such an architecture incorporates hundreds of execution units that

may operate in parallel with little contention. This is in direct contrast with the few exe-

cution found in microprocessors that are organized around alleviating contention to a

general-purpose, shared register set. Because the dataflow is unknown a priori in a gen-

eral-purpose microprocessor, much hardware is devoted to detecting data dependencies

and extracting instruction-level parallelism whenever possible. In graphics architectures,

most data dependencies are known a priori, and most hardware resources are expended

on exploiting the vast amounts of parallelism. Handling control dependencies is one of

the most difficult aspects of microprocessors: it adds a great deal of complexity to the

designs, and in the end, the greatly limits the amount of parallelism in the computation.

With graphics architectures, on the other hand, parallelism is not limited in any way by

control dependencies, nor do they add any complexity to the designs. The fact that

graphics architects have devised so many distinct parallel graphics architectures is a di-

rect consequence of the dearth of dependencies in graphics architectures.

2.2. SCALING THE GRAPHICS PIPELINE 29

2.2 Scaling the Graphics Pipeline
Graphics architects have devised numerous architectures that attempt to exploit parallel-

ism. In order to build parallel systems out of components that may be manufactured us-

ing standard processes and leverage the economies of scale that result from using repli-

cated parts, a graphics architect must determine the division of labor between the various

components of a parallel system and provide the necessary communication infrastructure.

In this section, we first define a set of metrics that may be used in comparing the scalabil-

ity of different graphics architectures. Then, we survey current parallel graphics architec-

tures and to what extent they scale in each category.

2.2.1 Scalability Metrics
We can examine the scalability of parallel graphics architectures in terms of both quanti-

tative and qualitative measures. Qualitatively, a scalable architecture may imply certain

semantic constraints on the graphics interface. Often, systems sacrifice semantic flexibil-

ity for increased performance or simplicity in a scalable design. Here are the major se-

mantic metrics to which a system may or may not adhere:

• Mode Semantics. If a system supports immediate-mode semantics, then the

application submits commands to a graphics system one at a time, and the sys-

tem executes them more or less immediately. Like the C programming lan-

guage, it is an imperative model of programming that tells the graphics system

step-by-step instructions on how to draw the scene. If a system supports re-

tained-mode semantics, then the application first gives a high-level description

of the entire scene to the system, and then the application draws the scene.

Just as a program dataflow graph gives more information than a CPU instruc-

tion sequence, such a high-level description gives a better understanding of

the scene to the graphics system. Furthermore, like the Prolog programming

language, retained-mode is analogous to a declarative model of programming

where the programmer specifies what is wanted rather than how it should be

30 CHAPTER 2. ANALYSIS OF PARALLEL GRAPHICS

computed. A graphics system may support immediate-mode, retained-mode,

or both. In general, it is easy to provide a wrapper library around an immedi-

ate-mode system to provide a retained-mode interface, but not the other way

around. OpenGL requires immediate-mode semantics.

• Ordering Semantics. Ordering semantics define a graphics system’s ability

to maintain a drawing order specified by the application programmer. For ex-

ample, imagine a flight simulator that places heads-up display (HUD) infor-

mation on top of the rendered scene. It is important for the programmer to be

able to specify that the HUD be drawn after the scene is drawn. In a strictly

ordered graphics system, everything is drawn in an exact order as specified by

the application. However, a graphics system may choose to relax this con-

straint. For example, if depth buffering is enabled and only opaque primitives

are specified, then the drawing order of the primitives does not affect the final

image on the screen. With relaxed ordering, a graphics system is allowed to

merge fragments into the framebuffer in any order, reducing dependencies in

the graphics system. A strictly ordered graphics system also supports relaxed

ordering, by definition, and it is possible for a system to support both ordering

semantics by switching between strict and relaxed modes. OpenGL requires

strict ordering semantics.

• Frame Semantics. Frame semantics define whether a graphics system must

adhere to drawing images frame by frame. In a system with frame semantics,

frame boundaries must be explicitly defined, and once a frame is drawn, addi-

tional drawing may not occur to it. In a system without frame semantics,

drawing may occur incrementally on the framebuffer without specifying when

a frame begins or ends, which is critical to single buffered applications. Fur-

thermore, frame semantics introduce one frame of latency to the drawing

process: none of the current frame may be drawn until the entire frame is de-

fined. OpenGL does not impose frame semantics.

2.2. SCALING THE GRAPHICS PIPELINE 31

In addition to the above semantic metrics, parallel graphics architectures may also be

evaluated according to several quantifiable performance metrics. While most previous

work focuses on triangle rate and pixel rate, it is important for parallel systems to scale in

all aspects. Here, we identify the critical metrics that are used in evaluating the perform-

ance of a graphics system from the point of view of the application:

• Input Rate. As a system scales, it is important to be able to increase the rate

at which commands may be submitted to the graphics system. In an immedi-

ate-mode interface, this means that the CPU, interconnect, and command

processor must all scale their abilities to input commands. In a retained-mode

interface, the command processor and its bandwidth to the scene graph mem-

ory must scale. Scaling the interface is the subject of Chapter 3 and consti-

tutes one of the main contributions of this thesis.

• Triangle Rate. The triangle rate is defined by the rate at which the graphics

system may transform, light, and perform rasterization setup on primitives.

Scaling the triangle rate allows graphics systems to model the environment in

more detail, ideally to the point of using triangles that cover only a couple of

pixels. Furthermore, a high triangle rate is critical to advanced techniques that

use multi-pass shading algorithms.

• Pixel Rate. The pixel rate of a system determines how fast a graphics system

can rasterize primitives into fragments and merge those fragments into the

framebuffer. Scaling the pixel rate is important for high-resolution displays,

high depth complexity, and multi-pass algorithms.

• Texture. As a system scales, it is important to scale the texture subsystem.

First, in order to satisfy the requirements of an increased pixel rate, the band-

width of the texture subsystem must be scaled. Furthermore, scaling the ac-

tual amount of texture memory allows applications to use more textures and /

or textures with higher resolution. Higher resolution textures are particularly

32 CHAPTER 2. ANALYSIS OF PARALLEL GRAPHICS

important on high-resolution displays. Scaling the texture subsystem is the

subject of Chapter 4 and constitutes a main contribution of this thesis.

• Display. Advances in technologies such as LCD’s and plasma displays are

driving display resolutions upwards. In addition, researchers are actively ex-

amining how interactive environments may be created by tiling large numbers

of commodity displays. Thus, it is important to scale the display capabilities

of graphics systems, allowing larger numbers of displays as well as displays

of higher resolution. This entails scaling the amount of framebuffer memory,

the bandwidth to that memory, and the number of output interfaces.

While a parallel architecture either does or does not inherently support a particular

mode, ordering, or frame semantic, its scalability in each of the above performance met-

rics may be classified in three ways. If a system provides no scalability in a category,

then no additional performance is realized by scaling the system. In a system with lim-

ited scalability, scaling the system realizes increased performance up to a certain amount

of parallelism, beyond which no performance gains are seen. In a system with full scal-

ability, there are no inherent limits how high the system may scale. In addition to raw

scalability, it is also important to examine the parallel efficiency of systems as they are

scaled: all else being equal, an architecture that scales up to 16 nodes with 90% parallel

efficiency is more valuable than an architecture that scales up to 64 nodes with 20% par-

allel efficiency.

2.2.2 Analysis of Scalable Architectures
Many different interactive graphics architectures have been presented in the literature

over the history of computer graphics. Exploiting parallelism is a key component of

graphics architectures, and the flexibility that arises from the dearth of dependencies in

the graphics API leads to a wide variety of parallel implementation choices. Ideally, an

architecture should provide a division of work that is highly load balanced and has a

minimal amount of redundant work in order to increase parallel efficiency. The commu-

2.2. SCALING THE GRAPHICS PIPELINE 33

nication mechanism necessary for supporting such a division of labor should be minimal,

and the system should not compromise any of the semantical requirements of the graph-

ics interface (mode, ordering, frame). Finally, the complexity of the algorithm should be

low. In this section, we examine how graphics architectures have made tradeoffs in these

various requirements, resulting in various degrees of scalability according to the metrics

set forth in Section 2.2.1.

One taxonomy [Molnar et al. 1994] classifies the parallel architectures by the place

where a “sort” occurs. Primitives that begin on one node of a parallel machine must have

their effects displayed on a particular location on the display, and an all-to-all communi-

cation based on image space location must occur at some point in the parallel graphics

pipeline (i.e., a sort). In this section, we present a modified version of this taxonomy, il-

lustrated in Figure 2.1. As a general point of reference, we will assume that the architec-

tures are scaled by replicating several graphics “nodes”, where each node is an individual

graphics pipeline consisting of a command unit, a geometry unit, a rasterization unit, a

Comp

Disp

Tex

Scan

T & L

Cmd

graphics commands

object-space triangles

screen-space triangles

untextured fragments

textured fragments

pixels

Sort-first

Sort-middle

Fragment-sorting

Image-composition

M
ul

ti-
so

rt

Figure 2.1: The Sorting Classification
A graphics architecture may be defined by the stage in the pipeline at which a
sort, or all-to-all communication, occurs.

34 CHAPTER 2. ANALYSIS OF PARALLEL GRAPHICS

texturing unit, a composition unit, and a display unit. Sort-first architectures sort 3D

primitives; sort-middle architectures sort 2D primitives. There are two variations of sort-

last architectures: fragment-sorting architectures distribute fragments generated by each

primitive to the appropriate compositor while image-composition architectures distribute

the post-rendering pixels of a framebuffer as part of the display process. Finally, the

Pomegranate architecture, a multi-sort architecture, performs all-to-all communication at

multiple stages of the graphics pipeline in order to increase parallel efficiency.

When we classify architectures according to it sorting methodology, it is important to

understand how the framebuffer is divided amongst the various graphics nodes because

this division determines how the sort must occur. First, the framebuffer partitioning can

be either static or dynamic. While a static partitioning is typically simpler to implement,

a dynamic partitioning can be desirable because the architecture is able to use scene-

dependent knowledge to minimize redundant work and load imbalance. Second, the par-

titioning can be regular or irregular. A regular partitioning could consist of equally sized

rectangular tiles while an irregular partitioning would use rectangular tiles of various

sizes. On the extreme end of irregularity, a system could even use non-rectangular re-

gions. Third, the granularity of partitioning could be fine-grained or coarse-grained. On

one end of the scale, each region in the partitioning consists of only one or a few pixels.

On the other end of the scale, each region in the partition contains so many pixels that

each node is responsible for only one or a few regions. Fourth, the assignment of the re-

gions could follow various algorithms. A graphics system could use a regular assignment

algorithm (e.g., round-robin distribution), a random assignment algorithm, or even an as-

signment algorithm that distributes regions in an irregular pattern that results in one node

being responsible for more pixels than other nodes. Finally, the assignment of pixels to

nodes can be either shared (more than one node for a pixel) or disjoint (one node for each

pixel). Some graphics architectures lend themselves more to certain framebuffer parti-

tioning algorithms, leading to various parallel efficiency issues.

2.2. SCALING THE GRAPHICS PIPELINE 35

2.2.2.1 Sort-First Architectures
In a sort-first architecture, the command unit interprets the graphics commands and per-

forms a small amount of computation to determine where the resulting primitive will fall

in the framebuffer. Based on this, the primitive is transferred to the appropriate graphics

node or graphics nodes where it goes through all of the rest of the stages of the graphics

pipeline, including lighting, transformation, rasterization, texturing, and composition.

These graphics pipelines unite again at the display stage: the disjoint regions of the

framebuffer are combined to form a uniform display. One of the largest advantages of

sort-first architectures is that it may be constructed by adding a simple communications

infrastructure to a standard graphics pipelines with little additional modifications. In or-

der to minimize the number of pipelines to which each primitive is sorted (and hence, re-

dundant work), nearly all sort-first architectures utilize a coarse-grained partitioning of

Comp

Disp

Tex

Scan

T & L

Cmd

Comp

Disp

Tex

Scan

T & L

Cmd

Comp

Disp

Tex

Scan

T & L

Cmd

Comp

Disp

Tex

Scan

T & L

Cmd

Sort

Figure 2.2: Sort-First Architectures

36 CHAPTER 2. ANALYSIS OF PARALLEL GRAPHICS

the framebuffer. Additionally, in order to minimize the amount of computation necessary

for classifying primitives, the cost of computing overlap is usually amortized over groups

of several primitives (e.g., their bounding box). Many sort-first architectures have been

described in the literature, and we will look at a few representative ones.

Mueller [Mueller 1995] makes the case for sort-first architectures and examines load

balancing issues in such architectures. A sort-first architecture is outlined by this paper,

although no actual architecture is implemented. While strict ordering is supported, only

retained-mode interface semantics are supported, and frame semantics are imposed. By

doing so, the system may take advantage of frame-to-frame coherence: an initial distribu-

tion of primitives is made according to the screen-space subdivision, and for each new

frame, a small fraction of the primitives are redistributed according to the new scene pa-

rameters. This makes the input rate of such a system scale, albeit with the caveats of lim-

ited interface semantics and ungraceful degradation when the assumption of frame-to-

frame coherence is violated. This can happen when a new object pops into the view frus-

tum, or when the viewpoint rotation rate is too high to make use of frame-to-frame coher-

ence (in interactive applications, this is a feed-forward loop that becomes worse and

worse once it occurs). To avoid this, the screen needs to be subdivided into large regions.

However, this has an adverse effect on load balancing to achieve scalable triangle and

pixel rates. A static algorithm and an adaptive algorithm are compared to determine that

a maximum-to-average triangle load balance ratio of 1.5 or less can be achieved with 9-

25 static regions per processor or 1 adaptive region per processor. The adaptive algo-

rithm made very good use of frame-to-frame coherence and required very little commu-

nication of primitives in its sort. Unfortunately, this work does not consider pixel load

imbalance, nor does it consider how the display system of an adaptively subdivided

screen may be built and load balanced, particularly in a scalable fashion. Though the pa-

per mentions the ability of sort-first to handle large display resolutions, no scalable tex-

ture system is described to address the increased texture resolution necessitated by such a

large display, and texture load imbalance is not explored.

2.2. SCALING THE GRAPHICS PIPELINE 37

Samanta et al. [Samanta et al. 1999] examine the use of sort-first as an architecture

for multi-projector systems. In this system, the focus is on providing an end-to-end

rendering system that leverages commodity PC processors, commodity graphics cards,

and a commodity network. A single client machine controls the rendering performed on

eight server machines, each of which renders a single projector in a multi-projector

display wall. By using a sort-first architecture that tiles the display on a per-graphics-

card basis, the system is able to use unmodified graphics cards that were never intended

for scalability. The interface for this system provides strict ordering, imposes frame

semantics, and requires retained-mode semantics. The scene is described by a static

scene graph hierarchy whose nodes contain approximately 100 polygons each. At each

frame, the client machine computes potential visibility for nodes and sends the

appropriate node ID tags to each server based on overlap. While the client machine is a

point of serialization for this system, the amortization of a rendering instruction over 100

polygons provides significant leeway. However, the effects of a dynamic scene are

unclear. In addition to a static algorithm, three adaptive load-balancing algorithms are

examined—the system allows pixels rendered on one machine to be moved to another

machine for final display. The scenes used for the study were all geometry-bound, so no

conclusions are made regarding scalability in pixel rate, nor is texturing scalability

addressed. The system is able to scale triangle rate with a parallel efficiency of 0.33 to

0.76 on eight PCs on a variety of scenes that tax the system by including frames that

place the entire model on one projector. Of course, because each server machine adds a

new display subsystem, the architecture’s display scales extremely well.

WireGL is a similar sort-first architecture based on PCs [Buck et al. 2000]. Again,

this architecture leverages the use of unmodified graphics cards at commodity price

points through standardized interfaces. This system is unique in two significant ways.

First, rather than using a retained-mode interface based on a scene hierarchy, the architec-

ture uses standard, unmodified OpenGL as its graphics interface. In order to overcome

interface serialization, the parallel graphics interface described in Chapter 3 is imple-

mented across many client machines, demonstrating the adaptability of such an interface

38 CHAPTER 2. ANALYSIS OF PARALLEL GRAPHICS

to a sort-first architecture. Second, the architecture virtualizes the display system of each

server by utilizing a fully scalable display system: Lightning2. Lightning2 takes in mul-

tiple Digital Visual Interface (DVI) streams that are output from each graphics card, re-

shuffle the data in these streams in a flexible way, and output many DVI streams that can

subsequently be connected to a commodity display device. This efficient, display-speed

pixel redistribution scheme allows for a high degree of scalability in triangle rate and

pixel rate by utilizing a medium-grained, static partitioning of the screen, limited mainly

by overlap. Such a medium-grained partitioning is particularly important in immediate-

mode rendering systems because of temporal load imbalance effects—applications usu-

ally submit primitives in object-order, resulting in a pattern that draws many small trian-

gles in a small region of the screen before moving on to another portion of the screen.

Furthermore, as demonstrated in Chapter 4, such a partitioning load balances texture ac-

cesses well. Additionally, a client lazily sends texture data to a server only when re-

quired, allowing for some scalability in texture memory size. Unfortunately, as the tiling

of the screen partitioning is made smaller for better rendering load balancing, lazy texture

updates become less effective.

2.2.2.2 Sort-Middle Architectures
In sort-middle architectures, as with sort-first architectures, each node is responsible for a

fraction of the framebuffer. When commands enter the pipeline, they are converted into

3D primitives that are subsequently light and transformed into 2D screen-space primi-

tives. Each of these 2D primitives is then sorted to the appropriate rasterization nodes

based on the screen-space subdivision. Here, texturing and composition occur. A display

system then combines this disjoint framebuffer into a unified display. While most com-

mercial systems have used a finely interleaved framebuffer [Akeley & Jermoluk 1988,

Akeley 1993, Deering & Nelson 1993, Montrym et al. 1997] because of better pixel load

balancing and a simple ordering mechanism, several research systems have examined the

advantages of a coarse-grained subdivision scheme in both a static and an adaptive set-

ting. Here, we look at the scaling properties of three sort-middle systems.

2.2. SCALING THE GRAPHICS PIPELINE 39

Pixel-Planes 5 is a scalable sort-middle architecture that utilizes a unique SIMD ar-

chitecture for rasterization. The system consists of several heterogeneous units connected

together by a network. A host interface creates and modifies the scene database through

a retained-mode, frame-oriented API that provides strict ordering. Upon specification of

the view parameters, several geometry nodes transform and light their fraction of the

scene database. The screen is subdivided into coarse-grained virtualized tiles, the result-

ing 2D primitives are grouped according to the tiles they intersect, and a work queue of

tiles is created. Then, each rasterization node takes a tile of work from the work queue,

and performs scan conversion, texturing, and composition. Once the work of a tile is

completed, the pixels of the resulting tile are transferred to a display node. In this archi-

tecture, the input rate is limited by a single host interface, but the retained-mode interface

semantics keeps input requirements to a minimum. The triangle rate scales relatively

Comp

Disp

Tex

Scan

T & L

Cmd

Comp

Disp

Tex

Scan

T & L

Cmd

Comp

Disp

Tex

Scan

T & L

Cmd

Comp

Disp

Tex

Scan

T & L

Cmd

Sort

Figure 2.3: Sort-Middle Architectures

40 CHAPTER 2. ANALYSIS OF PARALLEL GRAPHICS

well because of three reasons. First, transform and lighting are well distributed across the

geometry nodes. Second, the adaptive work queue algorithm load balances triangle work

among the rasterizers. Third, the coarse-grained tiles have a low overlap factor, so the

per-triangle work is not repeated across many tiles. At moderate levels of parallelism (10

or so rasterizers), the rasterizers have a parallel efficiency of approximately 0.7 when us-

ing 128 x 128 tiles. The pixel rate scales similarly to the triangle rate in this system, but

the display was not built to be scalable, although it could be. The Pixel-Planes 5 architec-

ture uses a non-scalable ring network that limits the maximum aggregate traffic that is

available on the system, effectively placing a scalability limit on the triangle and pixel

rates as well as the display.

The RealityEngine [Akeley 1993] is a sort-middle architecture that is representative

of most commercial graphics systems. The interface unit receives commands from a host

processor and distributes the resulting primitives among several geometry processors that

perform transformation and lighting. The resulting 2D primitives are broadcast across a

bus to the rasterization units in the order specified by the interface. Each rasterization

unit is responsible for the scan conversion, texturing, and composition of a finely inter-

leaved fraction of the framebuffer. The resulting pixels are then transferred to a display

unit for final display. This architecture supports a strictly ordered, immediate-mode, sin-

gle buffered interface. Because of the single interface unit, the input rate cannot scale.

The triangle rate, on the other hand, can scale by a limited amount: as more geometry

processors are added, more triangles may be light and transformed. However, because of

the fine interleaving of the framebuffer across the rasterizers, every rasterizer must re-

ceive and process every primitive. This is problematic because of two reasons. First,

broadcast communication does not scale well, whether it is implemented as a bus with

electrical load limits or as a point-to-point network with quadratic growth characteristics.

Second, because every rasterizer must receive and process every primitive, the overall

system can never scale beyond a single rasterization unit’s triangle rate. This fine inter-

leaving does have a large advantage, however: the pixel rate scales linearly even in the

face of temporal effects. This fine interleaving also has a negative effect on texture scal-

2.2. SCALING THE GRAPHICS PIPELINE 41

ability—in Chapter 4, we will see how a finely interleaved framebuffer causes excessive

texture bandwidth requirements. Furthermore, in this architecture, texture memory is

broadcast and replicated across the rasterizers, leading to no texture memory scalability.

The display system of this architecture is also non-scalable.

Argus [Igehy et al. 1998b] is a sort-middle architecture that provides a large degree of

scalability by subdividing the framebuffer into coarse-grained tiles while retaining an

immediate-mode, strictly ordered interface with no frame semantics. Although Argus is a

software system that runs on shared memory multiprocessors, many of its principles may

be applied to hardware systems. Argus supports a scalable interface by implementing the

parallel graphics API described in Chapter 3. Each of several interface units distributes

blocks of 3D primitives to geometry units in a demand-driven fashion. These primitives

are lit and transformed, and the resulting 2D primitives are placed in the appropriate tiles’

reorder buffers. Each rasterizer performs scan conversion, texturing, and composition for

each of its tiles, and a dynamic stealing algorithm load balances the triangle and pixel

work both spatially and temporally. Display units then reassemble the tiles for final dis-

play. Unlike sort-middle schemes that use a fine framebuffer interleaving, the triangle

rate scales well because each triangle is distributed to only the tiles it overlaps. Large

triangles that overlap many tiles do not limit scalability because those triangles are lim-

ited by pixel work, a phenomenon described by Chen et al. [Chen et al. 1998]. The load

balancing algorithm provides reasonable scaling in both pixel and triangle rates for mod-

erate levels of parallelism. The texture bandwidth demands also scale well because of the

large tile sizes, as shown in Chapter 4. Because the underlying communication mecha-

nism is a scalable shared memory system [Laudon & Lenoski 1997], all the communica-

tion in the system scales well. Shared memory is particularly useful in the trivial imple-

mentation of a scalable texture memory and a scalable display memory: the process of

accessing texture and display data on another node is provided through a fast, simple

mechanism.

42 CHAPTER 2. ANALYSIS OF PARALLEL GRAPHICS

2.2.2.3 Fragment-sorting Architectures
In fragment-sorting architectures, each graphics pipeline is responsible for transforming,

lighting, rasterizing, and texturing a fraction of the primitives in the scene. The textured

fragments generated by each node are then sorted by an all-to-all network based on the

image-space subdivision. These fragments are then composited into the framebuffer, and

the display is generated by combining the pixels in each node’s framebuffer. In order to

ensure a highly balanced amount of pixel work, the framebuffer partitioning is usually

very fine grained. As we will see in Chapter 4, unlike sort-middle, a fine-grained parti-

tioning of the framebuffer does not increase texture bandwidth as the system scales be-

cause texturing occurs in object space independent of the framebuffer partitioning. Addi-

tionally, a parallel graphics interface may be utilized with a fragment-sorting architecture,

allowing for scalable input rate. Unlike sort-first and sort-middle architectures, linearly

Comp

Disp

Tex

Scan

T & L

Cmd

Comp

Disp

Tex

Scan

T & L

Cmd

Comp

Disp

Tex

Scan

T & L

Cmd

Comp

Disp

Tex

Scan

T & L

Cmd

Sort

Figure 2.4: Fragment-Sorting Architectures

2.2. SCALING THE GRAPHICS PIPELINE 43

scaling the triangle rate in a fragment-sorting architecture is trivial. By distributing trian-

gles among pipelines in a round-robin fashion, each triangle is processed only once, and

each pipeline transforms, lights, and performs rasterization setup on an equal number of

triangles. Scaling the pixel rate, however, is much more difficult. After transformation

to image space, each triangle can generate anywhere from a single fragment to millions

of fragments, and this information is unknown a priori. Thus, load imbalance leads to

poor scalability in pixel rate. Adaptive load balancing schemes are difficult to implement

given strict ordering requirements. Although a few fragment-sorting architectures have

been implemented [Evans & Sutherland 1992, Kubota 1993], little technical detail is

available on such systems. As with the interface and texture memory, although fragment-

sorting can inherently support a scalable display system, no such systems have been built.

