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THE COMPUTATIONAL COMPLEXITY OF KNOT GENUS AND

SPANNING AREA

IAN AGOL, JOEL HASS, AND WILLIAM THURSTON

Abstract. We show that 3-MANIFOLD KNOT GENUS, the problem of de-
ciding whether a polygonal knot in a closed three-dimensional manifold bounds
a surface of genus at most g, is NP-complete. We also show that the problem
of deciding whether a curve in a PL manifold bounds a surface of area less
than a given constant C is NP-hard.

1. Introduction

In this paper we investigate the computational complexity of some problems in
three-dimensional topology and geometry. We show that 3-MANIFOLD KNOT

GENUS, the problem of determining a bound on the genus of a knot in a 3-
manifold, is NP-complete. Using similar ideas, we show that the problem MINI-

MAL SPANNING AREA, deciding whether a curve in a metrized PL 3-manifold
bounds a surface of area less than a given constant C, is NP-hard.

Determining whether a given knot is trivial or not is historically one of the
central questions in topology. The problem of finding an algorithm to determine
knot triviality was posed by Dehn [1]. Dehn’s investigations into this area led to
the formulation of the word and isomorphism problems, which played an impor-
tant role in the development of the theory of algorithms. The first algorithm for
UNKNOTTING was given by Haken [3]. Haken’s procedure is based on normal
surface theory, a method of representing surfaces originated by Kneser [14]. Analy-
sis of the computational complexity of this algorithm is more recent. Hass, Lagarias
and Pippenger showed that Haken’s unknotting algorithm runs in time at most ct,
where the knot K is embedded in the 1-skeleton of a triangulated manifold M with
t tetrahedra, and c is a constant independent of M or K [5]. It was also shown in
[5] that UNKNOTTING is NP.

The notion of genus was defined by Seifert [23] in 1935 for knots in the 3-
sphere, and extends directly to knots in an arbitrary 3-manifold M . Given a knot
K, consider the class S(K) of all orientable spanning surfaces for K. These are
surfaces embedded in M with a single boundary component that coincides with K.
Seifert showed that this class is non-empty for any knot K in the 3-sphere. For
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knots in a general manifold, S(K) is non-empty when K represents a trivial element
in the first integer homology group of M . Any oriented surface without boundary
can be obtained from a sphere by adding “handles”. The number of handles is the
genus of the surface: a sphere has genus 0, a torus has genus 1, etc. The genus is
also equal to the number of curves along which a surface can be cut while leaving
it connected. If a surface has boundary, its genus is defined as the genus of the
surface gotten by gluing a disk to each component of the boundary. The genus of
a surface can be computed using any subdivision into polygons, from the formula

Euler characteristic = #vertices − #edges + #faces

= 2 − 2 × genus − #boundary curves

The genus g(K) of a knot K is the minimum genus of a surface in S(K), or ∞
if S(K) = ∅. The genus measures one aspect of the degree of “knottedness” of a
curve.

UNKNOTTING is a special case of the more general problem 3-MANIFOLD

KNOT GENUS. This problem asks for a procedure to determine the knot genus,
the minimal genus of an orientable spanning surface for a knot in a 3-dimensional
manifold. A knot is trivial, or unknotted, precisely when its genus is zero. We will
show that this more general problem is NP-complete. The only previous results
obtained on this problem were given in [5], where it was shown to lie in PSPACE.
No lower bounds on the running time were previously known.

We work with 3-manifolds that are triangulated and orientable, and with ori-
entable embedded surfaces. This is not a significant restriction, since all compact
3-dimensional manifolds admit unique PL structures [15]. A knot in a triangu-
lated 3-manifold M is a connected simple (non self-intersecting) closed curve in the
1-skeleton of M .

We formulate the problem of computing the genus as a language-recognition
problem in the usual way, see [2]. In 1961 Schubert [21], in an extension of Haken’s
work, showed the decidability of the problem:

Problem: 3-MANIFOLD KNOT GENUS
INSTANCE: A triangulated 3-dimensional manifold M , a knot K in the
1-skeleton of M , and a natural number g.
QUESTION: Does the knot K have g(K) ≤ g?

The size of an instance is given by the sum of the number of tetrahedra in M
and log g. In Section 3 we establish

Theorem 1. 3-MANIFOLD KNOT GENUS is NP-hard.

It was established in [5] that 3-MANIFOLD KNOT GENUS is in PSPACE.
In Section 5 we improve this bound to show that it lies in NP.

Theorem 2. 3-MANIFOLD KNOT GENUS is NP.

In combination these two results give:

Theorem 3. 3-MANIFOLD KNOT GENUS is NP-complete.

Theorem 1 is proved through a construction that transforms an instance of ONE-

IN-THREE SAT to an instance of 3-MANIFOLD KNOT GENUS. To a boolean
expression we associate a positive integer g and a certain knot in a compact 3-
manifold. This knot bounds a surface of genus at most g exactly when there is a
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truth assignment to the boolean expression satisfying the requirements of ONE-

IN-THREE SAT. Since ONE-IN-THREE SAT is NP-hard, this establishes that
3-MANIFOLD KNOT GENUS is also NP-hard.

In Section 5 we prove Theorem 2, giving a certificate which demonstrates that
a genus g knot K bounds a surface of genus at most g. In [5], which established
that UNKNOTTING is NP, the argument relies on the existence of a normal disk
that lies along an extremal ray in the space of normal solutions. The existence of
such an extremal normal surface of minimal genus spanning a knot is not known,
so a new technique is needed. This is provided by Theorem 12, which gives an
algorithm to count the number of orbits of a type of pseudogroup action on a set.
Theorem 12 seems likely to have more general applicability. In Section 4 we describe
this algorithm and in Section 5 we apply it to a pseudogroup action that arises in
the theory of normal surfaces. This allows us to determine in polynomial time the
number of components in a normal surface described by an integer vector in Z

7t
+ .

In particular we are able to certify that a normal surface is connected, orientable
and has connected boundary. Since calculating the Euler characteristic of a normal
surface is straightforward, establishing orientability and connectedness are the key
steps in constructing a polynomial time certificate of its genus.

In Section 6 we extend the orbit counting algorithm to allow the counting of
additional integer weight sums associated to each orbit. This allows for the polyno-
mial time calculation of the genus of all the components of a fundamental normal
surface, as well as a count of the number of components.

The genus and the area of a surface are closely connected, for example via the
Gauss-Bonnet Theorem. In Section 7 we extend the methods developed in studying
genus to study the problem of determining the smallest area of a spanning surface
for a curve in a 3-manifold. We show that computing an upper bound on the area
of a smallest area spanning surface is NP-hard.

See [16] for a discussion of complexity classes such as NP and PSPACE and
[25] for a survey of complexity problems in low-dimensional topology.

Remarks:

1. Knots are often studied in R
3 or S3 rather than in a general manifold. Our

methods show that determining knot genus in R
3 or S3, or any fixed manifold,

is NP. It is not clear whether the problem remains NP-hard in R
3 or S3.