2.2.2.4 Image-Composition Architectures
Unlike the other architectures discussed thus far, image-composition architectures do not

Comp

Tex

Scan

T & L

Cmd

Comp

Tex

Scan

T & L

Cmd

Comp

Disp

Tex

Scan

T & L

Cmd

Comp

Tex

Scan

T & L

Cmd

Composite

Figure 2.5: Image-Composition Architectures

44 CHAPTER 2. ANALYSIS OF PARALLEL GRAPHICS

force disjoint regions of the framebuffer to be allocated to only one node. Instead, each

node draws into its own framebuffer (which may be as big as the display), and the frame-

buffers from each display are merged together through composition of the pixels. Typi-

cally, a depth comparison is done on pixels from different nodes to determine the visible

pixel. As with sort-first architectures, a large advantage of image-composition architec-

tures is the ability to use relatively unmodified graphics pipelines for scalability. Besides

an interface network that allows distribution of primitives (which is usually provided by

the host system), only a composition network needs to be built. Because pixel-to-pixel

dependencies inherently cannot be satisfied by image-composition architectures, these

systems break strict ordering semantics required by common graphics interfaces such as

OpenGL. For many scenes, however, depth buffering alleviates the need for strict order-

ing.

PixelFlow [Molnar et al. 1992, Eyles et al. 1997] is an architecture that combines a

rasterization architecture similar to Pixel-Planes 5 with deferred shading and an image-

composition network to provide scalable rendering of scenes with advanced shading. In

this system, each geometry transforms a portion of the scene and sorts them by coarse-

grained tiles on the screen. Each rasterizer then scan converts, textures, and composites

its resulting primitives for a small number of tiles, and then the pixels of this region are

merged over a composition network into a shading module that performs lighting. Even-

tually, the regions are amassed into a framebuffer for display. The interface to this sys-

tem can be immediate-mode or retained-mode, although frame semantics are required.

The triangle rate scales linearly because primitives may be distributed round-robin and

each primitive is handled only once. As with fragment-sorting architectures, pixel load

imbalance can severely inhibit scalability in pixel rate for image-composition architec-

tures if one node receives triangles that are much larger than other nodes. Because of the

SIMD rasterization architecture used in PixelFlow, this imbalance is negligible. The

rasterization node is able to rasterize a primitive covering an entire tile just as fast as a

primitive covering a single pixel. Such an architecture would be unrealistic, however, in

systems where framebuffer bandwidth is at a premium. The large-grained partitioning of

2.2. SCALING THE GRAPHICS PIPELINE 45

texture work balances texture bandwidth well, and a limited amount of scalability in tex-

ture memory can be achieved by only downloading texture data to shading nodes that re-

quire it, though no such algorithm is described in the literature. The display of this archi-

tecture is completely un-scalable due to the fact that doubling the display size doubles the

amount of memory on each node’s framebuffer as well as the rate at which it must be

able to perform image-composition.

VC-1 [Nishimura & Kunii 1996] is a image-composition architecture that virtualizes

the framebuffer. In this system, each node can hold only a fraction of the full frame-

buffer in a virtualized tile fashion. As rendering proceeds, a node eventually exhausts all

the free tiles in its local framebuffer memory. At this point, some tiles are composited

with the global framebuffer. This process continues until an entire frame is assembled

for display. Additionally, because larger polygons take longer times to rasterize, it is im-

portant to load balance pixel work. To address this, polygons that are deemed to be too

large by a geometry processor are broadcast to all the geometry processors. Although

this algorithm breaks strict ordering constraints, it is irrelevant because VC-1 is an image-

composition architecture that does not support strict ordering in any case. Although such

a virtualized system reduces the amount of framebuffer memory required by each node in

a scalable system, the display system does not scale because of the fixed bandwidth

available on the image-composition network into the framebuffer.

2.2.2.5 Pomegranate Architecture
The Pomegranate architecture [Eldridge et al. 2000] is a novel architecture that maxi-

mizes parallel efficiency across all five scalability metrics while retaining a strictly or-

dered, immediate-mode API with no frame semantics. This is accomplished by treating

the sort in graphics architectures not only as a means of transferring data to its final loca-

tion, but also as a way of load balancing the work in a way that does not incur penalties

for repeated work.

46 CHAPTER 2. ANALYSIS OF PARALLEL GRAPHICS

Pomegranate is driven by the parallel graphics interface described in Chapter 3 to al-

low linear scalability of input bandwidth. Each interface unit is directly connected to a

single geometry unit that transforms and lights all the primitives from an interface. Be-

cause the triangle rate of modern graphics systems are limited by the input rate of a single

interface, there is no need to redistribute triangles from a single interface to multiple ge-

ometry units, although such an algorithm could be added. Each geometry unit then dis-

tributes groups of triangles in round-robin fashion among rasterization units that are re-

sponsible for scan conversion and texture mapping. Large triangles are tiled into smaller

pieces by the geometry units and treated as separate triangles ensure that the pixel work

in the round-robin distribution is load balanced. This all-to-all sort is not dependent on

Comp

Disp

Tex

Scan

T & L

Cmd

Comp

Disp

Tex

Scan

T & L

Cmd

Comp

Disp

Tex

Scan

T & L

Cmd

Comp

Disp

Tex

Scan

T & L

Cmd

Sort

Figure 2.6: Pomegranate Architecture

2.2. SCALING THE GRAPHICS PIPELINE 47

any screen-space subdivision because, like fragment-sorting architectures, scan conver-

sion is decoupled from composition into the framebuffer. Thus, each triangle is commu-

nicated and processed exactly once by a rasterizer, and because of the round-robin distri-

bution, each rasterization unit receives a balanced number of triangles from each geome-

try unit that is fixed in sized regardless of the level of parallelism employed. This scales

triangle rate. Each texturing unit may access texture memory attached to any other tex-

turing unit, requiring an all-to-all sort. This scales the amount of texture memory line-

arly. By distributing texture memory across the units in a finely interleaved fashion, tex-

ture bandwidth from each texture memory is load balanced equally to each texturing unit.

Because the distribution of primitives from geometry units to rasterization units is done

in groups of triangles, object-space coherence keeps texture bandwidth requirements low

(see Chapter 4). After texturing, the fragments are put through another all-to-all sort to

place the them on the correct composition unit that merges fragments with the frame-

buffer. The fine-grained interleaving of the framebuffer as well as the load balancing of

triangle sizes by the geometry unit distribution algorithm allows for linear scalability in

pixel rate. Finally, each node’s display processor fetches pixels for display refresh

through an all-to-all sort with the composition units. Because each node linearly in-

creases the amount of framebuffer memory available, and because a display’s pixels are

finely interleaved across the compositors in a way that balances refresh bandwidth re-

quirements perfectly, a linearly scalable display system is provided. The several all-to-all

sorts in Pomegranate are supported by a single scalable butterfly network. Because the

architecture balances communications requests very well, even over short periods of

time, and because the algorithms employed are latency-tolerant (e.g., the texture prefetch-

ing architecture of Section 4.1), such a network works extremely well. The system is

thus able to scale performance linearly to large levels of parallelism, with a network that

grows O(n log(n)).

48 CHAPTER 2. ANALYSIS OF PARALLEL GRAPHICS

2.3 Conclusion
Large amounts of parallelism are available in graphics architectures. The relative lack of

dependencies in the graphics API is a direct source of this parallelism. Even though the

computation is very specialized, broad sets of implementation choices (classified by the

sort taxonomy) are available to exploit this parallelism. In doing so, one must scale all

parts of the graphics system in order to achieve full scalability. The rest of this disserta-

tion focus on techniques for scaling two particular aspects of graphics architectures: inter-

face and texture.

 49

Chapter 3 Scalable Graphics Interface

Scalable Graphics Interface

It is increasingly difficult to drive a modern high-performance graphics system at full

speed with a serial immediate-mode graphics interface. To resolve this problem, re-

tained-mode constructs are integrated into graphics interfaces. While retained-mode con-

structs provide a good solution in many cases, at times they provide an undesirable inter-

face model for the application programmer, and in some cases they do not solve the per-

formance problem. In order to resolve these problems, this chapter presents a parallel

graphics interface that may be used in conjunction with the existing API as a new para-

digm for high-performance graphics applications. In a sense, we add thread-level paral-

lelism on top of the instruction-level parallelism described in Section 2.1.

The parallel API extends existing ideas found in OpenGL and X11 that allow multi-

ple graphics contexts to simultaneously draw into the same image. Through the introduc-

tion of synchronization primitives, the parallel API allows parallel traversal of an explic-

itly ordered scene. We give code examples that demonstrate how the API can be used to

expose parallelism while retaining many of the desirable features of serial immediate-

mode programming. The viability of the API is demonstrated by the performance of a

software implementation that achieves scalable performance on a 24 processor system

and a simulated hardware implementation that achieves scalable performance on a 64

processor system.

50 CHAPTER 3. SCALABLE GRAPHICS INTERFACE

3.1 Introduction
Computer graphics hardware is rapidly increasing in performance. This has motivated

immediate-mode graphics interfaces like OpenGL [Segal & Akeley 1992, Neider et al.

1993] to adopt constructs such as display lists and packed vertex arrays in order to allevi-

ate system bottlenecks. However, these constructs may impose an undesired paradigm

shift for the application programmer, and they may not be useful in resolving the particu-

lar performance bottleneck. Furthermore, with the increasing use of multiprocessor sys-

tems for graphics applications, a serial interface to the graphics system can be inelegant.

A parallel graphics interface seeks to resolve these issues.

There are many challenges to designing a good parallel graphics interface; in formu-

lating our design, we had several goals in mind. First and foremost were the ability to

issue graphics primitives in parallel and the ability to explicitly constrain the ordering of

these primitives. Ideally, the API should allow parallel issue of a set of primitives that

need to be drawn in an exact order. The parallel API should be a minimal set of exten-

sions to an immediate-mode interface such as OpenGL, and it should be compatible with

existing features such as display lists. The design is constrained by the presence of state;

this is required for a large feature set. A well designed parallel interface should be intui-

tive and useful in a wide variety of applications. And finally, the new API should extend

the current framework of graphics architectures to provide a rich set of implementation

choices. In the rest of this chapter, we present the motivations and issues involved in de-

signing a parallel extension to a serial immediate-mode graphics interface with strict or-

dering and state. By adding synchronization commands (such as barriers and sema-

phores) into multiple graphics command streams, application threads can issue explicitly

ordered primitives in parallel without blocking.

3.2. MOTIVATION 51

3.2 Motivation
Although graphics systems are on the same technology curve as microprocessors, graph-

ics systems have reached a level of performance at which they can process graphics

commands faster than microprocessors can produce them: a single CPU running an im-

mediate-mode interface cannot keep up with modern graphics hardware. This is primar-

ily due to an increasing use of parallelism within graphics hardware. Within a computer,

there are three sources of bottlenecks in a graphics application. First, performance may

be limited by the speed of the graphics system. In this case, the only solution is to use a

faster graphics system. Second, performance may be limited by the rate of data genera-

tion. In this case, the programmer can use either a faster data generation algorithm or

else, if the algorithm is parallelizable, multiple processors. Third, performance may be

limited by the interface between the host system and the graphics system. Possible

sources of this limitation are:

1) Overhead for encoding API commands.

2) Data bandwidth from the API host.

3) Data bandwidth into the graphics system.

4) Overhead for decoding API commands.

There are several possible ways to extend a serial immediate-mode API in order to

address the interface bottlenecks:

• Packed Primitive Arrays. A packed primitive array is an array of primitives

that reside in system memory. By using a single API call to issue the entire

array of primitives instead of one API call per primitive, the cost of encoding

API commands is amortized. Furthermore, because the arrays may be trans-

ferred by direct memory access (DMA), bandwidth limitations from the API

processor may be bypassed. Nothing is done, however, about the bandwidth

limitations into the graphics system. Furthermore, although the decoding may

be somewhat simplified, all the primitives in the array still have to be decoded

52 CHAPTER 3. SCALABLE GRAPHICS INTERFACE

on the graphics system. While packed primitive arrays are useful in a wide

variety of applications, they may introduce an awkward programming model.

• Display Lists. A display list is a compiled set of graphics commands that re-

sides on the graphics system. In a fashion similar to retained-mode interfaces,

the user first specifies the list of commands to be stored in the display list and

later invokes the commands within the display list. Because they are essen-

tially command macros, display lists work well semantically with immediate-

mode interfaces. In cases where the scene is small enough to fit in the graph-

ics system and the frame-to-frame scene changes are modest, display lists

trivially resolve the first three bottlenecks. If the scene is too large and there-

fore must reside in system memory, display lists are similar to packed primi-

tive arrays and only the first two bottlenecks are resolved. Display lists pro-

vide an excellent solution for performance bottlenecks if the same objects are

drawn from frame to frame. But on applications that re-compute the graphics

data on every frame (e.g., [Hoppe 1997, Sederberg & Parry 1986]), display

lists are not useful. Furthermore, the use of display lists burdens the pro-

grammer with the task of managing handles to the display lists.

• Compression. Whereas the idea of quantizing the data sent through the API

has been used for quite some time, the idea of compressing the data has only

recently been proposed. One system compresses the geometric data sent

through the API [Deering 1995]; other systems compress the texture data

[Beers et al. 1996, Torborg & Kajiya 1996]. All compression schemes in-

crease the decoding costs, and systems that compress the data interactively in-

crease the encoding costs. Systems that compress the data off-line, on the

other hand, are useful only when the graphics data does not change.

• Parallel Interface. The motivation behind a parallel graphics interface is

scalability: bottlenecks are overcome with increased parallelism. If the graph-

ics system is too slow, it can be scaled by adding more graphics nodes. If the

3.3. RELATED WORK 53

data generation is too slow, more processors can be used to generate the data

in parallel. Similarly, if the serial interface is too slow, then it should be

parallelized. In a system with a single graphics port, a parallel API can be

used to overcome the first two interface limitations. However, by building a

scalable system with multiple graphics ports, all interface limitations can be

overcome. This is the solution proposed in this chapter.

3.3 Related Work
In the field of parallel graphics interfaces, Crockett introduced the Parallel Graphics Li-

brary (PGL) for use in visualizing 3D graphics data produced by message-passing super-

computers [Crockett 1994]. Due to the characteristics of its target architecture and target

applications, PGL was designed as a retained-mode interface. In parallel, each processor

adds objects to a scene by passing pointers to graphics data residing in system memory.

A separate command is used to render the objects into a framebuffer, and no ordering

constraints are imposed by the interface. PixelFlow [Molnar et al. 1992, Eyles et al.

1997] is another system designed to support multiple simultaneous inputs from a parallel

host machine, and PixelFlow OpenGL includes extensions for this purpose. However,

due to the underlying image composition architecture, PixelFlow OpenGL also imposes

frame semantics and does not support ordering. Because of these constraints, PGL and

PixelFlow OpenGL do not meet the requirements of many graphics applications.

The X11 window system provides a parallel 2D graphics interface [Scheifler & Get-

tys 1986, Gettys & Karlton 1990]. A client with the proper permissions may open a con-

nection to an X server and ask for X resources to be allocated. Among these resources

are drawables (which are on- or off-screen framebuffers) and X contexts (which hold

graphics state). Since resources are globally visible, any client may subsequently use the

resource within X commands. Since X drawing calls always include references to a

drawable and an X context, client requests are simply inserted into a global queue and

54 CHAPTER 3. SCALABLE GRAPHICS INTERFACE

processed one at a time by the X server. Though it is not explicitly encouraged, multiple

clients may draw into the same drawable or even use the same graphics context.

While a 3D graphics interface was beyond the scope of the original design of X,

OpenGL is a 3D interface that has been coupled with X. OpenGL is an immediate-mode

interface whose state is kept within an X resource called the GLX context. In the interest

of efficiency, both display lists and packed primitive arrays are supported. Furthermore,

both texture data and display lists may be shared between contexts in order to allow the

efficient sharing of hardware resources amongst related contexts [Kilgard 1996].

Strict ordering semantics are enforced in X and OpenGL: from the point of view of

the API, every command appears to be executed once the API call returns. However, in

the interest of efficiency, both interfaces allow implementations to indefinitely buffer

commands. This introduces the need for two types of API calls. Upon return from the

flush call (XFlush, glFlush), the system guarantees that all previous commands will exe-

cute in a finite amount of time from the point of view of the drawable. Upon return from

a finish call (XSync, glFinish), the system guarantees that all previous commands have

been executed from the point of view of the drawable.

Since OpenGL and X solve different problems, programs often use both. Because of

buffering, however, a program must synchronize the operations of the two streams.

Imagine a program that wants to draw a 3D scene with OpenGL and then place text on

top of it with X. It is insufficient to simply make the drawing calls in the right order be-

cause commands do not execute immediately. Furthermore, a flush is insufficient be-

cause it only guarantees eventual execution. A finish, on the other hand, guarantees the

right order by forcing the application to wait for the OpenGL commands to execute be-

fore issuing X commands. In a sense, however, the finish is too much: the application

need not wait for the actual execution of the OpenGL commands; it only needs a guaran-

tee that all prior OpenGL commands execute before any subsequent X commands. The

call glXWaitGL provides this guarantee, and glXWaitX provides the complement.

3.4. THE PARALLEL API EXTENSIONS 55

Hardware implementations of OpenGL typically provide support for a single context, and

sharing of the hardware is done through a context switch. Though context switches are

typically inexpensive enough to allow multiple windows, they are expensive enough to

discourage fine-grained sharing of the graphics hardware between application threads. A

few architectures actually provide hardware support for multiple simultaneous contexts

drawing into the same framebuffer [Kirkland 1998, Voorhies et al. 1988], but all com-

mands must go through a single graphics port. Furthermore, these architectures do not

have a mechanism for maintaining the parallel issue of graphics commands when an ex-

act ordering of primitives is desired.

3.4 The Parallel API Extensions
While OpenGL within X is not intended for multithreaded use due to the underlying im-

plementations, the interface provides mechanisms for having multiple application threads

work simultaneously on the same image. In this section, we first demonstrate how an

interface like OpenGL may be used to attain parallel issue of graphics commands. Then

we show how additional extensions can be used to increase the performance of parallel

issue. The specification of the API extensions is given in Figure 3.1.

The API extensions are most easily motivated through the use of an example. Sup-

pose that we want to draw a 3D scene composed of opaque and transparent objects.

Though depth buffering alleviates the need to draw the opaque primitives in any particu-

lar order, blending arithmetic requires that the transparent objects be drawn in back-to-

front order after all the opaque objects have been drawn. By utilizing the strict ordering

semantics of the serial graphics API, a serial program simply issues the primitives in the

desired order. With a parallel API, order must be explicitly constrained. We assume the

existence of two arrays, one holding opaque primitives and the other holding transparent

primitives ordered in back-to-front order. We also assume the existence of the following

function:

56 CHAPTER 3. SCALABLE GRAPHICS INTERFACE

 DrawPrimitives(prims(first..last))
 for p = first..last
 glColor(&prims[p].color)
 glPrimitive(&prims[p].coord)
 glFlush()

3.4.1 Existing Constructs
As a first attempt at parallel issue, imagine two application threads using the same con-

text to draw into the same framebuffer. In such a situation, a “set current color” com-

mand intended for a primitive from one application thread could be used for a primitive

from the other application thread. In general, the sharing of contexts between application

threads provides unusable semantics because of the extensive use of state. By using

separate contexts, dependencies between the state-modifying graphics commands of the

two streams are trivially resolved. Given two application threads using separate contexts

 glBarrierCreate(GLuint barrier, GLuint numCtxs)
 barrier->reset = numCtxs;
 barrier->count = numCtxs;

glBarrierExec(GLuint barrier)
 barrier->count--;
 if (barrier->count = 0)
 barrier->count = barrier->reset;
 signal(all waiting contexts);
 else
 wait();

glBarrierDelete(GLuint barrier)

glSemaphoreCreate(GLuint sema, GLuint initial)
 sema->count = initial;

glSemaphoreP(GLuint sema)
 if (sema->count = 0)
 wait();
 sema->count--;

glSemaphoreV(GLuint sema)
 sema->count++;
 signal(one waiting context, if any);

glSemaphoreDelete(GLuint sema)

glWaitContext(GLXContext ctx)
 All subsequent commands from the issuing context execute
 after all prior commands from ctx have finished execution.

Figure 3.1: The Parallel Graphics Interface Extensions

3.4. THE PARALLEL API EXTENSIONS 57

on the same framebuffer, the following code could be used to attain parallel issue of the

opaque primitives:

 Thread1 Thread2
DrawPrimitives(opaq(1..256)) DrawPrimitives(opaq(257..512))
 glFinish()
appBarrier(appBarrierVar) appBarrier(appBarrierVar)
DrawPrimitives(tran(1..256))
glFinish()
appBarrier(appBarrierVar) appBarrier(appBarrierVar)
 DrawPrimitives(tran(257..512))

Both application threads first issue their share of opaque primitives without regard for

order. After synchronizing in lock-step at the application barrier, Thread1 issues its half

of the transparent primitives. These transparent primitives are guaranteed to be drawn in

back-to-front order after Thread1’s share of opaque primitives through strict ordering

semantics. They are also guaranteed to be drawn after Thread2’s share of opaque primi-

tives through the combination of the finish and the barrier; the finish is used to guarantee

the drawing of all previously issued commands. Through this same synchronization

mechanism, Thread2’s share of transparent primitives are then drawn in back-to-front

order after Thread1’s share of transparent primitives.

3.4.2 The Wait Construct
One inefficiency in the above code is the use of the finish command; in a sense, it is too

much. Synchronization between the application threads does not require the actual exe-

cution of the graphics commands; it only requires a guarantee on the order of execution

between the two graphics streams. In a fashion similar to that used in synchronizing X

and OpenGL, we introduce the wait context call in order to make guarantees about the

execution of commands between contexts. We refer the reader to Figure 1.1 for an exact

specification. In synchronization situations, the wait call is more efficient than the finish

call because it does not require any application thread to wait for the completion of

graphics commands. The following code demonstrates how the example scene may be

drawn using the wait command:

58 CHAPTER 3. SCALABLE GRAPHICS INTERFACE

 Thread1 Thread2
DrawPrimitives(opaq(1..256)) DrawPrimitives(opaq(257..512))
appBarrier(appBarrierVar) appBarrier(appBarrierVar)
glWaitContext(Thread2Ctx)
DrawPrimitives(tran(1..256))
appBarrier(appBarrierVar) appBarrier(appBarrierVar)
 glWaitContext(Thread1Ctx)
 DrawPrimitives(tran(257..512))

3.4.3 Synchronization Constructs
While the wait command provides an improvement, large problems remain in the above

solution: the synchronization of the graphics streams is done by the application threads.

Consequently, application threads are forced to wait for graphics streams. Why should

the application thread wait when it could be doing something more useful? For example

in the above code, the first thread must issue its entire half of the transparent primitives

before the second thread can begin issuing its half. Every time an explicit ordering is

needed between primitives from different threads, the interface degrades to a serial solu-

tion.

The answer to this problem is the key idea of our parallel API: synchronization that is

intended to synchronize graphics streams should be done between graphics streams, not

between application threads. To this end, we introduce a graphics barrier command into

the graphics API. As with other API calls, the application thread merely issues the bar-

rier command, and the command is later executed within the graphics subsystem. Thus,

the blocking associated with the barrier is done on graphics contexts, not on the applica-

tion threads. The code below achieves our primary objective, the parallel issue of explic-

itly ordered primitives: both application threads may execute this code without ever

blocking.

 Thread1 Thread2
DrawPrimitives(opaq(1..256)) DrawPrimitives(opaq(257..512))
glBarrierExec(glBarrierVar) glBarrierExec(glBarrierVar)
DrawPrimitives(tran(1..256))
glBarrierExec(glBarrierVar) glBarrierExec(glBarrierVar)
 DrawPrimitives(tran(257..512))

3.5. USING THE PARALLEL GRAPHICS API 59

We see the utility of the barrier primitive in the above code example, but what other

synchronization primitives provide useful semantics within the realm of a parallel graph-

ics interface? The barrier is an excellent mechanism for synchronizing a set of streams in

lock-step fashion; however, it is not the best mechanism for doing point-to-point syn-

chronization. Borrowing from the field of concurrent programming, semaphores provide

an elegant solution for many problems [Dijkstra 1968]. Among them is a mechanism for

signal-and-wait semantics between multiple streams. The specification of the barrier and

semaphore commands can be found in Figure 3.1.