2. In a related result, Casson has shown that a procedure to determine whether
a 3-manifold is homeomorphic to the 3-sphere, following the 3-sphere recogni-
tion algorithm described in [18] and [24], runs in time less than 3tp(t), where
p(t) is a polynomial. In the direction of lower bounds, it was shown in [13]
that determining certain values of the Jones polynomial of alternating links
is #P-hard.

2. Normal Surfaces

General surfaces in 3-manifolds can wind and twist around the manifold in com-
plicated ways. Kneser described a procedure in which surfaces can be “pulled taut”,
until they take a simple and rigid position [14]. In this normal position, they have
very succinct algebraic descriptions. We use an approach to normal surfaces based
on work of Jaco and Rubinstein [12] and Jaco and Tollefson [11]. A normal surface
S in a triangulated compact 3-manifold M is a PL-surface whose intersection with
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each tetrahedron in M consists of a disjoint set of elementary disks. These are
either triangles or quadrilaterals. See Figure 1.

Figure 1. Elementary disks in a normal surface.

Within each tetrahedron of M there are four possible triangles and three pos-
sible quadrilaterals, up to isotopies that map the tetrahedron to itself. A normal
isotopy is an isotopy which leaves each cell of the triangulation invariant. W. Haken
observed that a normal surface is determined up to such isotopies by the number of
pieces of each of the seven kinds of elementary disks that occur in each tetrahedron,
or a vector in Z

7t
+ . A normal surface is described by a non-negative integer vector

v = v(S) ∈ Z
7t, that gives the normal coordinates of S. The set of allowable values

v(S) for a normal surface S lies in a certain homogeneous rational cone CM in
R

7t, called the Haken normal cone. If v = (v1, v2, . . . , v7t) ∈ R
7t, then the Haken

normal cone is specified by linear equations and inequalities of the form

vi1 + vi2 = vi3 + vi4 (up to 6t equations) ,

vi ≥ 0 , for 1 ≤ i ≤ 7t .

The first set of equations expresses matching conditions, which say that the number
of edges on a common triangular face of two adjacent tetrahedra, coming from a
collection of elementary disks in each of the tetrahedra, must match. For each trian-
gular face there are three types of edges (specified by a pair of edges on the triangle),
which yield 3 matching conditions per face. Triangular faces in the boundary ∂M
give no matching equations. The second set are called the positivity conditions. The
cone CM is rational, because the above equations have integer coefficients. We let
CM (Z) = CM ∩Z

7t denote the set of integral vectors in the cone CM . An additional
set of conditions, the quadrilateral conditions, is required for an integral vector in
the cone to correspond to the normal coordinates of an embedded surface. This
condition states that of the three types of quadrilateral found in each tetrahedron,
only one can occur in the vector with non-zero coefficient. The quadrilateral condi-
tions are required because two distinct types of quadrilateral in a single tetrahedron
necessarily intersect, and we are interested in embedded, non-self-intersecting sur-
faces. A vector in the Haken normal cone that satisfies the quadrilateral conditions
corresponds to an embedded normal surface. This surface is unique up to an iso-
topy fixing each tetrahedron (called a normal isotopy). However it is important to
note that the surface may not be connected.

A fundamental normal surface is a normal surface S such that

v(S)6 = v1 + v2 , with v1,v2 ∈ CM (Z)\{0} .
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In the terminology of integer programming, such a vector v(S) is an element of the
minimal Hilbert basis H(CM ) of CM , see Schrijver [20, Theorem 16.4]. A fundamen-
tal normal surface is always connected, but connected normal surfaces need not be
fundamental. Hass, Lagarias and Pippenger [5] gave a bound for the complexity of
any fundamental surface.

Theorem 4. Let M be a triangulated compact 3-manifold, possibly with boundary,
that contains t tetrahedra.

• Any vertex minimal solution v ∈ Z
7t of the Haken normal cone CM in R

7t

has max
1≤i≤7t

(vi) ≤ 27t−1 .

• Any minimal Hilbert basis element v ∈ Z
7t of the Haken fundamental cone

CM has max
1≤i≤7t

(vi) < t · 27t+2 .

Schubert [21] showed that a surface of smallest genus spanning K can be found
among the fundamental surfaces.

Theorem 5. There is a minimal genus spanning surface for K which is a funda-
mental normal surface.

Similar to the theory of normal surfaces, though somewhat easier, is the theory
of normal curves. These are curves on a surface that intersect each triangle in a
collection of normal arcs, arcs that have endpoints on distinct edges. Since there
are three such arcs, up to isotopy, in each triangle, normal curves are described by
integer vectors in Z

3t
+ in a surface that contains t triangles. Normal curves arise as

the boundaries of normal surfaces in a manifold with boundary.

3. 3-MANIFOLD KNOT GENUS is NP-hard

In this section we show how to reduce an instance of ONE-IN-THREE SAT to
an instance of 3-MANIFOLD KNOT GENUS. Since ONE-IN-THREE SAT is
known to be NP-hard, this establishes that 3-MANIFOLD KNOT GENUS is
also NP-hard. The problem ONE-IN-THREE SAT concerns logical expressions
involving collections of variables (clauses).

Problem: ONE-IN-THREE SAT
INSTANCE: A set U of variables and a collection C of clauses over U
such that each clause c ∈ C has |c| = 3.
QUESTION: Is there a truth assignment for U such that each clause in C
has exactly one true literal?

Schaefer [19] established that ONE-IN-THREE SAT is NP-complete. To prove
Theorem 1, establishing that 3-MANIFOLD KNOT GENUS is NP-hard, we
show that an arbitrary problem in ONE-IN-THREE SAT can be reduced in
polynomial time to a problem in 3-MANIFOLD KNOT GENUS. See Garey and
Johnson [2] for many examples of such reductions.

Let U = {u1, u2, . . . un} be a set of variables and C = {c1, c2, . . . cm} be a set
of clauses in an arbitrary instance of ONE-IN-THREE SAT. We will describe a
knot K in a compact 3-dimensional manifold (with no boundary) and an integer
g such that K bounds a surface of genus smaller or equal to g if and only if C is
satisfiable so that each clause in C contains exactly one true literal. We construct
the 3-manifold M in stages. First we construct a 2-dimensional simplicial complex,
then we thicken this complex, replacing triangles with subdivided triangular prisms,
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getting a triangulated, 3-dimensional manifold with boundary, as indicated in Fig-
ure 2. Finally we use a doubling construction, taking two copies of the manifold
with boundary and gluing their boundaries together, to obtain a closed 3-manifold.

Figure 2. A branched surface B, shown in cross-section, is “thick-
ened” to produce a triangulated 3-manifold with boundary.

To begin, we form a “branched” surface B by identifying boundary curves of a
collection of 2n+1 surfaces with boundary. We construct this collection of surfaces.
Let ki be the number of times that the variable ui appears in the collection of
clauses, and k̄i be the number of times that ūi appears. For i = 1, . . . , n, define the
surfaces Fui

and Fūi
to be genus one surfaces with ki+1 and k̄i+1 boundary curves

respectively. Set F0 to be a planar surface with n + m + 1 boundary curves, one
of which will be the knot K. The branched surface B is constructed by identifying
these surfaces along appropriate boundary components as indicated in Figure 3.