Barriers and semaphores have been found to be good synchronization primitives in

the applications we have considered. If found to be useful, other synchronization primi-

tives can also be added to the API. It is important to note that the requirements for syn-

chronization primitives within a graphics API are somewhat constrained. Because the

expression of arbitrary computation through a graphics API is not feasible, a synchroni-

zation primitive’s utility cannot rely on computation outside of its own set of predefined

operations (as do condition variables). Also, we intentionally do not specify anything

regarding the allocation of synchronization primitives, except to note that they need to be

global resources at the level of contexts and drawables.

3.5 Using the Parallel Graphics API
The most obvious way to use the interface is to call it directly from a parallel application.

For existing serial applications, the parallel graphics interface provides a new paradigm

for high-performance command issue. For existing parallel applications, it also provides

a natural interface to the graphics system. We present two examples that make direct use

of the parallel API.

60 CHAPTER 3. SCALABLE GRAPHICS INTERFACE

3.5.1 Simple Interactive Loop
Figure 3.2a shows a simple interactive loop expressed in a strictly ordered serial inter-

face. The goal in this example is to parallelize the compute and draw stage, yielding im-

proved performance in the application, the issue of the graphics commands, and the exe-

cution of the graphics commands.

For parallel issue, a master thread (Figure 3.2b) creates a number of slave threads

(Figure 3.2c) to help with the compute and draw stage. The master first issues a clear

command and gets the user input. The application barrier ensures that the worker threads

use the correct user input data for the rendering of each frame. This synchronizes the ap-

plication threads, but not the graphics command streams. The slaves issue wait com-

mands to ensure that the clear command issued by the master is executed first. The mas-

ter is assured that the clear occurs first due to the strict ordering semantics of a single

stream. After each thread issues its graphics commands, a graphics barrier is issued to

restrict the swap operation to occur only after all the graphics streams have finished

drawing their share of the frame. Finally, a finish operation is needed to ensure that the

image is completed and displayed before getting user input for the next frame. The finish

 Serial
loop:
 glClear()
 get user input
 compute & draw
 glXSwapBuffers()
 glFinish()

Master
loop:
 glClear()
 get user input
 appBarrier(appBarrierVar)

 compute & draw
 glBarrierExec(glBarrierVar)
 glXSwapBuffers()
 glFinish()

Slave
loop:

 appBarrier(appBarrierVar)
 glWaitContext(masterCtx)
 compute & draw
 glBarrier(glBarrierVar)

(a)

(c) (b)

Figure 3.2: Parallelizing a Simple Interactive Loop
Application computation and rendering are parallelized across slave threads, with
a master thread coordinating per-frame operations.

3.5. USING THE PARALLEL GRAPHICS API 61

itself is a context-local operation, only guaranteeing that all of the previous commands

issued by the master are complete. However, in conjunction with the graphics barrier, the

finish guarantees that the commands of the slaves are also completed.

3.5.2 Marching Cubes
As a more demanding example, consider the marching cubes algorithm [Lorensen &

Cline 1987]. Marching cubes is used to extract a polygonal approximation of an isosur-

face of a function sampled on a 3D grid. In this example, we will discuss a simplification

to 2D for brevity. In Figure 3.3a, the mechanics of surface extraction and rendering are

abstracted as ExtractAndRender. ExtractAndRender operates on a single cell of the grid

independently of any other. If any portion of the desired isosurface lies within the cell,

polygons approximating it are calculated and issued to the graphics system immediately.

Note that a cell may consist of many voxels. Due to the grid structure, it is fairly simple

to perform the traversal in back-to-front order based on the current viewpoint, eliminating

the need for depth buffering and allowing for alpha-based translucency. In our example,

this corresponds to traversing the grid in raster order.

Due to the independence of the processing of different cells, marching cubes is easily

parallelized. In Figure 3.3b, traversal is parallelized by interleaving the cells of the vol-

ume across processing elements. Unfortunately, this simple approach sacrifices back-to-

front ordering. Figure 3.3d illustrates the dependence relationships between cells and

their neighbors that must be obeyed in the ordered drawing of primitives. These depend-

encies can be expressed directly using semaphores injected into the graphics command

streams. An implementation is shown in Figure 3.3c. Before processing a cell, the

owner thread issues two P operations to constrain the rendering of a cell to occur after

rendering of its two rear neighbor cells. After processing the cell, it issues two V opera-

tions to signal the rendering of its other neighbors. Note that the dependencies and tra-

versal order given here are non-ideal; another approach is to keep the same dependencies

and submit cells back-to-front in order of increasing (i + j).

62 CHAPTER 3. SCALABLE GRAPHICS INTERFACE

 MarchSerialOrdered (M, N, grid)
 for (i=0; i<M; i++)
 for (j=0; j<N; j++)
 ExtractAndRender(grid[i, j])

MarchParallel (M, N, grid)
 for (i=0; i<M; i++)
 for (j=(myProc+i)%numProcs; j<N; j+=numProcs)
 ExtractAndRender(grid[i,j])

MarchParallelOrdered (M, N, grid, sema)
 for (i=0; i<M; i++)
 for (j=(myProc+i)%numProcs; j<N; j+=numProcs)
 if (i>0) glSemaphoreP(sema[i-1,j])
 if (j>0) glSemaphoreP(sema[i,j-1])
 ExtractAndRender(grid[i,j])
 if (i<M-1) glSemaphoreV(sema[i,j])
 if (j<N-1) glSemaphoreV(sema[i,j])

(a)

(b)

(c)

(d)

i

j i,j

Completed
Cell

Ready Cell Blocked Cell glSemaphoreV
Operation

glSemaphoreP
Operation

Eye

Figure 3.3: Parallel Marching Cubes Traversal
As rendering of cells completes, glSemaphoreV operations are performed by the
graphics contexts to release dependent neighboring cells closer to the eye. Ren-
dering of the white cells is still blocked on glSemaphoreP operations, waiting for
rendering of their more distant neighbors.

3.6. IMPLEMENTATIONS 63

3.6 Implementations

3.6.1 Argus: A Software Implementation
In order to test the viability of the parallel API extensions, we have implemented a soft-

ware graphics library that is capable of handling multiple simultaneous graphics contexts.

The name of this implementation is Argus, and the performance achieved with the paral-

lel API using this system demonstrates the utility and feasibility of the ideas presented

thus far.

3.6.1.1 Architecture
Argus is a shared memory multiprocessor graphics library that was designed to serve as a

test-bed for various studies in graphics architecture. Argus implements a subset of

OpenGL as well as the parallel API extensions. At the heart of Argus is a lightweight

multiprocessor threads package. We implement a graphics architecture by allocating a

thread for each processing node (e.g., geometry processor). A custom scheduler is used

to schedule these threads onto system processors appropriately. Furthermore, if a system

processor running application code is blocked for some reason due to the graphics (e.g., a

buffer fills up or a glFinish is pending), the threads package will run graphics threads on

the otherwise idle application processor.

There are three basic types of threads in the serial API version of Argus. An applica-

tion thread runs application code and manages the graphics context. A geometry thread

transforms and shades the primitives encoded in the graphics instruction stream. A

rasterization thread is responsible for drawing these transformed primitives into the

framebuffer. The version of Argus that implements the serial API is a sort-middle tiled

parallel graphics system [Molnar et al. 1994]. Graphics commands from a single applica-

tion thread fill a global command queue that is drained by many geometry threads. The

number of geometry threads is scalable since the data in this global command queue can

be read in parallel. Of course, the geometry threads must synchronize at a single point of

64 CHAPTER 3. SCALABLE GRAPHICS INTERFACE

contention in order to distribute the work in the queue; however, because the contention

is amortized over a large number of primitives, this cost is insignificant in our implemen-

tation. After the appropriate computation, the geometry threads distribute the trans-

formed primitives among the appropriate tile rasterizers. Though the details are beyond

the scope of this thesis, reorder buffers in front of each rasterizer are used to maintain the

ordering found in the global command queue across the rasterizers. Since each tile

rasterizer is responsible for a contiguous portion of the screen, no one rasterizer needs to

see all of the primitives; thus, the rasterization architecture is scalable. Argus supports a

variety of schemes for load balancing tile rasterization. For the results presented here, we

used distributed task queues with stealing.

The version of Argus that implements the parallel API extends the serial API archi-

tecture to allow multiple simultaneous graphics streams. Each application thread is aug-

mented by a local command queue and a synchronization thread. Instead of entering

graphics commands onto the global command queue, each application thread fills its lo-

cal command queue. The synchronization thread is then responsible for transferring

commands from this local command queue onto the global command queue. Since the

global command queue may be written in parallel, the architecture is scalable.

Figure 3.4 illustrates the pipeline in greater detail and explains how state management

and synchronization commands are implemented within Argus. The pipeline contains

several threads, shown as gray boxes, which communicate through a variety of queues.

In this example, two application threads are drawing into the same framebuffer through

two different contexts. The graphics data from the two contexts is shown with single-

and double-underline type.

One key design issue that comes up in implementing the parallel API is the handling

of the graphics state since most commands affect rendering through state changes. API

commands are issued by the ‘App’ threads shown at the top of the diagram. Commands

that modify state that is not necessary for the rendering of the current GL primitive (e.g.,

the bottom entries of the matrix stack) are tracked in the context state (e.g., CS). Com-

mands that modify state that is necessary for rendering the current GL primitive (e.g., the

3.6. IMPLEMENTATIONS 65

top entry of the matrix stack) are tracked in the current geometry state (e.g., GS2), but old

versions of the geometry state (e.g., GS1) are kept until they are no longer needed by the

rest of the pipeline. Commands that specify the current primitive (i.e., commands which

are allowed within glBegin and glEnd, such as glNormal and glVertex) are grouped into

fixed-size primitive blocks (denoted by Pi). A primitive block and its related geometry

state contain all the information necessary for the rendering of the primitives, and multi-

ple primitive blocks can share the same geometry state. For example, primitive blocks P2

and P3 both use the same geometry state GS2. Every time a primitive block fills up or the

geometry state changes, a pair of pointers (which are represented in the diagram by pa-

rentheses) is added to the local command queue (LCQ) by the ‘App’ thread; synchroniza-

tion commands (Sema) are inserted into this queue directly.

Another key implementation design issue in any parallel API implementation is the

merging of graphics streams and the resolution of synchronization commands. In Argus,

each context has a ‘Sync’ thread which is responsible for moving data from its LCQ onto

a global command queue (GCQ). ‘Sync’ threads execute the synchronization commands

found in the LCQ (as illustrated by the dotted green line). When ‘Sync’ threads are not

blocked due to synchronization, they copy the pointers from their LCQ onto the GCQ.

This creates a sequence in the GCQ that is strictly ordered with respect to any one context

and consistent with the constraints imposed by the synchronization commands. For ex-

ample, the sequence found in the GCQ of the diagram keeps the order {P1, P2, P3} and

{P1, P2, P3}. The sequence is also consistent with the semaphore pair (which requires an

ordering that puts {P1, P2} in front of {P2, P3}).

Beyond the GCQ, the Argus pipeline is similar to a graphics pipeline that implements

a serial API. The ‘Geom’ threads drain the GCQ and fill the triangle queue by converting

the geometry state (GSi) and the 3D data from primitive blocks (Pi) into rasterization state

(RSi) and 2D triangle blocks (Ti). Each ‘Rast’ thread is responsible for drawing into one

tile of the framebuffer, and the ‘Geom’ threads insert pointers into the appropriate rasteri-

zation buffers based on the tiles that are overlapped by the triangles in the triangle block.

These reorder buffers are used as a mechanism for maintaining ordering.

66 CHAPTER 3. SCALABLE GRAPHICS INTERFACE

Sync

App

Geom

Rast

…

P3

P2

P1

…

…

GS2

GS1

…

CS

Rast

Geom

…

(P3) (GS2)

(P2) (GS2)

Sema P

(P1) (GS1)

…

App

…

P3

P2

P1

…

…

GS2

GS1

…

CS

…

(P3) (GS2)

Sema V

(P2) (GS1)

(P1) (GS1)

…

Sync

…

(P3) (GS2)

(P3) (GS2)

(P2) (GS2)

(P2) (GS1)

…

(P1) (GS1)

(P1) (GS1)

Geom Geom

…

T3 RS2

T3 RS2

T2 RS2

T2 RS1

…

T1 RS1

T1 RS1

…

(T3 RS2)

(T2 RS1)

…

(T1 RS1)

…

(T3 RS2)

(T2 RS2)

…

…

(T3 RS2)

(T2 RS2)

…

(T1 RS1)

…

(T3 RS2)

(T3 RS2)

(T2 RS1)

…

(T1 RS1)

Rast Rast

All-to-All Network

Data
CS Context State
GS Geometry State
RS Rasterization State
P Primitive Block
T Triangle Block
(X) Pointer to X

Thread
App Application
Sync Synchronization
Geom Geometry
Rast Tile Rasterization

Data Sizes
Context State 4 KB
Geometry State 1 KB
Rasterization State 0.125 KB
Primitive Block 16 KB
Triangle Block 64 KB

Queue Lengths
Geometry State Queue 256 entries
Primitive Block Queue 256 entries
Local Command Queue 256 entries
Global Command Queue 256 entries
Triangle Queue 512 entries
Rasterization Queue 256 entries

Local Command Queue

Global Command Queue

Geometry State

Context State

Primitives

Triangle
Queue

Tile Reorder Buffer

Figure 3.4: The Argus Pipeline

3.6. IMPLEMENTATIONS 67

3.6.1.2 Performance
Because poor performance often hides architectural bottlenecks, Argus was designed

with performance as one of its main criteria. Although Argus can run on many architec-

tures, particular care was taken to optimize the library for the Silicon Graphics Origin

system [Laudon & Lenoski 1997]. The Origin is composed of 195 MHz R10000 proces-

sors interconnected in a scalable NUMA architecture. Depending on the rendering pa-

rameters, the single processor version of Argus is able to render up to 200K triangles per

second; this rendering rate scales up to 24 processors. In its original incarnation, Argus

was designed for a serial interface and many serial applications were not able to keep up

with the scalable performance of the graphics system. Remedying this situation led us to

the development of the parallel API.

To study the performance of our parallel API implementation, we ran two applica-

tions: Nurbs and March. Nurbs is an immediate-mode patch tessellator parallelized by

distributing the individual patches of a scene across processors in a round-robin manner.

By tessellating patches on every frame, the application may vary the resolution of the

patches interactively, and because depth buffering is enabled, no ordering constraints are

imposed in the drawing of the patches—synchronization commands are utilized only on

frame boundaries. Our second application, March, is a parallel implementation of the

marching cubes algorithm [Lorensen & Cline 1987]. By extracting the isosurface on

every frame, the application may choose the desired isosurfaces interactively. Rendering

is performed in back-to-front order to allow transparency effects by issuing graphics

semaphores that enforce the dependencies described in Section 3.5.2. One noteworthy

difference between our implementation and the one outlined in Section 3.5.2 is that cells

are distributed from a centralized task queue rather than in round-robin order because the

amount of work in each cell can be highly unbalanced. The input characteristics and pa-

rameter settings used with each of these applications are shown below:

68 CHAPTER 3. SCALABLE GRAPHICS INTERFACE

 Nurbs March
armadillo dataset skull dataset
102 patches 256K voxels (64x64x64)
196 control points per patch cell size at 16x16x16
117504 stripped triangles 53346 independent triangles
1200x1000 pixels 1200x1000 pixels

Figure 3.5a and Figure 3.5b show the processor speedup curves for Nurbs and March,

respectively. The various lines in the graph represent different numbers of application

threads. The serial application bottleneck can be seen in each case by the flattening of

the "1 Context" curve: as more processors are utilized, no more performance is gained.

Whereas the uniprocessor version of Nurbs attains 1.65 Hz, and the serial API version is

limited to 8.8 Hz, the parallel API version is able to achieve 32.2 Hz by using four con-

texts. Similarly, the uniprocessor version of March gets 0.90 Hz, and the serial API ver-

sion of March is limited to 6.3 Hz, but the parallel API version is able to attain 17.8 Hz

by utilizing three contexts. These speedups show high processor utilization and highlight

the implementation’s ability to handle extra contexts gracefully.

One extension to Argus that we are considering is the use of commodity hardware for

tile rasterization. Although this introduces many difficulties, it also increases rasteriza-

tion rate significantly. In order to simulate the effects of faster rasterization on the viabil-

ity of the parallel API, we stress the system by running Argus in a simulation mode that

imitates infinite pixel fill rate. In this mode, the slope calculations for triangle setup do

occur, as does the movement of the triangle data between the geometry processors and

the tile rasterizers. Only the rasterization itself is skipped. The resulting system in-

creases the throughput of Argus and stresses the parallel API: Figure 3.6a and Figure 3.6b

show how a greater number of contexts are required to keep up with the faster rendering

rate. The parallel API allows Argus to achieve peak frame rates of 50.5 Hz in Nurbs and

40.9 Hz in March. This corresponds to 5.9 million stripped triangles per second in Nurbs

and 2.2 million independent triangles per second in March. These rates are approxi-

mately double the rate at which a single application thread can issue primitives into Ar-

gus even when no application computation is involved, thus demonstrating the impor-

tance of multiple input ports.

3.6. IMPLEMENTATIONS 69

0 4 8 12 16 20 24

Processors

0

4

8

12

16

20

24

Sp
ee

du
p

(a)
Nurbs

0 4 8 12 16 20 24

Processors

0

4

8

12

16

20

24

Sp
ee

du
p

(b)
March

0 4 8 12 16 20 24

Processors

0

4

8

12

16

20

24

Sp
ee

du
p

Legend

1 Context
2 Contexts
3 Contexts
4 Contexts
5 Contexts
6 Contexts
7 Contexts
8 Contexts

Ordered
Unordered

Figure 3.5: Argus Speedup Graphs
The speedup curves for two applications, Nurbs and March, are drawn in (a) and
(b) for a varying numbers of contexts.

70 CHAPTER 3. SCALABLE GRAPHICS INTERFACE

0 4 8 12 16 20 24

Processors

0

4

8

12

16

20

24

Sp
ee

du
p

(a)
Nurbs / no rast

0 4 8 12 16 20 24

Processors

0

4

8

12

16

20

24

Sp
ee

du
p

(b)
March / no rast

0 4 8 12 16 20 24

Processors

0

4

8

12

16

20

24

Sp
ee

du
p

Legend

1 Context
2 Contexts
3 Contexts
4 Contexts
5 Contexts
6 Contexts
7 Contexts
8 Contexts

Ordered
Unordered

Figure 3.6: Argus Speedup Graphs without Rasterization
The speedup curves for Nurbs and March are drawn in (a) and (b) for a varying
numbers of contexts assuming an infinite fill rate

3.6. IMPLEMENTATIONS 71

One important aspect of any implementation of the parallel API is the amount of

buffering required to make the API work. Without enough buffering, the parallel API

serializes: in Argus, if a local command queue fills up before its synchronization com-

mands are resolved, the application thread is forced to wait. Intuitively, we expect the

amount of buffering required to be sensitive to the amount of synchronization between

different threads. This is quantified in the speedup curves of Figure 3.7a for 24 proces-

sors. The number of entries in the local command queue (each can point to a 16 KB

block of primitive commands or hold a single synchronization command) was varied

from 1 to 256. The runs were performed on the March application with the semaphores

both enabled (the solid “Ordered” lines) and disabled (the dotted “Unordered” lines). As

one would expect, the ordered version requires significantly larger buffers.

Another key aspect of any parallel API implementation is its ability to minimize the

cost of synchronization. If the granularity of the application is too fine, synchronization

costs can dominate, and the application is forced to use a coarser subdivision of work. If

the work is subdivided too coarsely, load imbalance can occur within the application.

The effects of granularity on Argus were tested by varying the dimensions of the cells on

both the ordered and unordered versions of March. The number of processors was held

at 24 and timings were taken with varying numbers of contexts, as illustrated in Figure

3.7b. A granularity that is too fine deteriorates performance in both the application (as

demonstrated by the unordered runs) as well as in the graphics system (as demonstrated

by the extra performance hit taken by the ordered runs). For the March application, there

is a wide range of granularities (well over an order of magnitude in the number of voxels)

that work well since Argus was designed to keep the cost of synchronization low. When

March is run without isosurface extraction and rendering (i.e., nothing but the synchroni-

zation primitives are issued), several hundred thousand semaphore operations are re-

solved per second.

72 CHAPTER 3. SCALABLE GRAPHICS INTERFACE

1 2 4 8 16 32 64 128 256

Local Command Queue Size

0

4

8

12

16

20

24

Sp
ee

du
p

(a)
March / no rast @ 24 procs

4 8 12 16 20 24 28 32

Cell Dimensions

0

4

8

12

16

20

24

Sp
ee

du
p

(b)
March / no rast @ 24 procs

0 4 8 12 16 20 24

Processors

0

4

8

12

16

20

24

Sp
ee

du
p

Legend

1 Context
2 Contexts
3 Contexts
4 Contexts
5 Contexts
6 Contexts
7 Contexts
8 Contexts

Ordered
Unordered

Figure 3.7: Effects Buffering and Granularity on Argus
The effects of varying buffer sizes for March are illustrated in (a), and the effects
of synchronization granularity are illustrated in (b).

3.6. IMPLEMENTATIONS 73

3.6.2 Pomegranate: A Hardware Implementation
The Pomegranate architecture [Eldridge et al. 2000] is a hardware rendering system that

achieves fully scalable performance in all the key metrics of Section 2.2.1 while retaining

an ordered, immediate-mode interface. A key enabler of this scalability is the parallel

API. By providing hardware support for multiple graphics contexts and the parallel API,

the system is able to scale the input rate into the system.

3.6.2.1 Architecture
Hardware implementations of the parallel API pose a significant challenge. While sup-

port for multiple state and the actual implementation of barriers and semaphores are not

very difficult, the parallel API requires that some or all of the graphics resources to be

virtualized, and more importantly, subject to preemption and context switching. Imagine

an application of (n +1) graphics contexts running on a system that supports only n simul-

taneous contexts in hardware. If a graphics barrier is executed by these (n +1) contexts,

at least one of the n running contexts will need to be context switched out to allow the (n

+1)th context to run. Furthermore, the parallel API introduces the possibility of deadlock.

Imagine a poorly written graphics application that executes a glSemaphoreP on a sema-

phore that never receives a corresponding glSemaphoreV. At the very least, the system

should be able to preempt the deadlocked graphics context and reclaim those resources.

Performing this task in a software implementation is trivial due to the support for process

preemption from the microprocessor and operating system.

Resolving the preemption problem while maintaining scalability in hardware per-

formance was one of the most difficult challenges of the Pomegranate architecture. One

solution to the preemption problem is the ability to read back all of the state of a hard-

ware context and then restart the context at a later time. Although this may seem straight-

forward, it is a daunting task. Because a context may block at any time, the preempted

state of the hardware is complicated by partially processed commands, large, partially-

filled FIFOs, and in-flight network packets. As a point of comparison, microprocessor

74 CHAPTER 3. SCALABLE GRAPHICS INTERFACE

preemption—which has a much more coherent architecture compared to a graphics sys-

tem—is generally viewed by computer architects as a great complication in high-

performance microprocessors.

A second approach to the preemption problem, used by Pomegranate, is to resolve the

API commands in software, utilizing the preemption resources of the microprocessor.

With this approach, even though ordering constraints may be specified to the hardware,

every piece of work specified is guaranteed by the software to eventually execute. Like

Argus, each graphics context has an associated submit thread that is responsible for re-

solving the parallel API primitives. The application thread communicates with the sub-

mit thread via a FIFO, passing pointers to blocks of OpenGL commands and directly

passing synchronization primitives. If the submit thread sees a pointer to a block of

OpenGL commands, it passes this directly to the hardware. If the submit thread sees a

parallel API command, it actually executes the command, possibly blocking until the

synchronization is resolved. This allows the application thread to continue submitting

OpenGL commands to the FIFO beyond a blocked parallel API command. In addition to

executing the parallel API command, the submit thread passes the hardware a sequencing

command that maintains the order resolved by the execution of the parallel API com-

mand. The important part of this hardware sequencing command is that even though an

ordering is specified, the commands are guaranteed to be able to drain. Therefore, the

hardware sequencing command for a glSemaphoreP will not be submitted until the hard-

ware sequencing command for the corresponding glSemaphoreV is submitted. As with

Argus, a blocked context is blocked entirely in software, and software context switching

and resource reclamation may occur.

In order to keep hardware from constraining the total number of barriers and sema-

phores available to a programmer, Pomegranate’s internal hardware sequencing mecha-

nism is based on sequence numbers. In Argus, a single global sequence number is used

to order commands on a single global command queue. There are two problems with this

approach. First, a global order is decided earlier than necessary in situations where no

dependencies exist between graphics contexts. Delaying this decision until a later stage

3.6. IMPLEMENTATIONS 75

in the pipeline (e.g., ideally until fragment processing) could potentially lead to an im-

provement. Second, and more importantly, while the cost of a single point of synchroni-

zation for the global sequence number is small in a software system when it is amortized

over several dozen primitives, such a global synchronization would have been a perform-

ance limit in Pomegranate, whose performance is two orders of magnitude greater. In

order to avoid a global synchronization when only a point-to-point synchronization is

necessary (i.e., semaphores), Pomegranate uses a single sequence number per hardware

context. Upon executing a glSemaphoreV operation, the submit thread increments the

hardware context’s sequence number by one to indicate a new ordering boundary, anno-

tates the semaphore with a (ctx, seq) pair and issues an Advance(ctx, seq) command to

the hardware. Upon completing the glSemaphoreP operation, the signaled submit thread

removes the corresponding (ctx, seq) annotation from the semaphore and issues an

Await(ctx, seq) command to the hardware. These commands are then executed just be-

fore the rasterization stage by the hardware. A similar mechanism is used for barriers, as

illustrated in Figure 3.8. The sequence numbers are associated with a particular hardware

context, not with a virtual graphics context, and when a context switch occurs, it is not

reset. This allows the expression of dependencies for contexts that are switched out of

the hardware, and thus the system can execute the (n + 1) context barrier.

 Context A
Advance(A, seqA)

Await(D, seqD)

Context B
Advance(B, seqB)

Await(D, seqD)

Context C
Advance(C, seqC)

Await(D, seqD)

Context D

Await(A, seqA)
Await(B, seqB)
Await(C, seqC)
Advance(D, seqD)

Figure 3.8: Barriers in Pomegranate
This figure depicts the resolution of a parallel API barrier across four contexts
once all the commands have reached the barrier. Three contexts generate se-
quence points and a wait command for the last context. The last context to arrive
at the barrier submits wait commands for those three sequence points to ensuring
that every hardware context has reached the barrier. Additionally, context D
emits a sequence point that signify its execution of the barrier, allowing the other
contexts to move forward. Alternatively, each context could wait on all the other
contexts, but that requires order O(n2) communication, while this solution is O(n).

76 CHAPTER 3. SCALABLE GRAPHICS INTERFACE

3.6.2.2 Performance
The performance of both Nurbs and March were measured on Pomegranate’s cycle-

accurate simulator. The system can be scaled from 1 to 64 pipelines, and each pipeline is

capable of receiving input at the rate of 1 GB per second. In order to tax the graphics

system, CPU processing power is assumed to be infinite. The triangle rate is approxi-

mately 20 million triangles per second (depending on the number of lights, etc.), and the

pixel rate is 400 million pixels per second per pipeline. In order to provide measurements

at reasonable frame rates, the input scenes were scaled as follows:

 Nurbs March
armadillo dataset (textured) orangutan dataset
1632 patches x 8 passes 64M voxels (400x400x400)
512 triangles per patch cell size at 12x12x12
6.68M stripped triangles 1.53M independent triangles
2500x2000 pixels 2500x2000 pixels

In order to demonstrate the system’s ability to speed up a dataset with a total order,

semaphores are used between patches to enforce a total order on Nurbs. The Nurbs data-

set uses stripped textured triangles, allowing for over 22 million triangles per second

from the interface of each pipeline, and the single pipeline system is limited by transfor-

mation and lighting to just over 17 million triangles per second. The March dataset uses

untextured independent triangles, and a single pipeline system is limited by the input rate

to around 10 million triangles per second.

Figure 3.9 shows Pomegranate’s speedup on Nurbs and March. As the number of

pipelines and interfaces to the system are scaled from 1 to 64, near-linear speedup is

achieved. Pomegranate’s novel sorting architecture (Section 2.2.2.5) is critical to provid-

ing linear speedup in triangle rate, and the parallel API scales the input rate. Even with a

complete ordering specified, Nurbs is able to attain 99% efficiency at 64 pipelines.

March attains a speedup of 58 at 64 pipelines. Although ordering is less constrained in

March than in Nurbs, March requires many more synchronization primitives than Nurbs

(3 semaphore pairs per 123 voxel containing an average of 38.8 triangles vs. 1 semaphore

pair per patch containing 512 triangles).

3.6. IMPLEMENTATIONS 77

3.6.3 WireGL: A Transparent Implementation
WireGL is a sort-first architecture based on PCs [Buck et al. 2000]. As described in Sec-

tion 2.2.2.1, this architecture achieves scalability by leveraging of unmodified graphics

cards at commodity price points to render into a tiled display. Because a PC graphics

card can render as fast as commands can be submitted, the parallel API is critical to

achieving scalable performance. In this system, each application thread is a client hosted

on a different PC, and graphics commands are sent across a network to the appropriate

server PCs based on the screen-space subdivision where rendering occurs. Because each

rendering node is an unmodified PC graphics card that does not support the parallel API,

1 4 8 16 32 64

pipelines

1
4

8

16

32

64
sp

ee
du

p

Ideal
Nurbs
March

1102 Mtri/s
0.96 Gpix/s

557 Mtri/s
3.79 Gpix/s

Figure 3.9: Pomegranate Speedup Graph

78 CHAPTER 3. SCALABLE GRAPHICS INTERFACE

the parallel API must be implemented in software in a transparent layer on top of the

standard OpenGL implementation supported by the hardware. Parallel API commands

are sent across the network, and the execution of the commands occurs in software on the

servers by threads vying for the single graphics card.

State tracking plays a critical role in providing scalability in WireGL, both on the cli-

ent side as well as on the server side. On the client side, blocks of primitive commands

(i.e., those appearing between glBegin and glEnd) are packed into a compressed format

and sent to only the appropriate rendering servers based on a bounding-box computation.

For state-modifying commands, the client application thread allocates a dirty bit for each

rendering server for each piece of state. For performance reasons, a hierarchical scheme

is used to group each piece of state into one of 18 categories, and a dirty bit vector is kept

for each category. When the application calls a state command, all the bits in the state bit

vector are set to 1, and all the bits in the category vector are set to 1, indicating that the

virtual context of the application thread is possibly out of sync with all the rendering

servers. These bit changes accumulate until a primitive block is submitted to the applica-

tion thread. At this point, the client computes the state difference between its virtual con-

text and only the servers that the primitive block overlaps and sends state updates. The

appropriate bits in the dirty bit vectors are then cleared. This lazy update scheme is im-

portant because broadcasting state would limit scalability.

On the server side, the same state tracking mechanism is used to support the parallel

API. Each client needs a unique graphics context to support the parallel API, but PC

graphics cards typically support a single hardware context. Because context switching on

PC graphics cards is relatively slow (anywhere from a few dozen to several thousand

context switches per second), context switching between client contexts would be pro-

hibitively expensive because ordering constraints from the parallel API would force fre-

quent switches. To remedy this, state tracking is used to perform a software context

switch. A dirty bit vector is kept for each piece of state to indicate which clients contexts

are out of sync with the hardware context. Each time a client modifies a piece of state,

the bit vector is set. Then, when a client is context switched into the hardware because of

3.7. IMPLEMENTATION ALTERNATIVES 79

an ordering constraint, the appropriate bit of each vector is cleared if the client state is the

same as the hardware state. As before, a hierarchical scheme is used to minimize the

number of tests required.

3.7 Implementation Alternatives
Argus, Pomegranate, and WireGL are three implementations of the parallel API that per-

form well. Obviously, these architectures are not the only possible choices, and it is in-

structive to examine the design considerations of alternative implementations due to the

special architectural requirements imposed by the extensions.

3.7.1 Consistency and Synchronization
Until now, we have not said much about how the operations of the parallel API can be

interleaved. Supporting multiple contexts that share a framebuffer means that the system

must provide a consistency model. We borrow the notion of sequential consistency from

the field of computer architecture [Lamport 1979]. Imagine a system consisting of multi-

ple processes simultaneously performing atomic operations. A sequentially consistent

system computes a result that is realizable by some serial interleaving of these atomic op-

erations. By making a single API command be the level of apparent atomicity, we define

the notion of command-sequential consistency, the strongest form of consistency possible

within the parallel API. At the other end of the spectrum is framebuffer-sequential con-

sistency—only framebuffer accesses are atomic. A whole spectrum of consistency mod-

els can be enumerated in such a fashion. The OpenGL specification does not require an

implementation to support any consistency model. In order to support the parallel API,

however, a graphics system should provide at least fragment-sequential consistency in

order to support features that depend on an atomic read-modify-write operation on the

framebuffer (such as depth buffering).

80 CHAPTER 3. SCALABLE GRAPHICS INTERFACE

The consistency model which an architecture supports is related to the location in the

pipeline where synchronization constraints between graphics streams are resolved. The

Argus pipeline described in Section 3.6.1 and the WireGL pipeline described in Section

3.6.3 synchronize and merge multiple graphics streams early in the pipeline (before ge-

ometry processing), thus supporting command-sequential consistency. One drawback

with such architectures is that geometry processing cannot occur on primitives that are

blocked due to synchronization constraints. Another problem is that ordering dependen-

cies not required by the synchronization commands are introduced early in the pipeline.

The Pomegranate pipeline described in Section 3.6.2, on the other hand, resolves final

ordering dependencies just before the rasterization stage. This results in sequential con-

sistency on the architecture’s 2D screen-space primitives.

The choice of the point of synchronization has large implications for the overall ar-

chitecture. For example, Argus originally merged graphics streams at the rasterizers.

Because the system was in software, the entire pipeline up to and including the tile

rasterization threads was replicated for each context. Every tile thread executed every

synchronization command, and threads that share the same tile merge their streams by

obtaining exclusive access to the tile. One disadvantage of this approach is the extra

buffering requirements because the size of the graphics data expands as it gets farther

down the pipeline. Another problem with this alternate approach is the high cost of syn-

chronization since synchronization commands must be executed by every tile rasterizer—

this proved prohibitively expensive in the framework of Argus.

3.7.2 Architectural Requirements
While a graphics system which implements the parallel API is in many respects similar to

one which implements a serial API, an architecture should take special care in addressing

three particular areas. First, the architecture must have a mechanism that efficiently han-

dles multiple simultaneous input streams. Second, the state management capabilities of

the architecture must be able to handle multiple simultaneous graphics states. And third,

3.7. IMPLEMENTATION ALTERNATIVES 81

the rasterization system must be able to handle texture data for multiple streams effi-

ciently.

In designing current systems, graphics architects have gone to great lengths to allow

the seamless sharing of the graphics hardware between multiple windows by significantly

reducing the context switch time. Although this same mechanism can be used for the

parallel API, the context switch time must be reduced even further in order to handle

multiple input streams at a much finer granularity. Argus does this by making use of a

thread library that can switch threads in less than a microsecond as well as allowing mul-

tiple input ports. A hardware system could allow multiple input ports by replicating

command processors. Ideally, each of the command processors could handle either a

single graphics stream at a high rate or multiple graphics streams at lower rates. This

would result in peak performance on serial applications and good performance on highly

parallel applications.

The parallel API imposes special requirements on the handling of state. In past archi-

tectures, state changes have been expensive due to pipeline flushing. Recent graphics

architectures, however, have taken measures to allow large numbers of state changes

[Montrym et al. 1997]. To a first order, the number of state changes for a given scene as

issued by one application thread is the same as the number of state changes for the same

scene as issued by multiple application threads since the number of inherent state changes

in a scene is constant. However, the parallel API increases the amount of state that has to

be accessible to the different portions of the graphics system: the various graphics proc-

essors must be able to switch between the states of different graphics streams without

dramatically affecting performance. Hardware implementations that allow for multiple

simultaneous contexts have already been demonstrated [Voorhies et al. 1988, Kirkland

1998]. In Argus, multiple simultaneous contexts are handled efficiently by taking advan-

tage of state coherence in the state management algorithm using shared memory and

processor caching. In Pomegranate, direct hardware support is provided. In WireGL, a

novel state tracking system is used.

82 CHAPTER 3. SCALABLE GRAPHICS INTERFACE

One type of state that requires special attention is texture. Unlike the rest of the state

associated with a context (with the exception of display lists), texture state can be shared

amongst multiple contexts, thus exposing the need for efficient download of and access to

shared texture data. The semantics of texture download are the same as all other graphics

commands: it is susceptible to buffering, and synchronization must occur to guarantee its

effects from the point of view of other contexts. Efficient implementations of synchro-

nized texture download can be realized by extending the idea of the “texture download

barrier” found in the SGI InfiniteReality [Montrym et al. 1997]. The access of texture

memory may also require special care. Since hardware systems have a limited amount of

local texture memory, applications issue primitives in an order that exploits texture local-

ity. The parallel API can reduce this locality since the rasterizers can interleave the ren-

dering of several command streams. In architectures that use implicit caching [Hakura &

Gupta 1997, Cox et al. 1998], the effectiveness of the cache can possibly be reduced. In

architectures that utilize local texture memory as an explicit cache, texture management

is complicated. In Argus, shared texture download is facilitated by shared memory, and

locality of texture access is provided by the caching hardware. In Pomegranate, shared

texture download is ordered like all other graphics commands, and cache locality is pro-

vided by dividing texturing work into an appropriately sized granularity.

3.8 Conclusion
In this chapter, we have shown how thread-level parallelism may be introduced to graph-

ics architectures by using a parallel API, addressing the performance limitations of a se-

rial API. This parallel API consists of the simple addition of parallel synchronization

constructs, like barriers and semaphores, to a standard interface such as OpenGL. These

synchronization commands may be used to explicitly order the drawing of primitives

across different graphics contexts, and command submission can proceed in parallel,

without any loss in performance, even if an exact ordering is necessary among the graph-

ics contexts. Furthermore, because of the large amount of parallelism available in graph-

3.8. CONCLUSION 83

ics commands due to a dearth of dependencies (as described in Section 2.1), fully scal-

able rendering rates for large numbers of graphics nodes are possible even when an exact

ordering is required by the application. Contrary to the notion put forth by many graphics

architects (e.g., [Molnar et al. 1992]), there is no need to forgo ordering in graphics archi-

tectures in order to achieve scalability. At worst, ordering introduces a manageable

amount of complexity to the design of a graphics system.

84 CHAPTER 3. SCALABLE GRAPHICS INTERFACE

 85

Chapter 4 Scalable Texture Mapping

Scalable Texture Mapping

In this chapter, we present an architecture for scalable texture mapping and quantify its

effectiveness. There are two important considerations in scaling texture mapping capa-

bilities. First, the texture subsystem must be able to scale the number of fragments it can

texture per second. An obvious scheme for this is to replicate the texturing unit to scale

the amount of computational power available for texturing. In parallel systems, two ef-

fects that limit scalability are load imbalance and redundant work. Because each frag-

ment is textured exactly once, no redundant computation occurs. Furthermore, so long as

the parallel rendering algorithm is able to present an equal number of fragments to each

rasterizer, the computational load to each texturing unit will be balanced. This is only

part of the story, however. Modern texture mapping hardware relies heavily on texture

caching to reduce the amount of bandwidth required for the texture subsystem. Parallel

rasterization techniques tend to reduce the amount of locality available in each texturing

unit’s fragment stream, resulting in redundant work in terms of memory bandwidth. Fur-

thermore, the bandwidth requirements of each texturing unit’s fragment stream may vary

greatly, resulting in load imbalance. These effects are studied in depth later in this chap-

ter.

A second component of scalable texture memory is scaling the amount of texture

memory available to an application. If each texturing unit is given its own dedicated tex-

86 CHAPTER 4. SCALABLE TEXTURE MAPPING

ture memory, then textures downloaded by the application must be replicated across the

texturing units, and the total amount of texture memory does not scale. On the other

hand, if each texturing unit is able to share its texture memory with other texturing units,

the total amount of texture memory available to the application scales linearly. Such a

system presents two challenges. First, the texture data must be spread across the texture

memories in a fashion that minimizes load imbalance in the number of requests to each

texture memory. Second, unlike a dedicated memory system that delivers texture data

with a fixed latency, network contention and memory contention in a shared texture

memory system can cause highly variable latencies.

In Section 4.1, we examine and measure a texture cache architecture that can tolerate

arbitrarily high and highly variable latencies. Such a system is applicable to serial textur-

ing units accessing a dedicated texture memory or a shared system memory as well as

parallel texturing units accessing a dedicated or shared texture memory. This architecture

builds a foundation upon which a parallel texture architecture may be implemented. In

Section 4.2, we present a framework for scaling texture mapping and quantify its per-

formance across a variety of rasterization scheme.

4.1 Prefetching in a Texture Cache
Texture mapping has become so ubiquitous in real-time graphics hardware that most sys-

tems are able to perform filtered texturing without any penalty in fill rate. The computa-

tion rates available in hardware are outpacing the memory access rates, and texture sys-

tems are becoming constrained by memory bandwidth and latency. Caching in conjunc-

tion with prefetching can be used to alleviate this problem.

In this section, we introduce a prefetching texture cache architecture designed to take

advantage of the access characteristics of texture mapping. The structures needed are

relatively simple and are amenable to high clock rates. To quantify the robustness of our

architecture, we identify a set of six scenes whose texture locality varies over nearly two

orders of magnitude and a set of four memory systems with varying bandwidths and la-

4.1. PREFETCHING IN A TEXTURE CACHE 87

tencies. Through the use of a cycle-accurate simulation, we demonstrate that even in the

presence of a high-latency memory system, our architecture can attain at least 97% of the

performance of a zero-latency memory system.

4.1.1 Introduction
Texture mapping is expensive both in computation and in memory accesses. Continual

improvement in semiconductor technology has made the computation relatively afford-

able, but memory accesses have remained troublesome. Several researchers have pro-

posed and demonstrated texture cache architectures that can reduce texture memory

bandwidth. Hakura and Gupta examine different organizations for on-chip cache archi-

tectures which are useful for exploiting locality of reference in texture filtering, texture

magnification, and to a limited extent, repeated textures [Hakura & Gupta 1997]. Cox et

al. extend this work to multi-level caching [Cox et al. 1998]. They demonstrate that on-

chip caches in conjunction with large off-chip caches can be used to exploit all of the

aforementioned forms of texture locality as well as inter-frame texture locality. Thus,

memory bandwidth requirements can be dramatically reduced for scenes in which the

working set of a frame fits into the off-chip cache.

A second troublesome point about texture memory access (which is not addressed by

Hakura or Cox) is the high latencies of modern memory systems. In order to address this

problem, several systems are described that make use of large pipelines that prefetch the

texel data [Kilgard 1996, Torborg & Kajiya 1996, Anderson et al. 1997]. Two of the sys-

tems [Kilgard 1996, Anderson et al. 1997] do not use any explicit caching, although their

memory systems are organized for the reference patterns of texture filtering, but one sys-

tem [Torborg & Kajiya 1996] does employ prefetching as well as two levels of caching,

one of which holds compressed textures. However, the algorithm that combines the pre-

fetching with the caching is not described. Several other consumer-level architectures

exist which undoubtedly utilize some form of prefetching, possibly with caching. Unfor-

tunately, none of these algorithms are described in the literature. In this section, we in-

troduce a texture architecture that combines prefetching and caching.

88 CHAPTER 4. SCALABLE TEXTURE MAPPING

4.1.2 Mip Mapping
Texture mapping, in its most basic form, is a process by which a 2D image is mapped

onto a projected screen-space triangle under perspective. This operation amounts to a

linear transformation in 2D homogeneous coordinates. The transformation is typically

done as a backward mapping—for each pixel on the screen, the corresponding coordinate

in the texture map is calculated. The backward mapped coordinate typically does not fall

exactly onto a sample in the texture map, and the texture may be minified or magnified

on the screen. Filtering is applied to minimize the effects of aliasing, and ideally, the fil-

tering should be efficient and amenable to hardware acceleration.

Mip mapping [Williams 1983] is the filtering technique most commonly implemented

in graphics hardware. In mip mapping, an image pyramid is constructed from the base

image which serves as the bottom of the pyramid. Each successive level of the pyramid

is constructed by resampling the previous level of the pyramid by half in each dimension,

as illustrated in Figure 4.1. For each screen-space fragment, the rasterization process

computes a texture coordinate and an approximate texel-to-pixel ratio (also known as the

level-of-detail value). This ratio is used to compute the two closest corresponding mip

map levels, and a bilinear interpolation is performed on the four nearest texels in each of

Level 0

Level 2

Level 3

Reconstructed
Sample

Level 1

Figure 4.1: Mip Mapping
An image is filtered recursively into quarter-sized images. Trilinear interpolation
reconstructs a sample by linearly interpolating between two adjacent levels of the
mip map, each of which is sampled with bilinear filtering on the four closest tex-
els in that level of the mip map.

4.1. PREFETCHING IN A TEXTURE CACHE 89

the two adjacent levels. These two values are then combined with linear interpolation

based on the level-of-detail value, and the resulting trilinearly interpolated sample is

passed to the rest of the graphics pipeline. If a fragment falls beyond either end of the

mip map pyramid, the algorithm performs bilinear filtering on the one closest level of the

mip map.

The popularity of mip mapping can be attributed to three characteristics. First, mip

mapping reduces many aliasing artifacts. Although it is by no means an ideal filter, espe-

cially since it often blurs excessively, the results are quite acceptable for interactive ap-

plications. Second, the computational costs of mip mapping, though by no means cheap,

are reasonable and fixed for each fragment. Finally, mip mapping is efficient with re-

spect to memory. The additional space required for the pyramid representation is only

one-third the space occupied by the original image. Furthermore, because the level-of-

detail computation is designed to make one step in screen space correspond to approxi-

mately one step in the appropriate mip map level, the memory access pattern of mip

mapping is very coherent.

4.1.3 Caching and Prefetching
For the past few decades, many aspects of silicon have been experiencing exponential

growth. However, not all aspects have grown at the same rate. While memory density

and logic density have seen tremendous growth, logic speed has experienced more mod-

erate growth, and memory speed has experienced slight growth. These factors have made

the cost of computation on a chip very cheap, but memory latency and bandwidth some-

times limit performance. Even with the advent of memory devices with high-speed inter-

faces [Crisp 1997], it is easy to build a texturing system that outpaces the memory it ac-

cesses. The problem of directly accessing DRAM in a texture system is aggravated by

the fact that memory devices work best with transfers that do not match the access pat-

terns of texture mapping: DRAM provides high bandwidth when moving large contigu-

ous blocks of memory, but a fragment’s texture accesses typically consist of several small

non-contiguous memory references.

90 CHAPTER 4. SCALABLE TEXTURE MAPPING

An obvious solution to this problem is caching. Many issues are resolved by integrat-

ing a small amount of high-speed, on-chip memory organized to match the access pat-

terns of the texture system. According to our measurements (detailed in Section 4.1.5.1)

as well as data found in other literature [Hakura & Gupta 1997, Cox et al. 1998], it is

quite reasonable to expect miss rates on the order of 1.5% per access. Many texture sys-

tems are capable of providing the computation for a trilinearly mip mapped fragment on

every clock cycle. Thus, because there are eight texture accesses per cycle, the per-

fragment texel miss rate is 12%. Even if these misses could be serviced in a mere 8 cy-

cles each, a calculation of the average memory access time shows that overall perform-

ance is cut in half. Clearly, this is not acceptable.

While caching can alleviate the memory bandwidth problem, it does not solve the

memory latency problem. The latency problem with relation to texture caching is a spe-

cial one. In current interactive graphics interfaces, texture accesses are read-only for

large amounts of time, and address calculation for one texture access is never dependent

on the result of another texture access. Thus, there are no inherent dependencies to limit

the amount of latency that can be covered. This means that a prefetching architecture

should be capable of handling arbitrary amounts of latency.

4.1.3.1 Traditional Prefetching
In the absence of caching, prefetching is very easy. When a fragment is ready to be tex-

tured, the memory requests for the eight texel accesses are sent to the memory system,

and the fragment is queued onto a fragment FIFO. When the replies to the memory re-

quests arrive, the fragment is taken off the FIFO, and the fragment is textured. The time

a fragment spends in the FIFO is equal to the latency of the memory system, and if the

FIFO is sized appropriately, fragments may be processed without ever stalling. For

greater efficiency, part of the fragment FIFO can actually be a fragment processing pipe-

line [Kilgard 1996, Anderson et al. 1997]. Note that this non-caching prefetching archi-

tecture assumes that memory replies arrive in the same order that memory requests are

4.1. PREFETCHING IN A TEXTURE CACHE 91

made, and that the memory system can provide the required bandwidth with small mem-

ory requests.

One straightforward way to combine caching with prefetching is to use the architec-

ture found in traditional microprocessors that use explicit prefetch instructions. Such an

architecture consists of a cache, a fully associative prefetch address buffer, and a memory

request buffer. A fragment in such a system is processed as follows: first, the fragment’s

texel addresses are looked up in the cache tags, and the fragment is stored in the fragment

FIFO. Misses are forwarded to a prefetch buffer that is made fully associative so that

multiple misses to the same memory block can be combined. New misses are queued in

the memory request buffer before being sent to the memory system. As data returns from

the memory system, it is merged into the cache. When a fragment reaches the head of the

fragment FIFO, the cache tags are checked again, and if all of the texels are found in the

cache, the fragment can be filtered and textured. Otherwise, additional misses are gener-

ated, and the system stalls until the missing data returns from memory. Fortunately, the

architecture works even in conjunction with an out-of-order memory system.