K

u1

u2

u3

c2

c1

Fu1Fu1

Figure 3. A branched surface with boundary curve K corre-
sponding to the boolean expression (u1 ∨ u2 ∨ u3)∧ (u1 ∨ ū2 ∨ ū3).
The shaded surface Fu1

indicates the occurrence of u1 in each of
the clauses c1 and c2.

Branching occurs when more than two boundary curves are identified along a
single curve. We identify pairs of boundary curves by giving a homeomorphism
between them. Up to isotopy, this is determined by specifying an orientation on
the curves and setting the homeomorphism to be orientation reversing. We first
fix an orientation on each of F0, Fui

and Fūi
. This induces an orientation on each
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boundary curve. All identifications will involve gluing a boundary component of
Fui

or Fūi
to a boundary component of F0, and we require this gluing to be an

orientation reversing homeomorphism. Label by K, u1, . . . un, c1, . . . cm the 1+n+m
boundary components of F0. The boundary component K of F0, which will become
our knot, has nothing identified to it. For each i, 1 ≤ i ≤ n, one boundary curve
from the surface Fui

is identified to ui. The remaining ki boundary components
of Fui

are identified with ki of the curves c1, . . . cm on ∂F0, with one component
of ∂Fui

identified with cj for each occurrence of the literal ui in the jth clause in
C. Similarly, one curve of ∂Fūi

is identified to ui, and the remaining k̄i boundary
components are glued to c1, . . . cm, with a component glued to cj for each occurrence
of the literal ūi in the jth clause of C. A total of three surface boundaries are
identified along each of u1, . . . , un, and exactly four surface boundaries are identified
along each of c1, . . . , cm, as in Figure 3.

Lemma 6. There is a truth assignment for U such that each clause in C has
exactly one true literal if and only if there is a surface of genus at most m + n
mapped continuously into B with boundary K.

Proof. Suppose there is a truth assignment for U such that each clause in C con-
tains exactly one true literal. Form a surface S inside B by taking the union of
F0 and either Fui

if ui is true, or Fūi
if ui is false. Then exactly two boundary

components will be identified along each of the boundary components of F0 other
than K itself, and K becomes the boundary of the resulting embedded surface S.
There is a contribution of one to the genus from each of the literals, since Fui

and
Fūi

each have genus one, and a contribution of one to the genus from each handle
formed when a boundary component of a surface Fui

or Fūi
is glued to F0 along a

curve cj . The genus of S is therefore equal to m + n.
Now suppose there is a surface S1 of genus ≤ n+m mapped continuously into B

that has a single boundary component mapped homeomorphically to the boundary
curve K. We will show in this case that there is a surface S4 with the same
boundary, consisting of pieces of B identified along their boundaries, having genus
precisely n+m, and containing, along each curve cj , exactly one of the three pieces
of surface joining F0.

The image of S1 may be quite complicated, winding back and forth across B,
but by standard transversality arguments we can homotop S1 so that it is formed
from a union of surface pieces, each piece being mapped homeomorphically to one
of the subsurfaces F0, Fui

, Fūi
forming B. More precisely, we can perturb S1 by

a small homotopy so that its intersection with the boundary components of F0 is
transverse, and pulls back to a collection of simple closed curves on S1. If any of
these curves bounds a disk in S1, then the disk is mapped into some subsurface X of
B while the boundary curve is mapped to ∂X . Since X is not itself a disk, the disk
can be homotoped into ∂X , and we can therefore homotop S1 in a neighborhood
of this disk to remove a component of S1 ∩ ∂F0. After repeating finitely many
times, each component of the complement of S1 ∩ ∂F0 in S1 has non-positive Euler
characteristic. The image of S1 in each subsurface F0, Fui

, Fūi
has an algebraic

degree, which is either even or odd. This degree equals the number of pre-images
in S1 of a generic point in the subsurface. The degree of S1 on F0 is odd, since
K is the boundary of S1 and therefore S1 maps an odd number of times to points
near K. The sum of the degrees along each of the subsurfaces meeting a curve ui

or cj is even, since S1 has no boundary along these curves. In particular, for each
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1 ≤ i ≤ n, exactly one of Fui
, Fūi

has odd multiplicity in S1. Form a new surface
S2 by taking the union of F0 and each of the surfaces Fui

, Fūi
which have odd

multiplicity in S1. The surface S2 is obtained from S1 by a series of operations
that either discard a surface with non-positive Euler characteristic or replace a
component of S1 that maps with odd degree to Fui

or Fūi
with a copy of Fui

or
Fūi

. The Euler characteristic of a discarded piece of S1 is smaller or equal to that
of the surface that replaces it, so χ(S2) ≥ χ(S1) in either case.

The collection of subsurfaces of {Fui
, Fūi

} contained in S2 can be attached to
F0 along common boundary curves among {u1, . . . un}, forming a connected surface
S3 of genus n. Finally, a connected surface S4 with boundary K is obtained by
identifying pairs of curves in ∂S3 that are mapped to the boundary components
c1, . . . cm. The Euler characteristic of S4 is the same as that of S3 and S2, and
therefore greater or equal to that of S1. So the genus of S4 is at most that of
S1, genus(S4) ≤ n + m. Each identification of a pair of surface boundaries along
c1, . . . cm contributes one to the genus of S4. There is at least one such identification
along each of the m curves {cj}, though there may be two if each of the three
surfaces meeting F0 along cj has multiplicity one in S2. So identification of curves
along c1, . . . cm adds at least m to the genus of S4, and it follows that genus(S4) ≥
n + m. Since we have seen that genus(S4) ≤ n + m, equality must hold. Equality
holds when exactly one of the three surface pieces meeting F0 along cj has odd
multiplicity for each 1 ≤ j ≤ m. We then assign the value “TRUE” to a literal ui

if Fui
is used in S4, and the value “FALSE” to ui if Fūi

is used in S4. This gives a
truth assignment to U in which each clause in C has exactly one true literal.

To show that 3-MANIFOLD KNOT GENUS is NP-hard we reduce in poly-
nomial time an instance of the NP-hard problem ONE-IN-THREE SAT to an
instance of 3-MANIFOLD KNOT GENUS.
Proof of Theorem 1. Given an instance of ONE-IN-THREE SAT form B as
in Lemma 6. Then there is a truth assignment for U such that each clause in C
has exactly one true literal if and only if K is the boundary of a surface of genus
m + n mapped continuously into B. Form a 3-manifold N by thickening B so that
it is embedded inside a triangulated 3-dimensional manifold with boundary. The
thickening process replaces each subsurface forming B by a product of a surface
with an interval, and then glues these surfaces together along portions of their
boundaries, as indicated in Figure 2. The curve K remains on the boundary of N ,
and there is a projection map p : N → B which fixes K. Form a closed manifold M
by doubling N along its boundary, namely by taking two copies of N and identifying
them along their boundaries by the identity map. Then M admits an involution τ
that fixes K, and has quotient N .

To find a triangulation of N , we first describe an explicit triangulation of the
branched surface B. An orientable surface with boundary has a triangulation with
one vertex on each boundary component and no vertices in the interior. The number
of triangles is 4g + 5c − 4, where g is the genus and c is the number of boundary
components. We choose such triangulations for each of the 2n + 1 subsurfaces in
the branched surface, and we match them together along boundary components to
get a triangulation of B. So B has a triangulation in which the number of triangles
is linearly bounded in n + m. For the thickened surfaces Fui

and Fui
, we first form

a cell structure of the surface×I by dividing the product into triangles×I. For the
thickening of F0, we start by doing the same and then go on to divide each interval
into five subintervals. Then we glue these thickened surfaces together to get a cell
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structure on N . Each cell is this structure is a prism, or triangle×I. We form a
closed 3-manifold M by doubling N along its boundary, gluing two copies of N
together along their boundaries to obtain a 3-manifold with no boundary.

Finally, we stellar subdivide the cell structure to get a triangulation. Each prism
is divided into 14 tetrahedra, by dividing each rectangular face into four triangles by
coning to a vertex in the center of each such face, and then coning the 14 triangles of
the boundary of the prism to a vertex added to its center. The number of resulting
simplices in M is linearly bounded by n + m.

We now check that if K bounds a surface of genus g ≤ m + n with interior
in M\K then it bounds a surface of the same genus in B. Suppose that F is an
embedded surface in M with boundary K. If F does not already lie in N , then
perturb it slightly so that the interior of F meets ∂N transversely in a finite number
of simple closed curves and arcs. Using the involution τ , reflect the portion of F
not in N into N , forming an immersed surface F ′ lying in N and with the same
boundary as F . The interior of F ′ remains disjoint from K since K is fixed by
the involution. The projection p(F ′) is a surface of genus g mapped into B with
boundary K. So if K bounds an embedded surface of genus at most m + n in M
then it bounds a surface of genus at most m+n mapped into B. The converse was
shown in the proof of Lemma 3. it then follows from Lemma 3 that K bounds an
embedded surface of genus at most m + n in M if and only if C is satisfiable with
each clause containing exactly one true literal.

The construction of B, N and M described above each requires only a linear
number of steps in the size of the instance of ONE-IN-THREE SAT with which
we started, so that the reduction requires polynomial time.

4. Orbits of interval isometries

In this section we develop a combinatorial procedure that computes the number
of orbits of a collection of k isometries between subintervals of an interval [1, N ] ⊂ Z

in time polynomial in k log N . By lining up the intersections of a normal surface
with the edges of a triangulation, we obtain such subintervals. Arcs of the normal
surface on the faces of the triangulation give rise to correspondences of these inter-
section points which are subinterval isometries. We can then apply the algorithm
developed here to count the number of components of a normal surface.

Assume that we have a set of integers {1, 2, . . . , N} and a collection of monotone
bijections, gi : [ai, bi] → [ci, di], 1 ≤ i ≤ k, ai ≤ ci, either increasing or decreasing,
that are called pairings. If a pairing identifies two intervals [a, b] and [c, d] by
sending a to c and b to d, we call it an orientation preserving pairing, and if it
sends a to d and b to c, we call it orientation reversing. If a < c we refer to [a, b] as
the domain and [c, d] as the range of the pairing, unless otherwise stated. We work
only with integers, and use the term “connected interval” to refer to the integers in
a connected real interval. The width of an interval [a, b] with integer endpoints is
b− a + 1, the number of integers it contains. The width of a pairing is the width of
its domain or range, w = b− a + 1 = d− c + 1. If the pairing preserves orientation,
its translation distance measures how far it moves points, t = c − a = d − b. We
can compose two pairings if the range of the first lies in the domain or range of the
second. The collection of pairings generates a pseudogroup, under the operations
of composition where defined, inverses, and restriction to subintervals.
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The interval [1, . . . , N ] is divided into equivalence classes by the action of the
pairings, which are called orbits. We are interested in the orbit structure of the
collection, since with appropriate interpretation an orbit corresponds to a connected
component of a normal surface. We introduce several simplification processes on the
set of pairings in order to analyze the structure of the set of orbits. The following
lemma describes the orbits of an orientation preserving pairing whose domain and
range together form a connected interval.

Lemma 7. When an orientation preserving pairing g : [a, b] → [c, d] has a < c ≤
b + 1, then the pairing has t = c − a orbits on [a, d].

Proof. Each point in [a, b] greater or equal to c lies in the range of g and can be
mapped to a smaller point in [a, b] by a power of g−1. So each orbit on [a, d] has
a representative in [a, c − 1]. Since the congruence class modulo t of a point is
preserved by g, each of the t integers in [a, c − 1] lies in a distinct orbit. These
points uniquely represent the t orbits.

We say that such a pairing is periodic with period t, and the combined interval
[a, d] is a periodic interval of period t. We now show how to merge two pairings
with sufficient overlap into a single pairing with the same orbits.

Lemma 8. Let R1 be a periodic interval with pairing g1 of period t1, and suppose
that g2 is an orientation preserving pairing with translation length t2 which pairs
two distinct intervals of width t1 in R1. Then the orbits of g1 ∪ g2 on R1 are the
same as those of a single periodic action on R1 of period GCD(t1, t2).

Proof. Let J1 be an interval in R1 of width t1 that is in the domain of g2 and
which is paired by g2 to an interval in R1. Each point in R1 has a unique orbit
representative in J1 under the action of g1 on R1. The interval g1(J1) lies in R1

by assumption. For x ∈ J1 let f(x) be the unique point in J1 obtained by carrying
g2(x) back to a point in J1 by a power of g1. The effect of f(x) on J1 is a shift of
t2 (mod t1). The orbits of f on J1 divide the points of J1 into congruence classes
modulo GCD(t1, t2). Neither g1 nor g2 change the congruence class of a point mod
(GCD(t1, t2)), so a subinterval of width GCD(t1, t2) in R1 contains exactly one
representative of each orbit of R1 under the action of g1∪g2. The same orbits arise
from a periodic action of period GCD(t1, t2).

The following is a special case of Lemma 8 that applies when both g1 and g2 are
periodic pairings.

Lemma 9. Let R1 and R2 be overlapping periodic intervals, associated with pair-
ings g1, g2 having periods t1 and t2. Suppose that width(R1 ∩ R2) ≥ t1 + t2. Then
the orbits of g1 ∪ g2 on R1 ∪ R2 are the same as those of a single periodic pairing
on R1 ∪ R2 of period GCD(t1, t2).

Proof. The leftmost interval J1 of width t1 in R1∪R2 is translated by g2 a distance
of t2 to the right, to an interval J2 which lies in R1 ∪ R2. The result follows from
Lemma 8.

We state a consequence in a form which will be convenient for our applications.