There are three problems with using the traditional microprocessor prefetch architec-

ture for texture mapping. First, if the product of the memory request rate and the memory

latency being covered is large compared to the size of the caches utilized, a prefetched

block that is merged into the cache too early can cause conflict misses. Second, in order

to support both reading and prefetching of texels at the full fragment rate, tag checks

must be performed at twice the fragment rate, increasing the cost of the tag logic. Fi-

nally, as the product of the memory request rate and the memory latency increases, the

size (and therefore the associativity) of the prefetch buffer must be increased proportion-

ally.

4.1.3.2 A Texture Prefetching Architecture
While some of the problems with the traditional microprocessor prefetching architecture

can be alleviated, we have designed a custom prefetching architecture that takes advan-

tage of the special access characteristics of texture mapping. This architecture is illus-

92 CHAPTER 4. SCALABLE TEXTURE MAPPING

trated in Figure 4.2. Three key features differentiate this architecture from the one de-

scribed in Section 4.1.3.1. First, tag checks are separated in time from cache accesses,

and tag checks are performed only once per texel access. Second, because the cache tags

are only checked once and always describe the future contents of the cache, a fully asso-

ciative prefetch buffer is not needed. And third, a reorder buffer is used to buffer mem-

ory requests that come back earlier than needed.

The architecture processes fragments as follows. As each fragment is generated, each

of its texel addresses is looked up in the cache tags. If a tag check reveals a miss, the

cache tags are updated with the fragment’s texel address immediately and the address is

forwarded to the memory request FIFO. The cache addresses associated with the frag-

ment are forwarded to the fragment FIFO and are stored along with all the other data

needed to process the fragment, including color, depth, and filtering information. As the

request FIFO sends requests for missing cache blocks to the texture memory system,

space is reserved in the reorder buffer to hold the returning memory blocks. This guaran-

tee of space makes the architecture robust and deadlock-free in the presence of an out-of-

order memory system. A FIFO can be used instead of the reorder buffer if responses

from memory always return in the same order as requests sent to memory.

When a fragment reaches the head of the fragment FIFO, it can proceed only if all of

its texels are present in the cache. Fragments that generated no misses can proceed im-

mediately, but fragments that generated one or more misses must first wait for their cor-

responding cache blocks to return from memory into the reorder buffer. In order to guar-

antee that new cache blocks do not prematurely overwrite older cache blocks, new cache

blocks are committed to the cache only when their corresponding fragment reaches the

head of the fragment FIFO. Fragments that are removed from the head of the FIFO have

their corresponding texels read from the cache and proceed onward to the rest of the tex-

ture pipeline.

Our simulated implementation can handle eight texel reads in parallel, consisting of

two bilinear accesses to two adjacent mip map levels. To support these concurrent texel

reads, we organize our cache tags and our cache memory as a pair of caches with four

4.1. PREFETCHING IN A TEXTURE CACHE 93

banks each. Adjacent levels of a mip map are stored in alternating caches to allow both

mip map levels to be accessed simultaneously. Data is interleaved so that the four ac-

cesses of a bilinear interpolation occur in parallel across the four banks of the respective

cache. Cache tags are also interleaved across four banks in a fashion that allows the tag

checks for a bilinear access to occur without conflict. The details of this layout can be

found in Figure 4.3 of Section 4.1.5.

In order to make our architecture amenable to hardware implementation, we impose

two limitations. First, the number of misses that can be added to the request FIFO is lim-

 Texture
Memory
System

Fragment
FIFO

Tags

Request
FIFO

Reorder
Buffer

Cache

Texels
Other

Fragment
Data

Texel
Addresses

Other
Fragment

Data

Rasterizer

Texture Applicator

Texture
Filter

Miss
Addresses

Cache
Blocks

Cache
Addresses

Cache
Addresses

Filtered
Samples

Figure 4.2: A Texture Prefetching Architecture

94 CHAPTER 4. SCALABLE TEXTURE MAPPING

ited to one miss per cache per cycle. Second, the number of cache blocks that can be

committed to the cache from the reorder buffer is similarly limited to one block per cache

per cycle. These commits match up to the requests—groups of misses that are added to

the request FIFO together are committed to the cache together. This means that each

fragment may generate up to four groups of misses. Because our implementation can

only commit one of these groups per cycle, a fragment that has more than one group of

misses will cause the system to stall one cycle for every group of misses beyond the first.

4.1.4 Robust Scene Analysis
When validating an architecture, it is important to use benchmarks that properly charac-

terize the expected workload. Furthermore, when validating interactive graphics

architectures, an architect should look beyond averages due to various characteristics of

the human perceptual system. For example, if a graphics system provides 60 Hz

rendering for the majority of the frames, but every once in a while drops to 15 Hz for a

frame, the discontinuity is distracting, if not nauseating. In designing a system, the

graphics architect must evaluate whether or not sub-optimal performance is acceptable

under bad-case conditions. Accordingly, a robust set of scenes that cover a broad range

of workloads, from good-case to bad-case, should be utilized to validate a graphics archi-

tecture.
4.1.4.1 Texture Locality
The effectiveness of texture caching is strongly scene-dependent. For example, the size

and distribution of primitives affect texture locality. Texture locality is also affected by

what we call the scene’s unique texel to fragment ratio. Every scene has a number of

texels that are accessed at least once; these texels are called unique texels. Unless caches

are big enough to exploit inter-frame locality (this requires several megabytes [Cox et al.

1998]), every unique texel must be fetched at least once by the cache, imposing a lower

limit on the required memory bandwidth. If we divide this number by the number of

fragments rendered for a scene, we can calculate the unique texel to fragment ratio. Note

that this value is dependent on the screen resolution. A good-case scene will have a low

4.1. PREFETCHING IN A TEXTURE CACHE 95

ratio, and a bad-case scene will have a high ratio. Ideally, the number of texels fetched

by the caching architecture per fragment will be close to the scene’s unique texel to

fragment ratio.

Three factors affect the unique texel to fragment ratio of a scene. First, when a tex-

ture is viewed under magnification, each texel gets mapped to multiple screen pixels, and

the ratio decreases. Second, when a texture is repeated across a surface, the ratio also

decreases. This temporal coherence can be exploited by a cache large enough to hold the

repeated texture. Third, when a mip map texture is viewed under minification, the ratio

becomes dependent on the relationship between texel area and pixel area. This relation-

ship is characterized by the level-of-detail value of the mip mapping computation that

aims to keep the footprint of a backward-mapped pixel equal to the size of a texel in a

mip map level. Although this value is normally calculated automatically, the application

programmer may bias it in either direction, thus modifying the scene’s unique texel to

fragment ratio.

A more surprising effect that occurs even without biasing is characterized by the frac-

tional portion of the level-of-detail value. The level-of-detail value determines the two

levels of the mip map from which samples are taken; the fractional portion is proportional

to the distance from the lower, more detailed level. Given a texture mapped polygon that

is parallel to the screen, a fractional portion close to zero implies a texel area to pixel area

ratio of nearly one in the lower mip map level and a quarter in the upper mip map level,

yielding a texel to fragment ratio near 1.25. Likewise, a fractional portion close to one

implies a texel area to pixel area ratio of four in the lower mip map level and one in the

upper mip map level, yielding a texel to fragment ratio near 5. The ratios are lower for

polygons that are not parallel to the screen. Normally, we expect a wide variation in the

texel to fragment ratio due to the fractional portion of the level-of-detail value. However,

most scenes exhibit worst-case behavior for short amounts of time, and a few scenes ex-

hibit worst-case behavior for large amounts of time.

96 CHAPTER 4. SCALABLE TEXTURE MAPPING

4.1.4.2 The Benchmark Scenes
In order to validate our texture caching architecture, we chose six real-world scenes that

span a wide range of texture locality. These six scenes originated from three traces of

OpenGL applications captured by glstrace, a tool implemented on top of the OpenGL

Stream Codec. In the future, we expect to see more texture for a given screen resolution;

this will increase the unique texel to fragment ratio. To simulate this effect, each of the

traces was captured twice, once with the textures at original size, and once with the tex-

tures at double resolution. Table 4.1 summarizes our six scenes, and high resolution im-

ages can be found in the Color Plate. Our workloads span nearly two orders of magni-

tude in the unique texel to fragment ratio (0.033 to 2.83). This is in contrast to the ratios

in the scenes used by Hakura (0.2 to 1.1) [Hakura & Gupta 1997] and the animations

used by Cox (0.1 to 0.3) [Cox et al. 1998]. These workloads result from the fact that ap-

plications programmers choose the way they use texture according to the needs of the ap-

plication and the constraints of the target systems. We now give a brief summary of each

scene and highlight the points relevant to texture caching:

workload
name quake quake2x flight flight2x qtvr qtvr2x

screen
resolution

1280 x
1024

1280 x
1024

1280 x
1024

1280 x
1024

1280 x
1024

1280 x
1024

depth
cmplxty. 3.29 3.29 1.06 1.06 1.00 1.00

percent
trilinear 30% 47% 38% 87% 0% 100%

unique
texels/frag 0.033 0.092 0.706 1.55 0.569 2.83

Table 4.1: The Benchmark Scenes

4.1. PREFETCHING IN A TEXTURE CACHE 97

• quake. This is a frame from the OpenGL port of the video game Quake. This

application is essentially an architectural walkthrough with visibility culling.

Color mapping is performed on all surfaces that are, for the most part, large

polygons that make use of repeated texture. A second texturing pass blends

low-resolution light maps with the base textures to provide realistic lighting

effects. Approximately 40% of the base textures are magnified, and 100% of

the light maps are magnified.

• quake2x. In order to account for increasing texture resolutions needed for

larger screen resolutions (Quake’s content was geared towards smaller

screens), the texture maps in quake were zoomed by a factor of two to create

quake2x. This results in a scene that magnifies only the light maps.

• flight. This scene from an SGI flight simulator demo shows a jet flying above

a textured terrain map. The triangle size distribution centers around moder-

ately sized triangles, and most textures are used only once. A significant por-

tion of the texture (62%) is magnified.

• flight2x. As texture systems become more capable of handling larger

amounts of texture, applications will use larger textures to avoid the blurring

artifact of filtered magnification. In flight2x, the textures of flight were

zoomed by a factor of two. This results in a scene that only magnifies 13% of

the texture.

• qtvr. This scene comes from an OpenGL-based QuickTime VR [Chen 1995]

viewer looking at a panorama from Mars. This huge panorama, which meas-

ures 8K by 1K, is mapped onto a polygonal approximation of a cylinder made

of tall, skinny triangles. Even though all of the texture is magnified, the lack

of repeated texture keeps the number of unique texels per fragment high.

• qtvr2x. The texture of qtvr was scaled up to 16K by 2K. This increases the

number of unique texels accessed by the scene since all the texture is minified.

Furthermore, the fractional portion of the level-of-detail value is always high

98 CHAPTER 4. SCALABLE TEXTURE MAPPING

in qtvr2x because the panorama is viewed more or less head-on at just the

wrong zoom value. Note that these same effects would occur if qtvr was run

at quarter-sized screen resolution, and that qtvr2x is by no means a hand-

tailored pathological case. In fact, it was while gathering trace data on qtvr

that we first observed the texture locality effects of a level-of-detail fraction

close to one. This scene is representative of a bad-case frame in a real-world

application.

4.1.5 Memory Organization
In designing our prefetching cache architecture, we carefully chose the proper parameters

for the cache and the memory system. To narrow our search space, we leveraged Ha-

kura’s findings on blocking [Hakura & Gupta 1997]. First, Hakura demonstrates the

importance of placing texture into tiles according to cache block size. This addressing

scheme is referred to as 4D blocking. Furthermore, tiles should be organized in a 2D

blocked fashion according to the cache size in order to minimize conflict misses. This is

called 6D blocking. In accordance with these guidelines, we employ 6D blocking for tex-

ture maps according to the cache block size and the cache size. The layout of texture data

is illustrated in Figure 4.3. Figure 4.3 also illustrates how texture data is banked in both

the cache tags as well as the cache memory in order to allow conflict-free access for bi-

linear interpolation. Additionally, rasterization also occurs in a blocked fashion rather

than in scan line order, and we rasterize triangles in 8 pixel by 8 pixel blocks that are tiled

in a 4 by 4 fashion. Note that for the purposes of this study, all texture data is stored as

32-bit RGBA values.

4.1. PREFETCHING IN A TEXTURE CACHE 99

Texel
Address

Te
xt

ur
e

C
ac

he
-S

iz
ed

Su

pe
rb

lo
ck

B

lo
ck

 toffset

soffset

sblock

tsuper

ssuper

tblock
soffset toffset sblock tblock ssuper tsuper 0

0 Texture Base Address

Block Offset Tag Block Index

ssuper sblock soffset tsuper tblock toffset

Tag

Index

Sub-Block

Offset
Tag

Bank
Cache
Bank

Bank Interleaving of
Tags to Blocks in Superblock

s t
0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

0 1
2 3

Bank Interleaving of
Texels in Block

6D Blocking

Texel Coordinates

Figure 4.3: Texture Data Organization
In our architecture, textures are stored using a 6D blocking pattern. Each mip
map level is divided into cache-sized superblocks, with each superblock further
divided into blocks. Each block is a rectangular, linearly-addressable region of
the original mip map level. Each of eight texel addresses is computed by adding
an offset (formed by permuting the texel’s coordinates) to a corresponding texture
base address. The eight resulting texel addresses, four from each of two adjacent
mip map levels, are then directed to two caches, each of which has four banks and
services alternating levels of the mip map. Within each superblock, tags are inter-
leaved on a block basis, causing all 2x2 texel accesses to fall onto one, two, or
four adjacent blocks, with each block’s tag stored in a separate bank of the tag
memory. This interleaving is accomplished by permuting the bits of the block in-
dex, yielding a tag bank and a tag index for each texel address. Similarly, texels
are interleaved within each block, causing all 2x2 texel accesses to fall into sepa-
rate banks of the cache memory even if the texels of the 2x2 access do not all fall
into the same block. A permutation of the block offset results in a cache bank and
a sub-block offset for every texel address; used in conjunction with the block in-
dex, these values locate each texel in the cache memory. Note that both of these
permutations extract the least significant bit of the corresponding s and t fields to
determine the tag or cache bank.

100 CHAPTER 4. SCALABLE TEXTURE MAPPING

4.1.5.1 Cache Efficiency
Since we have decided to provide a separate cache for each of the bilinear accesses that

need to occur during every trilinear texture access, three cache parameters need to be

chosen. The first choice is the cache block size. A small block size increases miss rates,

but keeps bandwidth requirements low. A large block size can decrease miss rates, but

bandwidth requirements and latency can skyrocket. An additional factor that needs con-

sideration is that modern DRAM devices require large transfer sizes to sustain band-

width. Hakura found that 16 texel tiles (64 bytes) work well, and most next-generation

DRAM chips can achieve peak efficiency at such transfer sizes [Crisp 1997].

Given a 16 texel block size, we are left with choices for cache associativity and cache

size. Figure 4.4 shows the miss rates for our six test scenes. We see that increasing asso-

ciativity does not decrease the miss rate significantly. Intuitively, this make sense since

having a separate cache for alternate levels of a mip map minimizes conflict misses.

Thus, a direct-mapped cache is quite acceptable if we use 6D blocking when alternate

levels of the mip map are cached independently. According to Hakura, if a unified cache

is used for trilinear accesses (and thus the bilinear accesses do not occur simultaneously),

a 2-way set associative cache is appropriate. In the more general case of multi-texturing,

m independent n-way set associative caches are well suited towards providing texture ac-

cesses at the rate of m bilinear accesses per cycle to m*n textures (in this scheme, trilinear

accesses count as two accesses to two textures). Since we are limiting our study to a sin-

gle trilinear access per cycle, two independent direct-mapped caches are appropriate.

Figure 4.4 also illustrates the effects of modifying the total cache size on the miss

rates of the various scenes. We see that for scenes in which texture locality is not de-

pendent on repeated textures (flight, flight2x, qtvr, qtvr2x), the miss rate curves flatten

somewhere between a total cache size of 4 KB and 16 KB. This cache size represents the

working set for filtering locality when rasterization is done in 8 by 8 blocks. On scenes

that contain repeated texture (such as quake and quake2x) the miss rates are lower, but

the miss rate curves flatten later (at 32 KB and 128 KB, respectively). These points cor-

4.1. PREFETCHING IN A TEXTURE CACHE 101

respond to the working set sizes of the repeated textures in each scene. The miss rate re-

alized once any of the curves flattens corresponds closely to the unique texel to fragment

ratio of the respective scene.

We chose to use a 16 KB cache (composed of two direct-mapped 8 KB caches) for

our study. According to our workloads, this size is large enough to exploit nearly all of

the coherence found in scenes that demonstrate poor locality (such as flight2x and

qtvr2x), and even though a larger size could help in scenes with repeated textures (such as

quake and quake2x), these scenes already perform very well. Though we stress that dif-

ferent choices can also be reasonable, we assume a cache architecture with two direct-

mapped 8 KB caches (interleaved by mip map level) with 64-byte blocks for our study.

4.1.5.2 Bandwidth Requirements
In formulating bandwidth requirements, we can relate the number of texels of memory

bandwidth required per fragment to the cache miss rate by the cache block size. These

equivalent measures are shown as left- and right-axes in Figure 4.4. One key point of

Table 4.1 and Figure 4.4 is that even though caching can work well sometimes, there are

cases when the bandwidth requirements are extremely high. In the case of qtvr2x, nearly

3 texels have to be fetched for each fragment no matter what size on-chip cache is util-

ized. This is quite high considering that eight texels are required to texture a trilinearly

mip mapped fragment. However, this should not be seen as an argument for not having a

cache: the cache still provides a way of matching the access patterns of mip mapping

with the large block requests required for achieving high memory bandwidth. If a system

wants to provide high performance robustly over a wide variety of scenes, it needs to

provide high memory bandwidth even with the use of caching. If a system’s target appli-

cations have high texture locality, or if cost is a primary concern, a memory system with

lower memory bandwidth can be employed.

102 CHAPTER 4. SCALABLE TEXTURE MAPPING

1 2 4 8 16 32 64 128

total cache size [KB]

0.0

0.1

0.2

0.3

0.4
m

is
se

s
pe

r
fr

ag
m

en
t quake

0

2

4

6

te
xe

ls
 p

er
 f

ra
gm

en
t

1 2 4 8 16 32 64 128

total cache size [KB]

0.0

0.1

0.2

0.3

0.4

m
is

se
s

pe
r

fr
ag

m
en

t flight

0

2

4

6

te
xe

ls
 p

er
 f

ra
gm

en
t

1 2 4 8 16 32 64 128

total cache size [KB]

0.0

0.1

0.2

0.3

0.4

m
is

se
s

pe
r

fr
ag

m
en

t qtvr

0

2

4

6

te
xe

ls
 p

er
 f

ra
gm

en
t

quake
quake2x

flight
flight2x

qtvr
qtvr2x

1-way
2-way
4-way

Figure 4.4: Cache Efficiency
Block size was set to 4 by 4 texels, and the six workloads were sent through the
cache simulator with various cache sizes and cache associativities. Results are
reported in terms of cache block misses per fragment rather than in terms of
misses per access since most texturing architectures have clock cycles based on
fragments. The cache block miss rate corresponds to a memory bandwidth re-
quirement that can be expressed in terms of texels fetched per fragment.

4.1. PREFETCHING IN A TEXTURE CACHE 103

Figure 4.4 can also be a bit misleading because the average bandwidth requirement

does not tell the whole story. From the data, one could falsely infer that a memory sys-

tem which provides enough bandwidth to supply 1 texel per fragment will perform per-

fectly on quake2x since, according to the graph, only 0.63 texels per fragment are re-

quired given the 16 KB cache size. Figure 4.5 illustrates why this is not the case. The

average cache miss rate does not properly encapsulate temporal variations in bandwidth

requirements. Even though the average bandwidth requirement is 0.63 texels per frag-

ment over the whole frame, large amounts of time exist when the system needs double

that bandwidth, and large amounts of time exist when the system does not need most of

that bandwidth (i.e., when light maps are drawn). Because of the large separation in time

between these two phases, a system cannot borrow from one to provide for the other, and

thus the overall performance will decrease.

104 CHAPTER 4. SCALABLE TEXTURE MAPPING

1 2 4 8 16 32 64 128

total cache size [KB]

0.0

0.1

0.2

0.3

0.4
m

is
se

s
pe

r
fr

ag
m

en
t

fragment
0.0

0.1

0.2

0.3

0.4
m

is
se

s
pe

r
fr

ag
m

en
t quake

0

2

4

6

te
xe

ls
 p

er
 f

ra
gm

en
t

1 2 4 8 16 32 64 128

total cache size [KB]

0.0

0.1

0.2

0.3

0.4

m
is

se
s

pe
r

fr
ag

m
en

t

fragment
0.0

0.1

0.2

0.3

0.4

m
is

se
s

pe
r

fr
ag

m
en

t flight

0

2

4

6

te
xe

ls
 p

er
 f

ra
gm

en
t

1 2 4 8 16 32 64 128

total cache size [KB]

0.0

0.1

0.2

0.3

0.4

m
is

se
s

pe
r

fr
ag

m
en

t

fragment
0.0

0.1

0.2

0.3

0.4

m
is

se
s

pe
r

fr
ag

m
en

t qtvr

0

2

4

6

te
xe

ls
 p

er
 f

ra
gm

en
t

quake
quake2x

flight
flight2x

qtvr
qtvr2x

Figure 4.5: Bandwidth Variation
Even though the required memory bandwidth can be low on average, this value
can vary widely over time. The graphs above show this variation with a pair of
direct-mapped 8 KB caches. Each data point is a windowed average over 30,000
fragments in quake and 10,000 fragments in flight and qtvr. The variance in the
required bandwidth is quite extreme in the cases of quake and quake2x as the ap-
plication transitions from applying color maps to applying light maps.

4.1. PREFETCHING IN A TEXTURE CACHE 105

4.1.5.3 Memory Models
In order to validate our texture prefetching architecture more precisely, we now explore

the bandwidths and latencies provided by memory systems. For our study, we examine

an architecture that can sustain the texturing performance projected for the near future.

At the time of this study (1998), high-end architectures such as the SGI InfiniteReality

[Montrym et al. 1997] provided approximately 200 million trilinear fragments per second

from a single board. Low-end professional-level architectures provided approximately

30 million trilinear fragments per second [Kilgard 1996], as do many consumer-level

graphics accelerators. Given these rates, we decided to set our nominal fragment clock

rate at 200 MHz, meaning that under optimal memory conditions, the architecture pro-

vides a trilinearly sampled fragment every 5 nanoseconds. Based on this fragment clock

rate, we decided to simulate four memory models, summarized by bandwidth and latency

histogram in Table 4.2.

• agp. This models a system in which the texture cache requests blocks from

system memory over Intel’s Advanced Graphics Port [Intel 1998]. The AGP

4X standard can provide a sustained bandwidth of 800 MB/sec. Because sys-

tem memory is shared with the host computer, we estimate that the latency of

agp varies between 250 nsec and 500 nsec.

 agp rdram rdram2x numa

period 16 8 4 4

latency

50 100 20 20 50 150 250
Table 4.2: Memory Models
The values reported here are in terms of a fragment clock cycle of 200 MHz,
which corresponds to 5 nsec. The memory period determines the rate at which 64
byte blocks of memory can be provided. Thus, bandwidths of 1, 2, 4, and 4 texels
per fragment are provided on agp, rdram, rdram2x, and numa, respectively.

106 CHAPTER 4. SCALABLE TEXTURE MAPPING

• rdram. Direct RDRAM from Rambus [Crisp 1997] will serve as our baseline

dedicated texture memory. These devices provide extremely high bandwidth

(a sustainable 1.6 GB/sec) with reasonable latency (90 nsec) at high densities

for commodity prices. We estimate that on-chip buffering logic adds 10 nsec

of latency to this memory.

• rdram2x. In order to sustain the high and variable bandwidth requirements of

scenes such of flight2x and qtvr2x, a texture architecture may choose to utilize

2 RDRAM parts for double the bandwidth of rdram at the same latency.

• numa. Although not based on any existing specification, we use the numa

memory model to examine the feasibility of our prefetching architecture in

novel and exotic texture memory architectures. The bandwidth of this mem-

ory model is the same as the bandwidth of rdram2x, but the latency of such a

system is extremely high and highly variable. It can range anywhere between

250 nsec and 1.25 usec. This latency is in the range of what can be expected

if texture is distributed across the shared memory of a NUMA multiprocessor

[Laudon & Lenoski 1997] and is typical of the behavior that will be seen in

shared texture memory systems analyzed in Section 4.2.