Lemma 10. Let g1, g2 be periodic pairings with periods t1, t2 and let J1, J, J2 be
intervals with g1(J1) = J and g2(J) = J2. Suppose that J is contained in the union
J1∪J2. Then the orbits of g1∪g2 are the same as those of a single periodic pairing
of period GCD(t1, t2), acting on the union of the periodic intervals of g1, g2.
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Proof. Let J1 = [a1, b1], J = [a, b] and J2 = [a2, b2]. We have a2 ≥ a1 and
J ⊂ J1 ∪ J2. Since J1 ∪ J2 is a connected interval, we have that a2 ≤ b1 + 1.
Note that t1 = b − b1 = a − a1 and t2 = b2 − b = a2 − a. Then t1 + t2 =
(b − b1) + (a2 − a) = (b − a + 1) + (a2 − b1 − 1). The width of J is (b − a + 1) and
we have seen above that (a2 − b1 − 1) ≤ 0. So the width of J is at least t1 + t2 and
Lemma 9 implies the conclusion of the lemma.

The orbit counting algorithm applies a series of modifications to the pairings,
which we now describe. The operation of replacing g1 and g2 by a single periodic
action on R1 ∪ R2 of period GCD(t1, t2), as in Lemma 10, is called a periodic
merger. An interval is called static if it is in neither the domain nor the range of
any pairing, so that its points are identified to no other points by pairings. The
operation of contraction is performed on a static interval [r, s]. We eliminate this
interval, replace [1, N ] by [1, N − (s − r + 1)], and alter each gj by replacing any
point x in a domain or range which lies entirely to the right of s by x− (s− r + 1).
(Note that this operation leads to an increase of s−r+1 in the count of the number
of orbits, since the eliminated points are each unique representatives of an orbit.)

The next operation simplifies an orientation reversing pairing whose domain and
range overlap. Suppose that g : [a, b] → [c, d] is a pairing with g(a) = d, g(b) = c
and b ≥ c. Define a new pairing g′ : [a, (a + d)/2) → ((a + d)/2, d] by restricting
the domain and range of g, and say that g′ is obtained from g by trimming. The
domain and range of a trimmed pairing are disjoint.

If there is an interval in the domain and range of exactly one pairing, then the
interval can be “peeled off” without changing the orbit structure, in a way we will
describe below. We will apply this operation only to strip off points from the right
of the interval [1, N ]. When there is a pairing g : [a, b] → [c, N ] and a value N ′ with
c ≤ N ′ +1 ≤ N , such that all points in the interval [N ′+1, N ] are in the domain or
range of no pairing other than g, then we can perform an operation called truncation
of g. Truncation shortens the interval [1, N ] to the interval [1, N ′], and similarly
shortens the domain and range of g. In the orientation preserving case, pairings
other than g are unchanged, while g is either eliminated entirely, if c = N ′ + 1, or
otherwise replaced by a shortened pairing g′ : [a, b−(N−N ′)] → [c, N ′]. The inverse
pairing g−1 is correspondingly altered. When there is no ambiguity, we continue
to call the shortened pairing by the same name. Note that we can perform this
operation when the interval [N ′ + 1, N ] intersects both the range and the domain
of g.

In the orientation reversing case, we truncate only when g has disjoint domain
and image, and [N ′ + 1, N ] is contained in the image. Suppose g : [a, b] → [c, N ]
is a pairing with g(a) = N, g(b) = c and b < c. If [N ′ + 1, N ] is disjoint from the
domains and ranges of all pairings other then g and N ′ +1 ≥ c then we eliminate g
if N ′ + 1 = c, and otherwise replace g by a shortened orientation reversing pairing
formed by restricting its domain to [a + N − N ′, b] and its range to [c, N ′].

Finally we define an operation in which two pairings are composed, with one
pairing g1 used to shift down the domain and range of a second pairing g2 as
much as possible. We will use this operation to allow us to peel off pairings from
the right of the interval [1, N ′] by the previous operation of truncation. Define a
maximal pairing to be one whose range contains both N ′ and the range of any other
pairing containing N ′. More precisely, define a linear order on pairings using the
lexicographical order (di,−ci,−ai,−orientation), so that the maximal pairing has
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the highest upper endpoint, and among those the widest range, and among those
the biggest translation distance (if orientable).

As a first step, if g1 is orientation reversing and has overlapping domain and im-
age, trim g1. Now consider an arbitrary second pairing g2 whose range is contained
in the range of g1. If the domain of g2 is not contained in the range of g1, form
the composite map g′2 = g−r

1 ◦ g2, where r = 1 if g1 is orientation reversing and

otherwise r ≥ 1 is the largest integer such that g−r+1
1 ([c2, d2]) is contained in the

range of g1. If the domain of g2 is also contained in the range of g1 then form the
composite map g′2 = g−r

1 ◦g2 ◦gs
1 : g−s

1 ([a2, b2]) → g−r
1 ([c2, d2]), where r is as above,

s = 1 if g1 is orientation reversing, and otherwise s ≥ 1 is the largest integer such
that g−s+1

1 ([a2, b2]) is contained in the range of g1. The process of replacing g2 by
g−r
1 ◦ g2 ◦ gs

1 is called a transmission of g2 by g1.

Lemma 11. Altering a collection of pairings by the operations of periodic merger,
trimming, truncation and transmission preserves the number of orbits of the collec-
tion. A contraction decreases the number of orbits by the width of the contracted
interval.

Proof. We refer to the collection of pairings g1, g2, . . . gk as G and to the new
collection of pairings formed by some operation as G′.

We first consider the effect of a contraction, which cuts down the interval [1, N ]
by removing points which are fixed by the collection of pairings. The number of
orbits removed equals the width of the contracted interval.

Consider now the effect of a periodic merger that merges two periodic intervals
R1 and R2. Lemma 9 shows that the orbits in R1 ∪ R2 of g1 ∪ g2 are the same as
those produced by a single periodic pairing g′. Suppose that x and y are in the
same orbit of the action of G = {g1, g2, . . . gk}. Then h · x = y, where h is some
finite word in the elements of G and their inverses. Wherever a g1 or g2 occurs in
this word we can replace it by a power of g′, since g′ translates by an amount that
divides the translation distance of g1 and g2. So x and y are in the same orbit of
G′ = {g′, g′3, . . . g

′
k}. Conversely suppose that that x and y are in the same orbit

under G′. Then h′ ·x = y, where h′ is some finite word in g′, g′3, g
′
4 . . . g′k. Lemma 9

implies that wherever a g′ occurs in h′ we can replace it by some word in g1 and g2,
since the orbits of g′ and g1 ∪ g2 coincide on the periodic interval of g′. So periodic
mergers preserve orbits.

Suppose next that gi : [ai, bi] → [ci, di] is an orientation reversing pairing with
gi(ai) = di, g(bi) = ci ≤ ci, and that g′i : [ai, (ai + di)/2) → ((ai + di)/2), di] is
obtained by trimming gi. If x and y are in the same orbit of G = {g1, g2, . . . gk},
then there is a sequence of points x = x1, x2, . . . , xr = y where each xj is the image

of xj−1 under a pairing in G. We can replace an occurrence of gi or g−1
i by g′ if the

point xj−1 is smaller than (ai + di)/2 and by g′
−1

otherwise. So x and y remain in
the same orbit under the action of G′. Conversely if x and y are in the same orbit

under G′ then replacing each occurrence of g′ by g and of g′
−1

by g−1 gives a word
in G taking x to y. We conclude that trimming preserves orbits.

Next consider the effect of a truncation. Suppose that all points in [N ′+1, N ] are
in the range of exactly one pairing g : [a, b] → [c, N ], and we truncate, shortening to
an interval [1, N ′] and either eliminating g or shortening it to g′ : [a, b−(N−N ′)] →
[c, N ′] in the orientation preserving case, or to g′ : [a + N − N ′, b] → [c, N ′] in the
orientation reversing case. Suppose that y = h · x where h is a reduced product of
pairings (a product that does not contain a subproduct of the form gj · g

−1
j ). We
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can assume that y > x, as otherwise we can replace h by its inverse. Let h′ be
obtained from h by replacing all occurrences of g with g′. The successive images of
x under the subwords of h can never enter and leave the interval [N ′ + 1, N ], since
they can only enter it under the action of some positive power of g, and only leave it
under a negative power of g. These don’t occur in succession in a reduced product.
The image of a point z under gj is unchanged unless gj = g, and g(z) ≥ N ′ + 1.
So the image of x under h is the same as its image under h′ unless y > N ′. In that
case h is of the form h = gr

i h1 where h1 · x ≤ N ′, r ≥ 1, and y = gr
i h1 · x > N ′. So

two points in [1, N ′] are in the same orbit under G′ if and only if they are in the
same orbit under G. But each point in [N ′ +1, N ] is in the same G orbit as a point
in [1, N ′]. It follows that the number of orbits is unchanged by truncation.

Finally suppose that a transmission of gj by gi replaces the pairing gj in G by

g′j = g−r
i ◦ gj ◦ gs

i . If y = h · x where h is a word in G, then y = h′ · x where

h′ is obtained by replacing every occurrence of gj with gk
i ◦ gj ◦ g−s

i . Similarly if
y = h′ · x where h′ is a word in G′, then y = h · x where h is obtained by replacing
every occurrence of g′j with g−k

i ◦ gj ◦ gs
i . So transmissions preserve the collection

of orbits and don’t change their number.
We now describe an algorithm which uses these operations to count the number

of orbits of a pseudogroup of pairings acting on [1, N ]. We initially set a counter
for the number of orbits to zero. A pairing gi is said to be maximal if di = N
and [ci, N ] contains the range of any other pairing with an endpoint at N . Let
S = {1, 2, . . .N} and let gi : [ai, bi] → [ci, di], 1 ≤ i ≤ k be a collection of pairings
between subintervals of S. The algorithm will contract S and reduce the number
of bijections. Denote by N ′ the current size of the interval as we proceed. The
algorithm repeats the following steps, reducing N ′ and k, until there are no points
remaining.

Orbit counting algorithm:

1. Delete any pairings that are restrictions of the identity.
2. Make any possible contractions and increment the orbit count by the sum of

the number of points deleted by the contractions.
3. Trim all orientation reversing pairings whose domain and range overlap.
4. Find a maximal pairing gi. Recall that its range contains both N ′ and the

range of any other pairing containing N ′. If gi is periodic, search for other
periodic pairings gj that also have range [cj , N

′] containing N ′. If any such
gj exists, and if ti ≤ wj , then perform a merger as in Lemma 10, replacing
gi and gj by a single periodic pairing, with translation distance GCD(ti, tj),
acting on the union of the domains and ranges of gi and gj .

5. Find a maximal gi. For each gj with j6 = i, if the range of gj is contained in
[ci, N

′], transmit gj by gi.
6. Find the smallest value of c such that the interval [c, N ′] intersects the domain

and range of exactly one pairing. Truncate the pairing whose range contains
the interval [c, N ′].

7. If the width of the interval [1, N ′] is greater than zero, start again with Step
(1). Otherwise output the number of orbits and stop.

Theorem 12. The orbit counting algorithm gives the number of orbits of the action
of the pairings {gi}k

i=1 on [1, . . . , N ] in time bounded by a polynomial in k log N .
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Proof. We first check that the orbit counting algorithm correctly counts the num-
ber of orbits. In Step (1), deleting a pairing which is the identity on its domain does
not change the number of orbits. In Step (2), contracting a static interval removes
a number of points that are unique orbit representatives, and these are added to
the running total of the orbit count. If all the points have been removed, then there
are no more orbits to count and the orbit count is complete. Lemma 11 shows that
the operations of transmission, trimming, truncation and merger occurring in Steps
(3)-(6) do not change the number of orbits of the series of collections of pairings.
The intervals in Step (4) satisfy the hypothesis of Lemma 10, and can be merged
without changing the orbit structure of the collection of pairings. Specifically, con-
sider the three intervals J, J1 and J2, where J1 and J2 are the domain and range of
gj and J is the range of J2 under g−1

i . Since gj is periodic we know that J1 ∪ J2 is
a connected interval. We are assuming that ti ≤ wj , so J ∪ J2 is also a connected
interval. If ti ≤ tj then J lies in the interval J1 ∪ J2. If tj ≤ ti then J1 lies in the
interval J ∪ J2. In either case Lemma 10 shows that gi and gj can be merged. A
merger preserves the orbit structure while reducing the number of pairings by one,
replacing gi and gj by a single periodic pairing acting on the union of their periodic
intervals.

In each cycle through these steps the interval width decreases by at least one.
Therefore the algorithm terminates, yielding a count of the number of orbits after
a finite number of steps. However we will obtain a much better bound on the
running time. To do so, we define a complexity which decreases as we iterate the
above steps. Recall that wi = bi−ai +1, 1 ≤ i ≤ k and k is the number of pairings.
The complexity X is defined to be

X = 4k

k
∏

i=1

wi.

Call the process of executing Steps (1)-(7) a cycle. We will show that when we run
through 2k cycles, X is reduced by a factor of at least two. See the remark at the
end of Section 4 for a geometric interpretation of this complexity.

Call an interval [x, y] a Z-active interval if it is the domain or range of a pairing
of subintervals of [1, Z] and if y − x + 1 ≥ (Z − x + 1)/2, or equivalently, if y ≥
Z/2 + x/2 − 1/2. Being Z-active corresponds to being relatively close to Z; there
is no room for another interval of the same size to the right of y. The value of Z is
initially set to N , and as the algorithm proceeds it is reset to the current interval
width N ′ each time the number of pairings k is decreased. The number of pairings
decreases when a merger occurs, or when a pairing is truncated to zero width, or
when a pairing is transmitted to become trivial (a restriction of the identity) and
then contracted.

Claim 1. The union of two Z-active intervals of equal width is a connected inter-
val.