4.1.6 Performance Analysis
A cycle-accurate simulator was written to validate the robustness of the prefetching tex-

ture cache architecture proposed in this section. We analyze the architecture by running

each scene with each memory model. First, the architecture is compared against an ideal

architecture and an architecture with no prefetching. We then account for all of our exe-

cution time beyond the ideal execution time, demonstrating the architectures ability to

hide nearly all the latency in the system.

Figure 4.6a presents the execution time for each of the scenes with each of the mem-

ory models on both our architecture and an architecture with no prefetching. Perform-

ance is normalized to the ideal execution time of 1 cycle per fragment. In all cases, our

4.1. PREFETCHING IN A TEXTURE CACHE 107

architecture performs much better than an architecture lacking prefetching. However

do not achieve an ideal 1 cycle per fragment across many of the scenes when running

agp and rdram memory models.

In order to account for lost cycles, we enumerate four components of our archi

ture’s execution time:

1

2

4

8

16

32
no

rm
al

iz
ed

 t
im

e
agp rdram rdram2x numa

qu
ak

e

qu
ak

e2
x

fl
ig

ht

fl
ig

ht
2x

qt
vr

qt
vr

2x

qu
ak

e

qu
ak

e2
x

fl
ig

ht

fl
ig

ht
2x

qt
vr

qt
vr

2x

qu
ak

e

qu
ak

e2
x

fl
ig

ht

fl
ig

ht
2x

qt
vr

qt
vr

2x

qu
ak

e

qu
ak

e2
x

fl
ig

ht

fl
ig

ht
2x

qt
vr

qt
vr

2x

no prefetch prefetch

agp rdram rdram2x numa

0.0

0.5

1.0

fr
ac

ti
on

 t
im

e

qu
ak

e

qu
ak

e2
x

fl
ig

ht

fl
ig

ht
2x

qt
vr

qt
vr

2x

qu
ak

e

qu
ak

e2
x

fl
ig

ht

fl
ig

ht
2x

qt
vr

qt
vr

2x

qu
ak

e

qu
ak

e2
x

fl
ig

ht

fl
ig

ht
2x

qt
vr

qt
vr

2x

qu
ak

e

qu
ak

e2
x

fl
ig

ht

fl
ig

ht
2x

qt
vr

qt
vr

2x

uncovered latency limited bandwidth pipeline stall useful work

Figure 4.6: Prefetching Performance
In (a), we compare our prefetching architecture and one in which no prefetching
takes place against an ideal architecture (one in which a fragment is generated on
every clock cycle) on a logarithmic scale. On many configurations, the prefetch-
ing architecture is able to achieve near-ideal performance (as indicated by the
near-total absence of a dark gray bar). Configurations that do not achieve near-
ideal performance are bandwidth-limited, as illustrated in (b). This graph charac-
terizes the architecture’s execution time by useful work, pipeline stalls, limited
memory bandwidth, and uncovered latency across the four memory models and
the six scenes. For all of the cases in which near-ideal performance was not at-
tained, memory bandwidth is by far the limiting factor. Thus, the architecture is
able to hide nearly all of the latency of the memory system with little overhead.

(a)

)
(b
, we

 the

tec-

108 CHAPTER 4. SCALABLE TEXTURE MAPPING

1) A cycle is required to move each fragment through the texture pipeline.

2) If either cache has more than one miss for any fragment, the pipeline must

stall.

3) The pipeline may stall due to insufficient texture memory bandwidth.

4) Cycles may be lost to uncovered latency in the prefetching architecture.

Each of these components can be calculated as follows. The number of cycles spent

moving fragments through the pipeline is simply the number of fragments in the scene.

The number of pipeline stalls attributed to multiple misses per fragment can be measured

by counting the number of misses per cache per fragment beyond the first miss. Stalls

occur infrequently, and our experiments show the performance lost to such pipeline stalls

is typically less than 1%. Performance lost to insufficient memory bandwidth is deter-

mined by the execution time of the trace with the memory latency set to zero. Finally,

when the scene is simulated with our memory latency model, any additional cycles not

attributed to the first three categories are counted as uncovered latency in our architec-

ture. Experimental results show that most of the latency of the memory system is indeed

covered by our architecture, with at least 97% utilization of hardware resources using

nominal sizes for the fragment FIFO, the memory request FIFO, and the reorder buffer.

Most of the performance difference from an ideal system is caused by insufficient mem-

ory bandwidth. The breakdowns of the execution times for our configurations are pre-

sented in Figure 4.6b.

4.1.6.1 Intra-Frame Variability
A typical scene provides both an overall memory bandwidth demand over the course of

the frame (several milliseconds) as well as localized memory bandwidth demands over

several microseconds, as illustrated in Figure 4.5. Figure 4.7 shows how this translates

into lost performance. The performance of the quake2x scene on the agp memory system

is very different in the first and second half of the frame due to switching between color

map textures and light maps. As predicted in Section 4.1.5.2, the fragment rate while

drawing the color texture is limited by memory bandwidth while the pipeline runs at full

4.1. PREFETCHING IN A TEXTURE CACHE 109

speed while drawing the light maps. This does indeed cause an overall performance pen-

alty even though the 1 texel per fragment bandwidth of agp far exceeds the average texel

per fragment bandwidth requirement of quake2x. Figure 4.7 also illustrates that the per-

formance of our architecture closely tracks the performance of a zero-latency memory

system over time.

4.1.6.2 Buffer Sizes
The data in Figure 4.6 and Figure 4.7 was derived with a specific set of buffer sizes for

each memory model. These sizes are presented in Table 4.3, and in all cases the buffers

are reasonable in size when compared to the 16 KB of cache employed.

We determined the sizes of the three buffers—the fragment FIFO, the request FIFO,

and the reorder buffer—by inspection and then validated them by experimentation. The

fragment FIFO primarily masks the latency of the memory system. If the system is not to

stall on a cache miss, it must be able to continually service new fragments while previous

fragments are waiting for texture cache misses to be filled. Thus, the fragment FIFO

fragment
0.0

0.5

1.0

fr
ag

m
en

ts
 p

er
 c

yc
le

quake2x on agp

ideal
pipeline stall
limited bandwidth
uncovered latency

Figure 4.7: Time-Varying Execution Time Characterization
As predicted in Section 4.1.5.2, the performance of a workload can vary greatly
over time if not enough memory bandwidth is provided. The graph above charac-
terizes the execution time of the quake2x workload on the agp memory system.
Even though the 1 texel per fragment bandwidth of agp by far exceeds quake2x’s
average requirement of 0.63 texels per fragment, performance suffers due to the
time-varying bandwidth requirements of quake2x.

110 CHAPTER 4. SCALABLE TEXTURE MAPPING

depth should at least match the latency of the memory system. The fragment FIFO also

provides elasticity between the burstiness of texture misses and the constant rate at which

the memory system can service misses, and therefore should be larger than just the mem-

ory system latency. The memory request FIFO also provides elasticity between the po-

tentially bursty stream of miss addresses generated by the fragments and the fixed rate at

which the memory system can consume them. The size of this buffer was determined

primarily by experimentation. Finally, in order to provide a robust, deadlock-free solu-

tion that can handle out-of-order memory responses, our architecture requires that a reor-

der buffer slot be reserved when a memory request is made. Since a memory response

will not be received and applied to the cache at least until after the memory latency has

passed, the reorder buffer should be sized to be at least the ratio of the memory access

time (latency) to the memory cycle time (period) entries deep.

The above guidelines were used to determine the approximate buffer sizes for each

memory model, and then the choices were adjusted by measuring the performance of the

system. We fine-tuned the buffer sizes by holding two of the buffer sizes constant and

varying the third. If the buffer is sized appropriately, the performance of the overall sys-

tem should decrease significantly when the buffer is made much smaller, and perform-

ance should increase very slowly if the buffer is made larger. The data for this process

with the flight2x workload is shown in Figure 4.8. This process provided useful informa-

 Fragment
FIFO Size

Request
FIFO Size

Reorder
Buffer Size

agp
128 slot
2.0 KB

 8 slot
 64 byte

 8 slot
576 byte

rdram
 64 slot
1.0 KB

 8 slot
 64 byte

 8 slot
576 byte

rdram2x
 64 slot
1.0 KB

 16 slot
128 byte

 16 slot
1.1 KB

numa
256 slot
4.0 KB

 16 slot
128 byte

 64 slot
4.5 KB

Table 4.3: Buffer Sizes
The numbers in each entry represent the sizes of the various buffers used in the
various memory systems. Fragment FIFO entries are 16 bytes, memory request
FIFO entries are 8 bytes, and reorder buffer entries are 72 bytes.

4.1. PREFETCHING IN A TEXTURE CACHE 111

tion in the cases of the rdram and rdram2x memory systems. The fragment FIFOs were

originally sized to be 32 entries deep. However, simulation revealed that this did not

provide enough elasticity, and increasing the FIFO depth to 64 entries improved perform-

ance by several percent. Similarly, simulation revealed that performance increased

slightly when the reorder buffer size was increased to 8 slots and 16 slots for rdram and

rdram2x, respectively.

 Fragment
FIFO Size

Request
FIFO Size

Reorder
Buffer Size

agp

1 4 16 64 256
0.0

0.5

1.0

fp
c

1 4 16 64 256
0.0

0.5

1.0

fp
c

4 16 64 256
0.0

0.5

1.0

fp
c

rdram

1 4 16 64 256
0.0

0.5

1.0

fp
c

1 4 16 64 256
0.0

0.5

1.0

fp
c

4 16 64 256
0.0

0.5

1.0

fp
c

rdram2x

1 4 16 64 256
0.0

0.5

1.0

fp
c

1 4 16 64 256
0.0

0.5

1.0

fp
c

4 16 64 256
0.0

0.5

1.0

fp
c

numa

1 4 16 64 256
0.0

0.5

1.0

fp
c

1 4 16 64 256
0.0

0.5

1.0

fp
c

4 16 64 256
0.0

0.5

1.0

fp
c

Figure 4.8: The Effects of Varying Buffer Sizes
The graphs above show the effects of varying buffer sizes on the flight2x work-
load across the different memory models. For each graph, one buffer size is var-
ied while the other two are held fixed (at the values specified in Table 4.3). The
results are reported in fragments per cycle (fpc), and the dot on each graph repre-
sents the final values used for the architecture on each memory model. The
memory models whose fragments per cycle values do not approach 1.0 are band-
width-limited.

112 CHAPTER 4. SCALABLE TEXTURE MAPPING

One note should be made about the performance analysis of this section. In formulat-

ing a model for measuring the performance of our prefetching texture cache architecture,

we assumed that the entire scene is rasterized by a renderer that is able to provide a frag-

ment to the texture subsystem on every clock cycle. In a real system, this may not be the

case. When triangles are smaller, caching does not work as well; but smaller triangles

may also imply a lower fill rate (i.e., the scene is geometry limited), thus alleviating some

of the penalty associated with the caching. A more detailed analysis of bandwidth re-

quirements in a rasterization architecture can take this effect into account.

4.2 Parallel Texture Caching
The creation of high-quality images requires new functionality and higher performance in

real-time graphics architectures. In terms of functionality, texture mapping has become

an integral component of graphics systems, and in terms of performance, parallel tech-

niques are used at all stages of the graphics pipeline. Two types of parallel texturing sub-

systems may be created: in a system with dedicated texture memory, each texturing unit

has a dedicated texture memory that replicates all of the texture data in the system. As

we demonstrated in Section 4.1, nearly all the latency of a texture cache may be hidden,

thus making texture bandwidth the critical bottleneck in the texture memory subsystem.

However, parallel rasterization divides work across multiple functional units, thus de-

creasing the locality of texture references and increasing the amount of texture bandwidth

required in a parallel system. This can have an adverse effect on the scalability of the

texturing performance, and in this section, we examine scalability related to this phe-

nomenon. In a system with shared texture memory, each texturing unit may access

shared texture memory from anywhere in the system, thus scaling the amount of texture

memory in the system. However, this introduces two additional issues: variable latency

for texture requests and load imbalance among the texture memory due to data distribu-

tion. We addressed latency in Section 4.1, and we will address data distribution in this

section.

4.2. PARALLEL TEXTURE CACHING 113

Specifically, we quantify the effects of parallel rasterization on texture locality for a

number of rasterization architectures, representing both current commercial products and

proposed future architectures. A cycle-accurate simulation of the rasterization system

demonstrates the parallel speedup obtained by these systems and quantifies inefficiencies

due to redundant work, inherent parallel load imbalance, insufficient memory bandwidth,

and resource contention. We find that parallel texture caching works well and is general

enough to work with a wide variety of rasterization architectures.

4.2.1 Previous Work
Until recently, it had been difficult to provide the amount of computation required for

texturing at high fragment rates within a single chip, so solutions were naturally parallel.

Although texturing was used in the earlier dedicated flight simulators, one of the first

real-time texture mapping workstations was the SGI RealityEngine [Akeley 1993]. This

system parallelizes rasterization by interleaving vertical stripes of the framebuffer across

5, 10, or 20 fragment generator units. Each fragment generator is coupled with an inde-

pendent texture memory. Because texture access patterns are independent of framebuffer

interleaving patterns, any fragment generator needs to be able to access any texture data,

so each fragment generator replicates the entire texture state. The successor to the Reali-

tyEngine, the InfiniteReality [Montrym et al. 1997], uses 1, 2, or 4 higher performance

fragment generators, and thus replicates texture memory up to 4 times, instead of up to 20

times. The texture subsystems of these architectures made minimal use of texture local-

ity. The stripe interleaving of rasterization used in aforementioned high-end machines

has recently appeared as scan-line interleaving in consumer-level graphics accelerators

such as the Voodoo2 SLI from 3Dfx. As with the SGI systems, texture memory is repli-

cated across all the rasterizers.

One other class of scalable graphics architectures in which texture mapping has been

implemented is the image composition architecture, as exemplified by PixelFlow [Molnar

et al. 1992]. In such a system, multiple independent pipelines each generate a subset of

the pixels for a scene, and these pixels are merged for display through an image composi-

114 CHAPTER 4. SCALABLE TEXTURE MAPPING

tion network. Because each of the independent pipelines has its own texturing unit and

texture memory, the amount of texture memory available to an application could be

scaled. However, the problem is not straightforward since there must be explicit software

control to only send primitives to the particular pipeline holding its texture data. Such a

scheme is greatly at odds with dynamically load balancing the amount of work in each

pipeline, particularly given the irregularities of human interaction. If shading (and thus,

texturing) is deferred until after the pixel merge is completed, the problem of dynamically

load balancing shading work according to texture accesses is equally, if not more, chal-

lenging. There have been no published works to date that address these challenges. As

with other parallel hardware architectures, the PixelFlow replicates texture memory

[Molnar 1995]; furthermore, the locality of texture access is not exploited.

Vartanian et al. [Vartanian et al. 1998] have evaluated the performance of texture

caching with both image-space parallel and object-space parallel rasterizers. They find

that while object-space parallelism provides good speedup in a caching environment, im-

age-space parallelism generates poor speedup. We believe that these results can be at-

tributed to focused architectural choices and benchmark scenes that favor object-space

parallelism both in terms of caching and rasterizer load balancing. In contrast, we find it

more insightful to separate rasterizer load imbalance from texture load imbalance, and by

exploring a more complete set of architectural choices, we find efficient design points for

texture caching with both types of parallelism.

4.2.2 Parallel Texture Caching Architectures
A serial graphics pipeline is illustrated in Figure 4.9; performance can be increased by

deploying multiple copies of some or all of the stages. Parallel rasterization distributes

rasterization work amongst multiple copies of the rasterization stages. Looking at the

texturing stage specifically, the role of the texture mapping units in a system is to take as

input untextured fragments with texture coordinate information, access the appropriate

data in the texture memory based on these coordinates and filtering modes, filter the data,

and combine this filtered texture value with the value of the untextured fragment. In or-

4.2. PARALLEL TEXTURE CACHING 115

der to scale the fragment rate (i.e., the rasterization performance), the number of texturing

units must be increased to provide the necessary processing power. Additionally, the

number of texture memories must also be scaled to provide the correspondingly increased

bandwidth requirements.

Figure 4.10a shows a dedicated texture memory scheme for scaling the texture sub-

system of a graphics pipeline. Each additional rasterization pipeline brings with it a

dedicated texturing unit and texture memory. As the system scales, the total amount of

texture memory increases, but due to replication, the unique texture memory remains

constant. Figure 4.10b diagrams a shared texture memory scheme for scaling the graph-

ics pipeline. In this architecture, an all-to-all texture-sorting network is introduced be-

tween the texturing units and the texture memories. This allows any texturing unit to ac-

cess the data in any texture memory, allowing a single shared image of the texture data to

be present across all of the texture memories. Many topologies exist for such networks

[Duato et al. 1997], and highly scalable networks can be built if the system balances the

data going in and out of the network. We will not focus on the network in this thesis, but

the specifics of such a network can be found in other works [Eldridge et al. 2000].

116 CHAPTER 4. SCALABLE TEXTURE MAPPING

With the architectures of Figure 4.10a and Figure 4.10b, as with any parallel system,

it is important to minimize the amount of redundant work introduced by parallelization

and to balance the amount of work in each processing unit. Efficient parallel rasteriza-

tion algorithms deal with presenting each texturing unit with a balanced number of untex-

tured fragments that minimizes redundant work; this problem has been extensively stud-

ied, and we make use of a few such algorithms, as described in Section 4.2.3.1. The main

focus of this section is to study the effects of parallel rasterization on texture locality.

Assuming that the number of untextured fragments presented to each texturing units is

balanced, one requirement for good parallel performance is that the redundant fetching of

Command

Transform

Light

Scan Convert

Texture

Display

Display List

unlit triangles

3D triangles

2D triangles

untextured fragments

Composite

textured fragments

pixels

host commands

Texture Memory

Framebuffer R
as

te
ri

ze
ri

za
tio

n
Pi

pe
lin

e
G

eo
m

et
ry

Pi

pe
lin

e

Figure 4.9: A Base Graphics Pipeline
The above diagram illustrates a typical graphics pipeline. A parallel rasterization
architecture replicates the rasterization pipeline to achieve higher performance.

4.2. PARALLEL TEXTURE CACHING 117

the same texture data across texturing units be minimized. Furthermore, it is important to

load balance the texture bandwidth required by each texturing unit, and in the case of a

shared texture memory, the texture bandwidth required from each texture memory.

4.2.3 Methodology
While it is clear that the parallel architectures of Figure 4.10a and Figure 4.10b do poten-

tially increase performance, the actual performance gains are still unclear in terms of tex-

ture bandwidth. In this section, we lay out a framework that will allow us to evaluate the

performance of a parallel texture caching architecture.

4.2.3.1 Parallel Rasterization Algorithms
The characteristics of parallel texture caching are highly dependent on the parallel

rasterization algorithm because this algorithm determines which fragments are processed

by which texturing units and in what order. There are a great number of different rasteri-

Texture
Memory #1

Graphics Pipeline #1

Texture
Unit #1

untextured
 fragments

textured
 fragments

texture
address

texture
data

Texture
Memory #2

Graphics Pipeline #2

Texture
Unit #2

untextured
 fragments

textured
 fragments

texture
address

texture
data

Texture
Memory #1

Graphics Pipeline #1

Texture
Unit #1

untextured
 fragments

textured
 fragments

texture
address

texture
data

Texture
Memory #2

Graphics Pipeline #2

Texture
Unit #2

untextured
 fragments

textured
 fragments

texture
address

texture
data

 Graphics
Network

Graphics
Network

Texture Sorting Network

(a) (b)

Figure 4.10: Dedicated and Shared Texture Memories
Multiple graphics pipelines simultaneously draw a scene by coordinating work
over a graphics network. To apply texture, a fraction of the untextured fragments
is distributed to each texture unit that holds a replicated version of the scene’s tex-
ture data in a dedicated texture memory (a). In a shared texture memory system
(b), each texturing unit can access the texture data of any texture memory, allow-
ing for a single copy of the texture data system-wide Texture is cached to reduce
texture memory bandwidth.

118 CHAPTER 4. SCALABLE TEXTURE MAPPING

zation algorithms, and each algorithm has a number of parameters that can be varied.

Because of the large number of variables, it is impractical to analyze every rasterization

algorithm, and thus we choose a few representative algorithms.

Parallel rasterization algorithms can be characterized along three axes with regard to

texturing. The first distinction to be made is whether work is partitioned according to

image-space (each texturing unit is responsible for a subset of the pixels on the screen) or

object-space (each texturing unit is responsible for a subset of the fragments generated by

triangles). The second distinction is whether the texturing unit processes fragments im-

mediately in the order primitives are submitted or buffers fragments and processes them

in a different order. The third distinction is whether fragments destined for the same lo-

cation in the framebuffer are processed in the order presented by the application. For this

paper, all of the algorithms we present preserve application order.

• tiled. In a tiled architecture, the screen is subdivided uniformly into fixed-size

square or near-square tiles and each texturing unit is responsible for a stati-

cally interleaved fraction of tiles. We have empirically found that 32 pixel by

32 pixel tiles work well up to moderate levels of parallelism, and for this pa-

per, we will assume that tile size. In tiled-prim, fragments are processed in

primitive order. This means that if a triangle overlaps several tiles belonging

to the same rasterizer, the fragments of that triangle are completely processed

before moving on to the fragments of the next triangle. In tiled-frame, the

fragments of a frame are processed in tile order. This means that a texturing

unit processes all of the fragments for its first tile before moving on to any of

the fragments that fall in its second tile.

• osi. Algorithms that subdivide work according to object-space usually dis-

tribute groups of primitives in a round-robin fashion amongst rasterizers, giv-

ing each rasterizer approximately the same amount of per-primitive work.

Because the number of fragments generated by each primitive can vary

greatly, it is important to also load balance fragment work either by dynami-

4.2. PARALLEL TEXTURE CACHING 119

cally distributing primitives, by subdividing large primitives, or by combining

the two techniques. In object-space ideal (osi), we idealize the load balancing

of fragments. First, we serially rasterize all the primitives to form a fragment

stream, and then we round-robin groups of 1024 fragments amongst the tex-

turing units.

• striped. Similar to both the RealityEngine and the InfiniteReality, fragments

are subdivided according to an image-space subdivision of 2 pixel-wide verti-

cal stripes. Each texturing unit is responsible for an interleaved fraction of the

stripes, and processing is done in primitive order, as in tiled-prim.

4.2.3.2 Scenes
In order to quantify the effectiveness of parallel texture caching, we need to choose a set

of representative scenes that cover a wide range of texture locality. A good measure of

texture locality is the scene’s unique texel to fragment ratio, and this ratio varies over

nearly two orders of magnitude in our test scenes, which are identical to those presented

in Section 4.1.4.2 and Table 4.1. All of these scenes make use of mip mapping for tex-

ture filtering. Mip mapping is crucial for providing locality in texture access patterns un-

der minification, a characteristic that all texture caching rasterization architectures de-

pend upon to run at full speed. Scenes that lack mip mapping will experience significant

performance degradations under texture minification. The scenes we use in this section

load balance fragment work relatively well with respect to the parallel rasterization algo-

rithms of Section 4.2.3.1, as will be quantified in Section 4.2.4.3. Because these scenes

load balance well under our parallel rasterization algorithm, texture bandwidth imbalance

will not be hidden by fragment imbalance.

4.2.3.3 Simulation Environment
A cycle-accurate simulator of a parallel texturing subsystem was written in C++ to pro-

vide an environment for collecting the data presented in this paper. Our simulation infra-

structure is based on a methodology for simulating hardware architectures [Mowry 1999].

120 CHAPTER 4. SCALABLE TEXTURE MAPPING

The simulator takes as input texture data and untextured fragment data, and produces

rendered images as well as trace data on the texture subsystem. The simulator is able to

partition this fragment data among multiple instances of texturing units in accordance

with the parallel rasterization algorithms of Section 4.2.3.1. Each texturing unit and each

texture memory is made up of multiple functional units that run as threads in the C++ en-

vironment. The forward progress of each functional unit and the communication between

functional units adhere to a simulation clock by making clock-awaiting function calls

within each thread at the appropriate points in the code. This allows us to simulate a

graphics architecture with cycle-accuracy at varying levels of detail and collect data from

the system in a non-intrusive fashion.