Proof. Suppose that [a, b] and [c, d] are equal width Z-active intervals with c ≥ a.
Then b − a = d − c, b − a + 1 ≥ (Z − a + 1)/2 and d − c + 1 ≥ (Z − c + 1)/2, so
b ≥ Z/2 + a/2 − 1/2 ≥ d/2 + a/2 − 1/2 = b/2 + c/2 − 1/2 implying that b ≥ c − 1
and [a, b] ∪ [c, d] is connected.

Claim 2. Suppose that the domain [a, b] of a pairing g is not Z-active. Then the
image [x′, y′] of an interval [x, y] under g−1 is not Z-active.
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Proof. Suppose that [x′, y′] is the image of [x, y] under g−1, where g : [a, b] → [c, d].
By assumption we have that b < Z/2 + a/2− 1/2. The interval [x′, y′] is contained
in [a, b] so a ≤ x′ ≤ y′ ≤ b. Then y′ ≤ Z/2 + a/2 − 1/2 ≤ Z/2 + x′/2 − 1/2 and
[x′, y′] is not Z-active.

Claim 3. After a series of three cycles involving the truncation of three successive
maximal pairings g1, g2, g3, either the number of Z-active intervals decreases or the
number of pairings decreases.

Proof. Suppose that a series of three successive maximal pairings g1, g2, g3 occurs
in the orbit counting algorithm with no decrease in the number of pairings. When
g1 stops being maximal, it is transmitted by the new maximal pairing g2, which is
then itself truncated until no longer maximal. It in turn is then transmitted by g3.
When gi+1 transmits gi, the pairing of [ai, bi] with [ci, di] is replaced by a pairing
of [a′

i, b
′
i] with [c′i, d

′
i] and one of the following three cases occurs.

1. [ci, di] is transmitted to a Z-inactive interval by gi+1.
2. [ci, di] is transmitted to a Z-active interval [c′i, d

′
i] by gi+1, and [a′

i, b
′
i] is Z-

active.
3. [ci, di] is transmitted to a Z-active interval [c′i, d

′
i] by gi+1 and [a′

i, b
′
i] is not

Z-active.

Since g1 is initially maximal, its range is initially Z-active. Truncation reduces the
range to [c1, d

′
1], at which point the pairing g2 becomes maximal. We can assume

[c1, d
′
1] is still Z-active, or we are done. The interval [c1, d

′
1] is then transmitted by

g2 to an interval [e1, f1]. In Case (1) this new interval is Z-inactive and the number
of Z-active intervals has decreased. In Case (2) the three intervals [c1, d

′
1], [e1, f1]

and [a1, b
′
1] are all Z-active and of equal width, and therefore satisfy the hypothesis

of Claim 1. Lemma 10 then implies that two pairings can be merged, and the
number of pairings has decreased. If Case (3) occurs we truncate the maximal
pairing g2. As we do so we can assume its domain [a2, b

′
2] remains Z-active, or we

are done. When the next pairing g3 becomes maximal and in turn transmits g2,
we fall into one of the first two cases, and then either have reduced the number of
Z-active intervals or can merge two pairings.

Claim 4. Suppose that Z is set to the current interval size N ′ and that after a
series of truncations in which the maximal pairings are successively g1, g2, . . . , gr,
no Z-active intervals remain. Then the complexity X is reduced by a factor of at
least two.

Proof. Truncation of a maximal pairing gi results in its range [ci, di], of width wi,
being reduced to a shorter interval [ci, d

′
i] of width w′

i. This reduces the complexity
X by a factor of

w′
i

wi

=
d′i − ci + 1

di − ci + 1
.

The maximal pairing switches after a truncation if the range of g′i has truncated
sufficiently so that it is contained in the range of gi+1, so that ci+1 ≤ c′i and
di+1 = d′i. Define d′′i to be the integer that satisfies the equation

d′′i = ci − 1 + (wi+1)
Z − ci + 1

Z − ci+1 + 1
.

and define
w′′

i = d′′i − ci + 1.
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Note that the function

f(x) =
x − ci + 1

x − ci+1 + 1

is increasing with x for x ≥ ci, since ci ≥ ci+1. So

w′
i = d′i − ci + 1 = di+1 − ci + 1 = (wi+1)

(di+1 − ci + 1)

wi+1

≤ (wi+1)
Z − ci + 1

Z − ci+1 + 1
= d′′i − ci + 1 = w′′

i .

After a series of truncations of the pairings g1, g2, . . . , gr, the complexity X is
multiplied by a factor of

(

w′
1

w1

) (

w′
2

w2

)

. . .

(

w′
r

wr

)

≤

(

w′′
1

w1

) (

w′′
2

w2

)

. . .

(

w′′
r−1

wr−1

) (

w′
r

wr

)

=

(

d′′1 − c1 + 1

w1

) (

d′′2 − c2 + 1

w2

)

. . .

(

d′′r−1 − cr−1 + 1

wr−1

) (

w′
r

wr

)

=

(

w2

w1

) (

Z − c1 + 1

Z − c2 + 1

)

. . .

(

wr

wr−1

) (

Z − cr−1 + 1

Z − cr + 1

) (

w′
r

wr

)

=

(

Z − c1 + 1

Z − cr + 1

) (

w′
r

w1

)

.

Now Z = d1, since g1 was the first maximal pairing truncated, so Z − c1 + 1 =
d1 − c1 + 1 = w1. By assumption, there are no Z-active intervals remaining after
gr is truncated, so that [cr, d

′
r] is Z-inactive. We then have by the definition of

Z-active that
(

Z − c1 + 1

Z − cr + 1

)(

w′
r

w1

)

=
w′

r

Z − cr + 1
=

d′r − cr + 1

Z − cr + 1
< 1/2.

It follows that X is multiplied by a factor smaller than 1/2.
Proof of Theorem 12: The operations involved in one cycle consist of com-
parisons, additions, subtractions and computing greatest common divisors of the k
pairings of G. The number of these operations occurring in each cycle is at most lin-
ear in k log N . Pairings are described by pairs of intervals, whose boundary points
are integers of size at most N . So the running time of each cycle is polynomial in
k log N .

If the number of pairings k decreases during a cycle, then a pairing has been
eliminated because its width has truncated to zero, because it has been transmitted
and become the identity on its domain, or because two pairings have merged. When
two pairings g1, g2 merge, the value of k decreases by one. The product (w1)(w2)
which occurs in X is replaced by the width of the new pairing, which is at most

(w1 + w2) ≤ 2w1w2. Therefore X = 4k
∏k

i=1 wi decreases by a factor of at least
two after a merger.

Since each pairing has width at most N , the initial complexity is bounded above
by (N)k4k. By Claim 3, each time we run through three cycles either the number
of pairings decreases or the number of Z-active intervals decreases. There are at
most k Z-active intervals initially, so after 3k cycles either there is a reduction in
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the number of pairings or there are no Z-active intervals remaining. In the second
case the complexity X has decreased by a factor of at least two, by Claim 4.

So X decreases by a factor of at least two after 3k cycles, and the complexity
reduces to zero after at most k(2 + log N) successive series of 3k cycles, or after at
most 3k2(2 + log N) cycles. Each cycle runs in time polynomial in k log N , so the
total running time is also polynomial in k log N .