4.2.3.3.1 Data Organization

Given the high-level architecture of parallel texturing units that are connected to memo-

ries through a texture cache, we must decide how data is organized throughout the sys-

tem. In accordance with Section 4.1, we group 2D texture data into 4D tiles so that each

0x 1x 2x 3x

4x 5x 6x 7x

8x 9x Ax Bx

Dx Ex Fx Cx

0 1 2 3

4 5 6 7

8 9 A B

D E F C

Cache Block Shared Memory Block

Figure 4.11: Shared Texture Data Organization
The above diagram correlates a location in the shared texture memory with an ad-
dress, expressed in hexadecimal. An ‘x’ represents an arbitrary hexadecimal
number. In this example, we are illustrating 16 texture memories with a block
size of 16 texels. The left block shows the layout of a 4x4 cache block. A 4x4
grid of these 2D blocks gives rise to a 16x16 image laid out in the shared texture
memory, illustrated in the center. The least significant hexadecimal digit of any
texture address determines the pixel within the cache block, and the second least
significant hexadecimal digit determines the texture memory holding that block.

4.2. PARALLEL TEXTURE CACHING 121

cache block holds a square or near-square region of texture and use an additional level of

tiling (6D tiling based on the number of cache sets) to reduce conflict misses. As before,

we rasterize according to screen-aligned 8 by 8 tiles and another level of tiling to

rasterization (every 32 by 32 pixels), resulting in 6D tiled rasterization. To give a

consistent rasterization order across the studies in this paper, a serial rasterizer generates

untextured fragments in this order and distributes them to the appropriate texturing unit

according to the parallel rasterization algorithm.

For the shared texture memory architecture, we must decide on the distribution of tex-

ture data across the multiple texture memories. Texture data should be distributed in a

finely interleaved fashion to prevent hot-spotting on any single memory for any signifi-

cant period of time. In order to minimize the chance that nearby texture tiles fall onto the

same texture memory, we distribute each cache block of texture data across the texture

memories in a 4D tiled fashion. The exact parameters for this tiling are dependent on the

cache block size and the number of texture memories used for a particular simulation.

For example, with 16 texel cache blocks (organized in a 4 by 4 tile) and 16 texturing

memories, each cache block in a 4 by 4 tile of cache blocks is given to a different texture

memory. This is illustrated in Figure 4.11.

4.2.3.3.2 Performance Model

While caching characteristics may be analyzed statically without a performance model,

such a model must be introduced in order to analyze resource contention and parallel

speedup. Our simulated texturing unit is capable of texturing a single fragment every cy-

cle, and we provide 2 texels per cycle of bandwidth to each texture memory, an amount

large enough to cover most of the bandwidth demands of our scenes. This is a typical

bandwidth in modern systems – see, for example, a calculation by Kirk [Kirk 1998]. The

latency of each texture memory is set to 20 fragment clocks, and a 64 fragment FIFO is

used to hide the latency of the memory, values we replicate from Section 4.1. Because

arbitrary amounts of latency can be hidden using prefetching and a fragment FIFO, our

results are not dependent on these values.

122 CHAPTER 4. SCALABLE TEXTURE MAPPING

In a serial texturing unit, a fragment FIFO serves not only to hide the latency of the

memory system, but also to smooth out variations in temporal bandwidth requirements.

Even if a scene’s overall bandwidth requirement is low, temporal bandwidth require-

ments can get extremely high when several consecutive fragments miss in the texture

cache. If this temporal imbalance is microscopic (e.g., over tens of fragments), then a

fragment FIFO can smooth out the contention for the memory system. However, this im-

balance is often macroscopic (e.g., over tens of thousands of fragments): a fragment FIFO

is unable to resolve the fragment-to-fragment contention for the texture memory and per-

formance suffers.

In a parallel texture caching system with shared texture memories, contention can

also occur between texturing units for the texture memories, and thus, the network. In

order to reduce the number of free variables in this paper, we choose to model the net-

work as perfect (no latency and infinite bandwidth) and therefore focus on memory con-

tention effects. Network contention is related to memory contention in a fully simulated

system, and prefetching is able to successfully hide arbitrary amounts of network latency

in texture caching (e.g., [Eldridge et al. 2000]).

4.2.4 Results
Parallel texture caching can be analyzed according to common parallel algorithm idioms.

First, parallel texture caching incurs redundant work in the form of repeated texture data

fetching. This reduction in locality is quantified in Section 4.2.4.1. The effect of multi-

ple caches on working set size is described in Section 4.2.4.2. Second, it is essential that

parallel texture caching be load balanced, and we quantify this in Section 4.2.4.3. Fi-

nally, in Section 4.2.4.4, we use a cycle-accurate simulation to demonstrate that good

parallel speedup does in fact occur.

Contrary to traditional microprocessor cache studies, we present cache efficiency data

in terms of bandwidth per fragment rather than miss rate per access. In microprocessor

architecture, miss rate is of primary importance because only one or a few outstanding

4.2. PARALLEL TEXTURE CACHING 123

misses can be tolerated before the processor stalls. Because of the lack of write hazards,

texture caching can tolerate arbitrary numbers of outstanding reads (Section 4.1), and

thus, performance is related more to its bandwidth demands.

4.2.4.1 Locality
As with most parallel algorithms, parallel texture caching induces inherent overhead be-

yond that found in a serial algorithm due to redundancies. For parallel texture caching,

this is best characterized by the redundant fetching of the same texture data by multiple

texturing units—a reduction of locality. In a serial graphics system, an ideal texture

cache would fetch each texel used in the scene only once (assuming the cache is sized to

exploit only intra-frame locality). The bandwidth required for such a cache can be com-

puted by counting the number of compulsory misses (i.e., cold misses) taken by the cache

that employs a block size of a single texel. As we make the block size larger, fewer

misses are taken, but the amount of data read by each miss increases. Overall, we expect

the total amount of data fetched due to compulsory misses to increase with the block size

because of edge effects. Whenever a texture falls across the edge of a screen, the silhou-

ette edge of an object, or the edge of a parallel work partitioning, larger block sizes force

the cache to fetch larger portions of the texture data that are never used. By measuring

the bandwidth attributable to compulsory cache misses, Figure 4.12 illustrates the reduc-

tion of locality caused by the various rasterization algorithms as the number of texturing

units and block size are varied.

The lightest portions of the bars in Figure 4.12 indicate the average bandwidth re-

quired to satisfy the compulsory misses of a serial texture cache for the various rasteriza-

tion algorithms. For a serial texturing unit, all of the algorithms perform equally because

the number of compulsory misses is scene-dependent. We see that as block size is in-

creased, the bandwidth requirement for a serial rasterizer increases slightly for the flight

data set pair and negligibly for quake and qtvr data set pairs. In qtvr, the edge effects oc-

cur only near screen edges, which accounts for a negligible portion of the total work. In

124 CHAPTER 4. SCALABLE TEXTURE MAPPING

quake, the texture used at the edge of polygons is repeated from the middle of the poly-

gons, thus negating edge effects from polygons.

The bottom portion of each bar represents the optimal bandwidth requirements of a

serial texture cache, and each successive portion of the bar represents the additional

bandwidth required to satisfy additional texturing units. We simulate an infinite number

of texturing units, the top-most portion of each bar, by assigning the smallest granularity

of work for each rasterization algorithm to a unique texture unit. For a tiled architecture

this quantum of work corresponds to a single tile, for object-space interleaving this corre-

sponds to a single contiguous block of fragments. This defines the locality present in a

rasterization algorithm’s minimal unit of work. Also note that because we are counting

compulsory misses, the order in which fragments are processed has no effect, and thus

the results for tiled-prim and tiled-frame are identical.

As a detailed example, for a tiled architecture on the flight2x scene, we see that for a

block size of 16 texels (arranged in a 4 by 4 tile), a single texturing unit requires ap-

proximately 1.67 texels per fragment. If work is distributed amongst two texturing units,

then the bandwidth required increases to approximately 2.17 texels per fragment. This

occurs because edge effects are introduced at the boundaries of tiles, reducing the tile-to-

tile locality. For four texturing units, the bandwidth requirement slightly increases to

2.26 texels per fragment, but as work is distributed amongst additional texturing units, the

bandwidth requirements do not increase significantly. The reason for this is that most of

the texture in the scene is unique, and while the tiles of a two-way parallel system touch

at their corners and thus share some of the texture data of an object (tile-to-tile locality),

this adjacency goes away completely in four-way parallel and larger systems. We also

see that as block size is increased from 1 to 16 to 64 texels, the bandwidth requirements

increase significantly because the over-fetching of larger block sizes is multiplied by the

large number of tile edges. These aforementioned behaviors are all mirrored in flight,

qtvr, and qtvr2x.

Although the effects of larger block sizes are the same, the bandwidth requirements of

quake and quake2x on the tiled architecture are quite different as the number of rasteriz-

4.2. PARALLEL TEXTURE CACHING 125

ers is increased. The first thing to notice about these scenes is the low bandwidth re-

quirements of the serial case due to the heavy use of repeated textures. Furthermore, as

opposed to the other scenes, as the number of texturing units is increased, the bandwidth

requirements always increase. The use of repeated textures causes this because the same

texture data is used repeatedly across the image-space partitioning. However, even with

an infinite number of texturing units, the total bandwidth requirement is still quite lim-

ited. In effect, although parallel rasterization diminishes texture locality due to repeated

texture, locality due to filtering remains. This means that texturing subsystems that are

designed to perform well only in conjunction with repeated textures do not parallelize

well.

The behavior of osi largely mirrors the performance of tiled, with the exception that

bandwidth requirements continue to increase as additional texturing units are utilized.

This is explained by the fact that osi is fragment-interleaved, and the chance that a textur-

ing unit’s consecutive fragment groups utilize adjacent portions of a texture map de-

creases smoothly as the number of texturing units is increased. For both tiled and osi, we

see that a block size of 16 texels provides reasonable locality given the granularity of ac-

cess needed for efficient memory utilization and efficient network utilization. Thus, for

the remainder of the section, we assume a block size of 16 texels for tiled and osi.

126 CHAPTER 4. SCALABLE TEXTURE MAPPING

til
ed

1 4 16 64 1 4 16 64 1 4 16 64 1 4 16 64 1 4 16 64 1 4 16 64

block size

0

1

2

3

4

5
te

xe
ls

 p
er

 f
ra

gm
en

t qtvrquake2xquake qtvr2xflight2xflight

os
i

1 4 16 64 1 4 16 64 1 4 16 64 1 4 16 64 1 4 16 64 1 4 16 64

block size

0

1

2

3

4

5

te
xe

ls
 p

er
 f

ra
gm

en
t qtvrquake2xquake qtvr2xflight2xflight

st
ri

pe
d

1 4 16 64 1 4 16 64 1 4 16 64 1 4 16 64 1 4 16 64 1 4 16 64

block size

0

1

2

3

4

5

te
xe

ls
 p

er
 f

ra
gm

en
t

5

10

15
qtvrquake2xquake qtvr2xflight2xflight

 Texturing Units
1 2 4 16 64 inf

Figure 4.12: Bandwidth Due to Compulsory Misses
This study shows the bandwidth requirements (measured in average number of
texels fetched per fragment) associated with compulsory misses as a function of
rasterization algorithm, scene, block size, and number of texturing units. The top
row represents the data for the tiled rasterization architecture, the middle row for
the osi architecture, and the bottom row for the striped architecture. Scenes are
sorted left to right by their unique texel to fragment ratio, which indicates the
minimum bandwidth required. Each bar chart shows the bandwidth requirements
for a different block size, and the shades of gray show the bandwidth require-
ments for differing numbers of texturing units. The shades of gray increase in
darkness as the number of texturing units is increased, and the bandwidth required
for greater numbers of texturing units increases monotonically. Finally, note that
the bandwidth values for striped rasterization are shown with a split scale axis.

4.2. PARALLEL TEXTURE CACHING 127

The behavior of the striped rasterization algorithm is markedly different from both tiled

and osi. The most important thing to notice is that bandwidth requirements increase dra-

matically with increased block size. Because interleaving is done at every 2 pixels in the

horizontal direction, edge effects occur very frequently. As block size is increased, a

drastically larger number of texels that fall beyond a stripe’s required set of texels are

fetched. Thus, striped architectures reduce texture locality drastically. Even at a block

size of 1 texel for striped, locality is much worse than at a block size of 16 for tiled or osi.

We note that a single texel is a very small granularity of access for modern networks and

memories, and that most modern devices perform highly sub-optimally at such

granularities. Nonetheless, this is the only block size that preserves a modicum of local-

ity for striped, and for the remainder of the section, we assume a block size of 1 texel for

the striped architecture.

4.2.4.2 Working Sets
Now that we have an understanding of the effects of cache block size on locality under

parallel rasterization, we move onto the effects of parallel rasterization on working set

sizes by using limited-size caches that suffer misses beyond compulsory misses. As the

number of texturing units is increased, the total amount of cache in the system increases,

and thus we expect better performance. Figure 4.13 quantifies this notion by showing the

bandwidth requirements of the various architectures with differing numbers of texturing

units for the flight2x data set as the total cache size is varied. In general, there is a corre-

lation between an algorithm’s working set size and the point of diminishing returns in

increasing cache size, illustrated as the “knee” in the curves of Figure 4.13. We see that

as the number of texturing units increases, the working set size for each texturing unit

decreases.

These same characteristics were found for all of the data sets. Because we want to

pay attention to low levels of parallelism and systems that scale a serial texturing unit, we

focus on a single cache size that works well for a serial algorithm. Choosing such a pa-

rameter outside of hardware implementation constraints is a bit of a black art, and thus

128 CHAPTER 4. SCALABLE TEXTURE MAPPING

we use parameters from Section 4.1.5.1 for consistency’s sake and allocate a cache size

of 16 KB (configured as two direct-mapped 8 KB caches) for the remainder of this paper.

Figure 4.14 shows the bandwidth requirements of the various algorithms on the various

scenes with a 16 KB cache. The first trend we notice is that while there is an initial jump

in bandwidth demand when going from one texture unit to two texture units, the band-

width demands are largely flat with increasing numbers of texture units. Moreover, for

some traces, particularly flight and flight2x, the bandwidth demands actually decrease

after the initial increase. This is a well-known phenomenon from parallel systems

wherein the aggregate cache size increases more rapidly than the aggregate miss rate, re-

sulting in improved cache behavior with increasing parallelism.

tiled-prim tiled-frame osi striped

1 2 4 8 16 32 64

cache size [KB]

0

1

2

3

4

te
xe

ls
 p

er
 f

ra
gm

en
t

1 2 4 8 16 32 64

cache size [KB]

0

1

2

3

4

te
xe

ls
 p

er
 f

ra
gm

en
t

1 2 4 8 16 32 64

cache size [KB]

0

1

2

3

4

te
xe

ls
 p

er
 f

ra
gm

en
t

1 2 4 8 16 32 64

cache size [KB]

0

1

2

3

4

te
xe

ls
 p

er
 f

ra
gm

en
t

Texturing Units
1 2 4 16 64 inf

Figure 4.13: The Effects of Cache Size
The total bandwidth (measured in average number of texels per fragment) re-
quired to render flight2x is plotted as a function of the cache size. Each chart
shows a different rasterization architecture, and each curve represents a different
number of texturing units. Block size is set to 16 texels for all the graphs except
striped, which has a block size of 1 texel.

4.2. PARALLEL TEXTURE CACHING 129

One interesting result is that although tiled-frame performs better than tiled-prim for

the flight and qtvr data set pairs, the opposite is true for the quake data set pair. In flight,

and to a lesser extent qtvr, the disjoint drawing of triangles in image-space makes it ad-

vantageous to wait until all of the triangles of a tile are present before texturing due to

increased temporal locality. In quake, however, it is more advantageous to texture large

polygons that fall into multiple tiles immediately because the different regions of the

polygon all use the same repeated texture data.

4.2.4.3 Load Imbalance
The performance of any parallel system is often limited by load imbalance: if one unit is

given significantly more work than the other units, it will be the limiting factor, and per-

quake flight qtvr

1 2 4 8 16 32 64

texture units

0

1

2

3

4

te
xe

ls
 p

er
 f

ra
gm

en
t

1 2 4 8 16 32 64

texture units

0

1

2

3

4

te
xe

ls
 p

er
 f

ra
gm

en
t

1 2 4 8 16 32 64

texture units

0

1

2

3

4

te
xe

ls
 p

er
 f

ra
gm

en
t

Parallel Rasterization Algorithm Texture Resolution

tiled-prim striped osi tiled-frame 1x texture 2x texture

Figure 4.14: Bandwidth Requirements of a 16 KB Cache
In these graphs, bandwidth is displayed as a function of the number of rasterizers.
Both the normal and the 2x resolution versions of each scene are shown on the
same graph. Block sizes are the same as in Figure 4.13, and each curve shows the
bandwidths for a different parallel rasterization algorithm.

130 CHAPTER 4. SCALABLE TEXTURE MAPPING

formance will suffer. In parallel texture caching, load imbalance can occur in one of

three ways. First, the number of untextured fragments presented to each texturing unit

can differ. Second, the bandwidth required for texturing the fragments of a texturing

unit may vary. Third, the bandwidth required from each texturing memory can differ. In

a dedicated texture memory system, the last two sources of imbalance are identical be-

cause each texturing unit is paired with a single texture memory.

Figure 4.15 shows the various types of load imbalance of the various scenes on the

different architectures. The first trend to note is that all of the configurations load bal-

ance well in all respects when there are 16 or fewer texturing units (the worst imbalance

is 9.7%). However, as the number of texturing units is increased to 32, and especially 64,

there is a large imbalance in the bandwidth requirements of the texturing units. This im-

balance is significantly larger than fragment imbalance, and the trend occurs in all of the

rasterization algorithms except striped and on all of the data sets except the qtvr pair,

which exhibits extreme regularity in texture access patterns. The striped algorithm is

highly load balanced even at high numbers of texturing units because of its fine interleav-

ing pattern. However, this positive result is moderated by the fact that the baseline for

the striped data includes significantly more redundant bandwidth than the other rasteriza-

tion algorithms.

The second important trend in Figure 4.15 is the effect of shared texture memory on

texture memory load imbalance. In a dedicated texture memory system, the load imbal-

ance between texture memories is equal to the load imbalance between texturing units.

In a shared texture memory architecture, the load imbalance between texture memories is

relatively small. Thus, we see that distributing blocks in a tiled fashion across the texture

memories does in fact balance texture load well, usually to such an extent that shared tex-

ture memory imbalance is much lower than the dedicated texture memory imbalance.

4.2. PARALLEL TEXTURE CACHING 131

 striped osi tiled-prim tiled-frame
q
t
v
r
2
x

q
t
v
r

q
u
a
k
e
2
x

q
u
a
k
e

f
l
i
g
h
t
2
x

f
l
i
g
h
t

2 4 8 16 32 64
0

25

50

2 4 8 16 32 64
0

25

50

2 4 8 16 32 64
0

25

50

2 4 8 16 32 64
0

25

50

2 4 8 16 32 64
0

25

50

2 4 8 16 32 64
0

25

50

2 4 8 16 32 64
0

25

50

2 4 8 16 32 64
0

25

50

2 4 8 16 32 64
0

25

50

2 4 8 16 32 64
0

25

50

2 4 8 16 32 64
0

25

50

2 4 8 16 32 64
0

25

50

2 4 8 16 32 64
0

25

50

2 4 8 16 32 64
0

25

50

2 4 8 16 32 64
0

25

50

2 4 8 16 32 64
0

25

50

2 4 8 16 32 64
0

25

50

2 4 8 16 32 64
0

25

50

2 4 8 16 32 64
0

25

50

2 4 8 16 32 64
0

25

50

2 4 8 16 32 64
0

25

50

2 4 8 16 32 64
0

25

50

2 4 8 16 32 64
0

25

50

2 4 8 16 32 64
0

25

50

 frag miss bank

Figure 4.15: Texture Load Imbalance
Each graph shows load imbalance for different numbers of rasterizers. The y-axis
of each graph shows the percent difference in the work performed by the busiest
unit and the average unit. Each row shows a different scene, and each column
shows a different parallel rasterization algorithm. The rows and columns have
been sorted so that the scenes and rasterization algorithms that perform best are at
the upper left and the ones that perform worst are at the lower right. Three types
of load imbalance are shown. Fragment load imbalance is the maximum number
of fragments given to a texturing unit divided by the average number of fragments
per texturing unit. Miss load imbalance is the worst rasterizer’s number of misses
per fragment divided by the average number of misses per fragment. Bank load
imbalance is the maximum number of access per texture memory in a shared
memory architecture divided by the average number of accesses per memory. For
these experiments, we use the same cache and block sizes as Figure 4.14.

132 CHAPTER 4. SCALABLE TEXTURE MAPPING

4.2.4.4 Performance
While the experiments of the previous sections illuminate many characteristics of parallel

texture caching, they say nothing about realized performance. In particular, the temporal

effects of erratic intra-frame bandwidth demands are ignored. Even though a scene’s

memory bandwidth demands may be low when averaged over an entire frame, its mem-

ory bandwidth demands averaged over a few fragments can actually be quite high.

Figure 4.16 divides the execution time of a serial texturing unit into three categories: time

spent on fragment processing, time lost due to insufficient memory bandwidth, and time

lost due to fragment-to-fragment contention for the memory. We see that only flight2x

 tiled-prim tiled-frame osi striped

fl
ig

ht

qu
ak

e

qt
vr

fl
ig

ht
2x

qu
ak

e2
x

qt
vr

2x

fl
ig

ht

qu
ak

e

qt
vr

fl
ig

ht
2x

qu
ak

e2
x

qt
vr

2x

fl
ig

ht

qu
ak

e

qt
vr

fl
ig

ht
2x

qu
ak

e2
x

qt
vr

2x

fl
ig

ht

qu
ak

e

qt
vr

fl
ig

ht
2x

qu
ak

e2
x

qt
vr

2x

0.0

0.5

1.0

1.5

2.0

cy
cl

es
 p

er
 f

ra
gm

en
t

ideal bandwidth contention

Figure 4.16: Breakdown of Serial Time
This graph breaks down the execution of a serial texturing unit across different
scenes and rasterization algorithms. Execution time is normalized to cycles per
fragment, and the light gray bar shows the ideal cost, assuming one fragment is
processed per cycle. The dark gray bar shows the cost of insufficient memory
bandwidth for a 2 texel per cycle memory system. If the ratio of a scene’s aver-
age memory bandwidth requirement to the memory system’s bandwidth supply is
greater than one, then this cost is tallied. The black bar represents the cost of
fragment-to-fragment memory contention incurred by the 64-entry fragment
FIFO’s inability to smooth out temporal bandwidth variations. These experiments
use the same cache parameters as used in Figure 4.14.

4.2. PARALLEL TEXTURE CACHING 133

and qtvr2x have average memory bandwidth requirements beyond 2 texels per fragment,

and thus even perfect smoothing of fragment-to-fragment contention could not achieve a

performance of one cycle per fragment. We also see that contention time is nearly uni-

form across all rasterization architectures with the exception of striped, which performs

better due to smaller block sizes. In general, uncovered contention occurs in scenes that

have large variations in macroscopic bandwidth requirements. Whenever bandwidth re-

quirements peak beyond 2 texels per fragment over large periods of time, temporal mem-

ory contention cannot be resolved by the 64-entry fragment FIFO. This occurs most in

flight2x, and to a lesser extent, in flight and quake2x. In qtvr2x, temporal bandwidth re-

quirements are always over 2 texels per fragment, and in quake and qtvr, bandwidth re-

quirements are consistently under 2 texels per fragment, resulting in little temporal con-

tention that is not covered by the 64-entry fragment FIFO.

The serial runs of Figure 4.16 serve as a baseline for computing speedup of parallel

texture caching runs. In Figure 4.17, we graph the speedup of dedicated texture memory

architectures. Across all of the runs, excellent speedup is achieved through 16 texturing

units. For the scenes whose bandwidth requirements are usually met by the 2 texel per

cycle memory system – quake, quake2x, flight (except in striped), and qtvr – the speedup

is near-linear. For the scenes that exceed this bandwidth – flight2x and qtvr2x – the

speedup efficiency is dictated by the inefficiency of the cache with respect to a serial

cache, as graphed in Figure 4.16. Beyond 16 texturing units, some of the speedup curves

exhibit lower speedup efficiency. Referring back to the load imbalance graphs in Figure

4.15, we see that this occurs in the configurations that exhibited significant load imbal-

ance in the amount of bandwidth requested by each texturing unit. As expected intui-

tively, the fragment-to-fragment memory contention plays an insignificant role in

speedup efficiency.

134 CHAPTER 4. SCALABLE TEXTURE MAPPING

In Figure 4.18, we graph the speedup of a shared texture architecture. The speedup

efficiencies realized are almost identical to a dedicated texture architecture at or below 16

texturing units. At higher numbers of texturing units, however, these speedup efficien-

cies are generally better than a dedicated architecture for the configurations that exhibited

large load imbalance. This can be explained by the fact that in a shared texture architec-

tiled-prim tiled-frame

16 32 48 64

texture units

16

32

48

64

sp
ee

du
p

16 32 48 64

texture units

16

32

48

64

sp
ee

du
p

osi striped

16 32 48 64

texture units

16

32

48

64

sp
ee

du
p

16 32 48 64

texture units

16

32

48

64

sp
ee

du
p

Data Set
flight quake qtvr flight2x quake2x qtvr2x ideal

Figure 4.17: Speedup Graphs for Dedicated Texture Memory
These speedup graphs show speedup as a function of the number of texturing
units for dedicated texture cache architectures. The curves on each graph show
speedup for a different scene.

4.2. PARALLEL TEXTURE CACHING 135

ture, the texturing unit with the highest miss rate spreads its memory requests across

many texture memories, and thus performance becomes dependent on load imbalance

amongst the texture memories, which is much lower than texturing unit imbalance. In

effect, the busiest texture unit is able to steal memory bandwidth that would go unused in

a dedicated texture memory system.

tiled-prim tiled-frame

16 32 48 64

texture units

16

32

48

64
sp

ee
du

p

16 32 48 64

texture units

16

32

48

64

sp
ee

du
p

osi striped

16 32 48 64

texture units

16

32

48

64

sp
ee

du
p

16 32 48 64

texture units

16

32

48

64

sp
ee

du
p

Data Set
flight quake qtvr flight2x quake2x qtvr2x ideal

Figure 4.18: Speedup Graphs for Shared Texture Memory
These speedup graphs show speedup as a function of the number of texturing
units for shared texture cache architectures. The curves on each graph show
speedup for a different scene.

136 CHAPTER 4. SCALABLE TEXTURE MAPPING

4.2.5 Texture Updates
One reason parallel texture caching is so straightforward to implement is that texture

mapping is a read-only operation, except for texture downloads. This allowed us to use

multiple caches on the same data without the need for a complex coherence protocol to

detect changes in the texture memory caused by another texturing unit. However, any

real system with a shared texture memory will have to deal with such texture updates.

There are two potential hazards when a texture is updated. First, a texture read for a

fragment generated by a polygon submitted before the texture update could read the new

contents of the texture rather than the old contents. The converse could also occur when

a fragment generated by a polygon submitted after a texture update reads texture values

that are stale. These problems arise both because texture updates are large events that do

not necessarily occur atomically, and, more simply, because the work being performed at

any point in time by one texture unit (e.g., downloading a texture) is generally not tightly

coupled with the work being performed by another texture unit (e.g., processing frag-

ments).

One solution to these hazards is to force texture updates to occur atomically and to in-

troduce a strict ordering of operations between the texturing units during texture update.

This is most naturally expressed by performing a barrier operation across all of the graph-

ics system at the start of the texture update to ensure that previous accesses to the old tex-

ture have completed. Then, a second barrier operation at the end of the texture update

ensures that the new texture is in memory before any new fragments access it. The barri-

ers could be implemented either in hardware via a shared signal among the texturing

units, thus allowing the rest of the pipeline to make progress, or in the software driver,

forcing a flush of the graphics pipelines. Additionally, texturing units must flush stale

data from their caches in conjunction with texture updates.

4.3. CONCLUSION 137

4.3 Conclusion
In this chapter, we have demonstrated two key components to making scalable texture

mapping hardware. First, we have shown that any amount of latency may be hidden by a

proper texture prefetching architecture, even in conjunction with caching. The complete

lack of data dependencies between different fragments for the texturing operation, as

noted in Section 2.1, allows us to transform the texture memory access problem into one

of bandwidth rather than latency. Applying this idea in general, we see that while latency

is the critical factor in systems with a high degree of data dependency (e.g., microproces-

sors), bandwidth is the critical factor in systems with low amounts of data dependency

(e.g., texturing). Second, we have shown that parallel texture caching works given the

proper choice of algorithms and parameters. In particular, it is important to consider the

effects of parallelization algorithms on texture caching. Algorithms that lead to good

load balancing in fragment work (e.g., the striped architecture) also reduce the amount of

texture locality significantly, crippling texture caches. Moderate granularity of work bal-

ances this tradeoff well. Even with this tradeoff, we noticed a surprisingly large amount

imbalance in texture load at high degrees of parallelism (e.g., tiled on the flight dataset).

Besides the obvious benefit of scaling the amount of texture memory available, a shared

texture memory architecture balances this load among the texture memories significantly.

138 CHAPTER 4. SCALABLE TEXTURE MAPPING

 139

Chapter 5 Conclusion

Conclusion

In this thesis, we have examined scalability in graphics architectures from a novel point

of view and provided ways of scaling two aspects of graphics architectures that have been

ignored by previous work. We will review these contributions and describe several areas

for future work.

In Chapter 2, we examined parallelism in graphics architectures. The graphics API

defines the instruction set of a virtual graphics machine. Compared to a microprocessor

architecture, we saw that graphics instructions define a much greater amount of computa-

tion: each instruction that specifies a triangle requires hundreds of floating-point opera-

tions, and each of the potentially millions of fragments generated by a triangle requires

hundreds of fixed-point operations. Furthermore, few data dependencies exist within and

between these graphics instructions, allowing graphics architectures to exploit large

amounts of parallelism. The sorting taxonomy classifies the ways existing architectures

have tried to exploit this parallelism, and the large variety in types of parallel architec-

tures is related to the flexibility afforded by this parallelism.

In Section 2.2, we examined scalability in graphics architectures. Traditionally, re-

searchers only looked at triangle rate and pixel rate in determining the scalability of

graphics architectures. However, by only concentrating on these metrics, many research-

ers overlook other important aspects of scalability. In this dissertation, we presented a

140 CHAPTER 5. CONCLUSION

novel set of quantitative (input rate, triangle rate, pixel rate, texture memory, display) and

qualitative (mode semantics, frame semantics, ordering semantics) metrics on which

graphics architectures may be compared, and we described techniques for scaling two of

the metrics that have been ignored by previous work: input rate and texture memory. In

fact, by using the techniques described in this dissertation in conjunction with a novel

multi-sort algorithm, Pomegranate is able to achieve full scalability in all five quantita-

tive metrics while satisfying all the qualitative semantic constraints required by OpenGL.

In Chapter 3, we described a novel parallel immediate-mode graphics interface. By

introducing synchronization commands into the API, ordering between multiple graphics

streams could be explicitly constrained. Since synchronization is done between graphics

streams, an application thread is able to continue issuing graphics commands even when

its graphics stream is blocked—this allows the application to specify, fully in parallel, a

scene that requires even an exact ordering. Several implementations of the parallel API

were described, and with the Pomegranate implementation, we demonstrated that order-

ing does not constrain performance. Even on data sets that required a total ordering of

primitives, we were able to demonstrate a speedup efficiency of 99% using 64 graphics

streams, allowing the hardware implementation to achieve 1.10 billion triangles per sec-

ond, largely due to 64 GB per second of input bandwidth from the parallel interface.

Given that we are now at the point where a graphics card costing less that a couple of

hundred dollars can render triangles faster than the system can specify them, the parallel

API is critical for scaling graphics beyond even the cheapest of graphics architectures.

The parallel API provides a new paradigm for writing parallel graphics applications,

but, in general, parallel applications are difficult to write. Many graphics algorithms that

need an immediate-mode interface are limited by application computation speed (e.g.,

[Sederberg & Parry 1986, Hoppe 1997]), and parallelizing the graphics commands along-

side the computation is straightforward. However, there are two other uses of the parallel

API that are of special interest because they present the application programmer with a

simple serial interface. Scene graph libraries such as Performer [Rohlf & Helman 1994]

are parallel libraries that traverse, cull, and issue scenes on multiple processors on behalf

CHAPTER 5. CONCLUSION 141

of a serial application. Pipeline parallelism is currently used to distribute different tasks

among different processors, but Performer is limited on most applications by the single

processor responsible for the issuing of the graphics commands. The parallel API can be

used to write such libraries in a homogeneous, scalable fashion. A second novel use of

the parallel API is to write a “compiler” that can automatically parallelize the graphics

calls of a serial graphics application. Recent advances in compiler technology allow

automatic parallelization of regular serial applications [Amarasinghe et al. 1996], and ex-

tending this work to encompass graphics applications would be an interesting research

direction.

In Chapter 4, we presented two key contributions that allow for scalable texture map-

ping subsystems. Two aspects of texture mapping must be scaled: performance and

amount of texture data. Multiple texturing units with caches accessing a shared texture

memory across a scalable network served as the basis of such a scalable subsystem. In

such a subsystem, two main challenges were addressed.

First, in Section 4.1, we presented and analyzed a prefetching texture cache architec-

ture for a single texturing unit. This is critical to a shared texture memory system be-

cause of the highly variable latencies. We designed the architecture to take advantage of

the distinct memory access patterns of texture mapping. In particular, caching works

well because mip mapping guarantees small strides across texture memory. Furthermore,

because no dependencies exist in the stream of read-only texture accesses, arbitrary

amounts of latency may be tolerated by the prefetching architecture that separates the

cache tags from the cache data temporally. We demonstrated the architecture’s ability to

hide the memory latency with a 97% utilization of the available hardware resources. The

ability to tolerate memory latency is important in serial texture systems and parallel tex-

ture systems with dedicated texture memories because of the latencies of modern memo-

ries. Furthermore, such a system is critical for shared texture memory architectures that

scale the amount of texture memory through texture caching because of the highly vari-

able latencies introduced by a system with non-uniform memory access times.

142 CHAPTER 5. CONCLUSION

In Section 4.2, we demonstrated that parallel texture caching is able to load balance

texture memory requirements well without incurring excessive amounts of redundant

work given the proper choice of various parameters. We demonstrated that parallel tex-

ture caching works well across nearly two orders of magnitude of parallelism, from a se-

rial texture unit up to 64 texture units. An interesting discovery was that even though

fragment work may be well balanced across texturing units, significant imbalance can

exist in the texture bandwidth requirements. However, a shared texture memory in which

data is interleaved balances this bandwidth across the multiple texture memories very

well.

While this thesis demonstrated how two major aspects of a graphics system may be

scaled, attaining ideal amounts of scalability requires the modification of the serial graph-

ics system. For example, although WireGL transparently implements the parallel API on

top of serial graphics architectures, a layer of software is responsible for implementing

the parallel API. Compared to the hardware implementation of Pomegranate, this system

resolves parallel API commands much more slowly, partially due to the fact that it is in

software, and partially due to the fact that API commands are broadcast to the renderers.

In the realm of scalable texturing, although the results of Chapter 4 demonstrate rasteriza-

tion algorithms that are able to scale texturing performance based on unmodified serial

graphics pipelines, the scalability of the amount of texture memory requires special sup-

port for a shared texture store in the graphics pipeline. In the microprocessor space, a

minimal set of additions to a non-scalable microprocessor (e.g., cache coherency hard-

ware) is the basis of scalability. Pomegranate demonstrates that one set of additions to a

non-scalable graphics architecture allow for a fully scalable graphics architecture. An

open question is whether or not these additions are minimal—if not, what is?

 143

Bibliography
[Akeley 1993] Akeley, K. [1993]. RealityEngine Graphics. Computer

Graphics (SIGGRAPH 93 Proceedings), 27, 109-116.

[Akeley & Jermoluk 1988] Akeley, K. & Jermoluk, T. [1988]. High-Performance
Polygon Rendering. Computer Graphics (SIGGRAPH 88
Proceedings), 22, 239-246.

[Amarasinghe et al. 1996] Amarasinghe, S., Anderson, J., Wilson, C., Liao, S., Mur-
phy, B., French, R., Lam, M., & Hall, M. [1996]. Multi-
processors from a Software Perspective. IEEE Micro,
16(3), 52-61.

[Anderson et al. 1997] Anderson, B., MacAulay, R., Stewart, A., & Whitted, T.
[1997]. Accommodating Memory Latency In A Low-Cost
Rasterizer. 1997 SIGGRAPH / Eurographics Workshop on
Graphics Hardware, 97-102.

[Beers et al. 1996] Beers, A., Agrawala, M., & Chaddha, N [1996]. Rendering
from Compressed Textures. Computer Graphics (SIG-
GRAPH 96 Proceedings), 30, 373-378.

[Blinn 1988] Blinn, J. [1988]. Me and My (Fake) Shadow. IEEE Com-
puter Graphics and Applications, 8(1), 82-86.

[Buck et al. 2000] Buck, I., Humphreys, G., & Hanrahan, P. [2000]. Tracking
Graphics State for Networked Rendering. 2000 SIG-
GRAPH / Eurographics Workshop on Graphics Hardware.

[Chen 1995] Chen, S. [1995]. QuickTime VR: An Image-Based Ap-
proach to Virtual Environment Navigation. Computer
Graphics (SIGGRAPH 95 Proceedings), 29, 29-38.

[Chen et al. 1998] Chen, M., Stoll, G., Igehy, H., Proudfoot, K., & Hanrahan,
P. [1998]. Simple Models of the Impact of Overlap in
Bucket Rendering. 1998 SIGGRAPH / Eurographics
Workshop on Graphics Hardware, 105-112.

144 BIBLIOGRAPHY

[Cox et al. 1998] Cox, M., Bhandari, N., & Shantz, M. [1998]. Multi-Level
Texture Caching for 3D Graphics Hardware. Proceedings
of the 25th International Symposium on Computer Archi-
tecture.

[Crisp 1997] Crisp, R. [1997]. Direct Rambus Technology: The New
Main Memory Standard. IEEE Micro, Nov / Dec, 18-28.

[Crockett 1994] Crockett, T. [1994]. Design Considerations for Parallel
Graphics Libraries. Proceedings of the Intel Supercom-
puter Users Group 1994.

[Deering 1995] Deering, M. [1995]. Geometry Compression. Computer
Graphics (SIGGRAPH 95 Proceedings), 29, 13-20.

[Deering & Nelson 1993] Deering, M. & Nelson, S. [1993]. Leo: A System for Cost
Effective 3D Shaded Graphics. Computer Graphics (SIG-
GRAPH 93 Proceedings), 27, 101-108.

[Dijkstra 1968] Dijkstra, E. [1968]. Cooperating Sequential Processes.
Programming Languages, 43-112.

[Duato et al. 1997] Duato, J., Yalmanchili, S., & Ni, L. [1997]. Interconnec-
tion Networks, IEEE Computer Society Press.

[Eldridge et al. 2000] Eldridge, M., Igehy, H., & Hanrahan, P. [2000]. Pome-
granate: A Fully Scalable Graphics Architecture. Com-
puter Graphics (SIGGRAPH 2000 Proceedings), 34.

[Evans & Sutherland 1992] Evans & Sutherland Computer Corporation. [1992]. Free-
dom 3000 Technical Overview, Technical Report.

[Eyles et al. 1997] Eyles, J., Molnar, S., Poulton, J., Greer, T., Lastra, A., Eng-
land, N., & L., Westover [1997]. PixelFlow: The Realiza-
tion. 1997 SIGGRAPH / Eurographics Workshop on
Graphics Hardware, 57-68.

[Foley et al. 1990] Foley, J., van Dam, A., Feiner, S., & Hughes, J. [1990].
Computer Graphics: Principles and Practice. Addison-
Wesley, Second Edition.

[Gettys & Karlton 1990] Gettys, J. & Karlton, P. [1990]. The X Window System,
Version 11. Software—Practice and Experience, 20(S2),
35-67.

[Gortler et al. 1996] Gortler, S., Grzeszczuk, R., Szeliski, R., & Cohen, M.
[1996]. The Lumigraph. Computer Graphics (SIGGRAPH
96 Proceedings), 30, 43-54.

[Hakura & Gupta 1997] Hakura, Z. & Gupta, A. [1997]. The Design and Analysis
of a Cache Architecture for Texture Mapping. Proceedings

BIBLIOGRAPHY 145

of the 24th International Symposium on Computer Archi-
tecture.

[Hanrahan 1997] Hanrahan, P. [1997]. The Visual Computer, Invited State-
of-the-Field Talk, Supercomputing 1997.

[Hennessy & Patterson 1996] Hennessy, J. & Patterson, D. [1996]. Computer Architec-
ture: A Quantitative Approach, Morgan Kaufman, Second
Edition.

[Hoppe 1997] Hoppe, H. [1997]. View-Dependent Refinement of Pro-
gressive Meshes. Computer Graphics (SIGGRAPH 97
Proceedings), 31, 189-198.

[Igehy et al. 1999] Igehy, H., Eldridge, M., & Hanrahan, P. [1999]. Parallel
Texture Caching. 1999 SIGGRAPH / Eurographics Work-
shop on Graphics Hardware, 95-106.

[Igehy et al. 1998a] Igehy, H., Eldridge, M., & Proudfoot, K. [1998]. Prefetch-
ing in a Texture Cache Architecture. 1998 SIGGRAPH /
Eurographics Workshop on Graphics Hardware, 133-142.

[Igehy et al. 1998b] Igehy, H., Stoll, G., & Hanrahan, P. [1998]. The Design of
a Parallel Graphics Interface. Computer Graphics (SIG-
GRAPH 98 Proceedings), 32, 141-150.

[Intel 1998] Intel Corporation [1998]. Accelerated Graphics Port Inter-
face Specification, revision 2.0.

[Kilgard 1996] Kilgard, M. [1996]. OpenGL Programming for the X Win-
dow System, Addison-Wesley.

[Kilgard 1997] Kilgard, M. [1997]. Realizing OpenGL: Two Implementa-
tions of One Architecture. 1997 SIGGRAPH / Eurograph-
ics Workshop on Graphics Hardware, 45-56.

[Kirk 1998] Kirk, D. [1998]. Unsolved Problems and Opportunities for
High-Quality, High-Performance 3D Graphics on a PC
Platform. 1998 SIGGRAPH / Eurographics Workshop on
Graphics Hardware, 11-13.

[Kirkland 1998] Kirkland, D. [1998]. Personal Communication, Intergraph
Corp.

[Kubota 1993] Kubota Pacific Computer Inc. [1993]. Denali Technical
Overview, Technical Report.

[Lamport 1979] Lamport, L. [1979]. How to Make a Multiprocessor Com-
puter that Correctly Executes Multiprocess Programs.
IEEE Transactions on Computers, 28(9), 241-248.

146 BIBLIOGRAPHY

[Laudon & Lenoski 1997] Laudon, J. & Lenoski, D. [1997]. The SGI Origin: A
ccNUMA Highly Scalable Server. Proceedings of the 24th
Annual Symposium on Computer Architecture.

[Levoy & Hanrahan 1996] Levoy, M., & Hanrahan, P. [1996]. Light Field Rendering.
Computer Graphics (SIGGRAPH 96 Proceedings), 30, 31-
42.

[Lorensen & Cline 1987] Lorensen, W. & Cline, H. [1987]. Marching Cubes: A
High-Resolution 3D Surface Reconstruction Algorithm.
Computer Graphics (SIGGRAPH 87 Proceedings), 21,
163-169.

[McMillan & Bishop 1995] McMillan, L., & Bishop, G. [1995]. Plenoptic Modeling:
An Image-Based Rendering System. Computer Graphics
(SIGGRAPH 95 Proceedings), 29, 39-46.

[Molnar 1995] Molnar, S. [1995]. The PixelFlow Texture and Image
Subsystem. Proceedings of the 10th Eurographics
Workshop on Graphics Hardware, 3-13.

[Molnar et al. 1992] Molnar, S., Eyles, J., & Poulton, J. [1992]. PixelFlow:
High-Speed Rendering Using Image Composition. Com-
puter Graphics (SIGGRAPH 92 Proceedings), 26, 231-240.

[Molnar et al. 1994] Molnar, S., Cox, M., Ellsworth, D., & Fuchs, H. [1994]. A
Sorting Classification of Parallel Rendering. IEEE Com-
puter Graphics and Applications, 14(4), 23-32.

[Montrym et al. 1997] Montrym, J., Baum, D., Dignam, D., & Migdal, C. [1997].
InfiniteReality: A Real-Time Graphics System. Computer
Graphics (SIGGRAPH 97 Proceedings), 31, 293-302.

[Mowry 1999] Mowry, T. [1999]. Personal Communication. Carnegie
Mellon University.

[Mueller 1995] Mueller, C. [1995]. The Sort-First Rendering Architecture
for High-Performance Graphics. 1995 Symposium on In-
teractive 3D Graphics, 75-84.

[Neider et al. 1993] Neider, J., Davis, T., & Woo, M. [1993]. OpenGL Pro-
gramming Guide. Addison-Wesley.

[Nishimura & Kunii 1996] Nishimura, S. & Kunii, T. [1996]. VC-1: A Scalable
Graphics Computer with Virtual Local Framebuffers.
Computer Graphics (SIGGRAPH 96 Proceedings), 30,
365-372.

[Porter & Duff 1984] Porter, T. & Duff, T. [1984]. Compositing Digital Images.
Computer Graphics (SIGGRAPH 84 Proceedings), 18,
253-259.

BIBLIOGRAPHY 147

[Regan et al. 1999] Regan, M., Miller, G., Rubin, S., & Kogelnik, C. A Real-
Time Low-Latency Hardware Light-Field Renderer. Com-
puter Graphics (SIGGRAPH 99 Proceedings), 33, 287-290.

[Rohlf & Helman 1994] Rohlf, J. & Helman, J. [1994]. IRIS Performer: A High
Performance Multiprocessing Toolkit for Real-Time 3D
Graphics. Computer Graphics (SIGGRAPH 94 Proceed-
ings), 28, 381-395.

[Samanta et al. 1999] Samanta, R., Zheng, J., Funkhouser, T., & Li, K. [1999].
Load Balancing for Mult-Projector Rendering Systems.
1999 SIGGRAPH / Eurographics Workshop on Graphics
Hardware, 107-116.

[Scheifler & Gettys 1986] Scheifler, R. & Gettys, J. [1986]. The X Window System.
ACM Transactions on Graphics, 5(2), 79-109.

[Sederberg & Parry 1986] Sederberg, T. & Parry, S. [1986]. Free-Form Deformation
of Solid Geometric Models. Computer Graphics (SIG-
GRAPH 86 Proceedings), 20, 151-160.

[Segal & Akeley 1992] Segal, M. & Akeley, K. [1992]. The OpenGL Graphics
System: A Specification, http://www.opengl.org.

[Torborg & Kajiya 1996] Torborg, J. & Kajiya, J. [1996]. Talisman: Commodity
Real-Time 3D Graphics for the PC. Computer Graphics
(SIGGRAPH 96 Proceedings), 30, 57-68.

[Vartanian et al. 1998] Vartanian, A., Béchennec, J., & Drach-Temam, N. [1998].
Evaluation of High Performance Multicache Parallel Tex-
ture Mapping. Proceedings of the 12th ACM International
Conference on Supercomputing, 289-296.

[Voorhies et al. 1988] Voorhies, D., Kirk, D., & Lathrop, O. [1988]. Virtual
Graphics. Computer Graphics (SIGGRAPH 88 Proceed-
ings), 22, 247-253.

[Williams 1983] L. Williams [1983]. Pyramidal Parametrics. Computer
Graphics (SIGGRAPH 83 Proceedings), 17, 1-11.

	SCALABLE GRAPHICS ARCHITECTURES: INTERFACE & TEXTURE
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Introduction
	Trends in Graphics Architecture
	The Rendering Problem
	Representations and Algorithms
	Interactive Rendering

	The Graphics Pipeline
	Summary of Original Contributions

	Analysis of Parallel Graphics
	Sources of Parallelism
	Instruction Set
	Data Dependencies
	Dependencies and Parallelism
	Data Dependencies in Graphics Architectures

	Control Dependencies
	Discussion

	Scaling the Graphics Pipeline
	Scalability Metrics
	Analysis of Scalable Architectures
	Sort-First Architectures
	Sort-Middle Architectures
	Fragment-sorting Architectures
	Image-Composition Architectures
	Pomegranate Architecture

	Conclusion

	Scalable Graphics Interface
	Introduction
	Motivation
	Related Work
	The Parallel API Extensions
	Existing Constructs
	The Wait Construct
	Synchronization Constructs

	Using the Parallel Graphics API
	Simple Interactive Loop
	Marching Cubes

	Implementations
	Argus: A Software Implementation
	Architecture
	Performance

	Pomegranate: A Hardware Implementation
	Architecture
	Performance

	WireGL: A Transparent Implementation

	Implementation Alternatives
	Consistency and Synchronization
	Architectural Requirements

	Conclusion

	Scalable Texture Mapping
	Prefetching in a Texture Cache
	Introduction
	Mip Mapping
	Caching and Prefetching
	Traditional Prefetching
	A Texture Prefetching Architecture

	Robust Scene Analysis
	Texture Locality
	The Benchmark Scenes

	Memory Organization
	Cache Efficiency
	Bandwidth Requirements
	Memory Models

	Performance Analysis
	Intra-Frame Variability
	Buffer Sizes

	Parallel Texture Caching
	Previous Work
	Parallel Texture Caching Architectures
	Methodology
	Parallel Rasterization Algorithms
	Scenes
	Simulation Environment
	Data Organization
	Performance Model

	Results
	Locality
	Working Sets
	Load Imbalance
	Performance

	Texture Updates

	Conclusion

	Conclusion
	Bibliography