We apply Theorem 12 to count the number of components of a normal curve or
normal surface. An obvious algorithm to count components proceeds by marking
vertices connected by common edges until all vertices in a component are reached.
This procedure takes time linear in the number of edges of the curve, which is equal
to the sum of the normal coordinates (W below), but we can achieve an exponential
improvement. We first look at normal curves.

Corollary 13. Let F be a surface with a triangulation T containing t triangles
and let γ be a normal curve in F with normal coordinates summing to W . There
is a procedure for counting the number of components of γ which runs in time
polynomial in t log W .

Proof. The 1-skeleton of T contains e edges, where e ≤ 3t. Fix once and for all
an ordering of these edges. A normal curve γ intersects each edge of T in a finite
number of points. Set N to be the weight W of γ, which is the sum of the number
of intersection points of γ with all the edges of T . Label the intersections of γ and
the first edge of the 1-skeleton by the integers 1, 2, . . . , i1, the intersections of γ and
the jth edge by ij−1 + 1, ij−1 + 2, . . . , ij, and the intersection of γ and the eth edge
of T by ie−1 + 1, ie−1 + 2, . . . , ie. Then ie = N . Each triangular face of T has three
sets of arcs pairing points of [1, N ], with one set running between each pair of edges
of the face. To each set of arcs we associate a pairing between the intervals at either
end of the arcs, as in Figure 4. All the pairings are orientation reversing in this
example. In general some will be orientation preserving, as the edge orientations
on any triangle can be arbitrary.

The number of connected components of γ is the same as the number of orbits
of an action of a collection of pairings on γ ∩ T (1), where two points are paired if
they are connected by an edge of γ lying in a triangle. This is precisely the number
returned by the orbit counting algorithm. The number of pairings is at most 3t
and the interval size is W . Applying Theorem 12, we can determine the number of
components of the normal curve γ in time polynomial in t log W .

A similar argument applies to normal surfaces.

Corollary 14. Let M be a 3-manifold with a triangulation T containing t tetra-
hedra and let F be a normal surface in M whose normal coordinates sum to W .
There is a procedure for counting the number of components of F which runs in
time polynomial in t log W .

Proof. The 2-skeleton of T contains at most 4t faces and the 1-skeleton contains
e ≤ 6t edges. Fix once and for all an ordering of the edges. A normal surface F
intersects each edge in a finite number of points. Set N to equal the weight W of F .
As before, order the edges of T (1) in an arbitrary way and label the intersections of
F and the jth edge of T (1) by ij−1 + 1, ij−1 + 2, . . . , ij . Again we have ie = N . To
a pair of edges on a triangular face of the 2-skeleton we associate a pairing between
the intervals at either end of the corresponding set of arcs. There are at most three
pairings for each face, and the number of faces is at most 4t, so the number of



18 IAN AGOL, JOEL HASS, AND WILLIAM THURSTON

g2

g3 g1
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n4

n3

n5

n6

r1 3

e1

e2
e3

r2 3

r1 2

Figure 4. Normal arcs on a triangular face give three pairings of
ordered intervals: g1 : [n1 + r13, n2] → [n3, n3 + r12 − 1], g2 : [n3 +
r12, n4] → [n5, n5+r23−1], and g3 : [n5+r23, n6] → [n1, n1+r13−1]
The normal curve coordinates associated to this face are r12, r13

and r23. In a normal surface, r12, r13 and r23 are each a sum of
two normal coordinates.

pairings is bounded above by 12t. These pairings are determined by the normal
coordinates of F .

For a normal surface, the number of connected components of F is the same
as the number of components of F ∩ T (2), since every component of F intersects
the 1-skeleton of T , and if two points on F ∩ T (2) ∩ T (1) can be joined by a path
then that path can be homotoped into the 2-skeleton of the triangulation. So the
the number of components equals the number of orbits of F ∩ T (1) under pairings
that identify two points connected by an edge of F ∩ T (2) contained in a face of
the 2-skeleton. This number is precisely what is computed by the orbit counting
algorithm. Therefore we can determine the number of components of the normal
surface F in time polynomial in t log W .
Remark: There is a motivating geometrical construction behind the combinatorics
of the orbit counting algorithm which we informally explain. We can associate to
each pairing gi : [ai, bi] → [ci, di] a pair of “transmission towers” in the upper half-
plane, with one tower being the vertical line segment from (ai, 1/e) to (ai, wi) and
the other the vertical segment from (ci, 1/e) to (ci, wi). These towers capture the
information contained in the pairings. Points in the domain and image of a pairing
beam up to the tower leftward at a 45 degree angle, then beam to the paired tower
(either straight across, if the pairing preserves orientation, or crossing if not) then
down again. Assign a “cost” to each transmission tower equal to its hyperbolic
length in the upper half space model. This equals log(di − ci + 1)+ 1, and the sum
of all these lengths is essentially the logarithm of the complexity X used above.

The counting algorithm starts with a Euclidean line emerging from the right
endpoint of an active interval and going upward at a 45 degree angle. In hyperbolic
terms, this is an equidistant curve from the geodesic from the right endpoint to the
point at infinity. Initially, we may assume that this sweep line hits the top of at
least one transmission tower. We make the highest of these the active tower, and
use it to beam all the other towers to its paired interval. If the two domains overlap,
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we use the highest power of the transmission that can be applied. Eventually the
triangle between the current tower and the sweep line is vacant. We sweep leftward
with this equidistant curve. As long as the sweep line hits only one tower, we
truncate it.

Consider a second equidistant curve P through a point x on R, with slope -1/2.
The hyperbolic distance between the slope -1 and slope -1/2 lines is a constant
equal to about 0.49. Call the region between these two lines a zone. If two paired
towers have their tops in a single zone, their domains overlap. If no towers are
completely truncated away between the time when the sweep line hits a point x
and when there are no towers intersecting the zone above P , each equidistant curve
between the two given ones hits a transmission tower at a truncated point. So in
this time either the number of towers has decreased or at least 0.49 progress has
been made in reducing total cost.

If we merge transmission towers when possible, a complexity based on the cost
decreases sufficiently fast to give a polynomial time algorithm. The calculations in
Theorem 12 implemented this geometric picture.

5. 3-MANIFOLD KNOT GENUS is NP.

In this section we establish that 3-MANIFOLD KNOT GENUS is NP.
Proof of Theorem 2: We begin with a simplicial complex consisting of t tetrahe-
dra whose faces are identified in pairs, and a collection of edges K in the 1-skeleton
of this complex. While there are alternate formats in which a knot and a 3-manifold
may be presented, all reasonable ones appear to be transformable to one another
in polynomial time.

In time polynomial in t we can check that the link of each vertex is connected
and has Euler characteristic two, which means that it is a sphere, and that the link
of each edge is a connected curve. These are the necessary conditions to ensure
that the underlying space of the complex is a 3-manifold M . Similarly we can
check in time polynomial in t that the edges of K form a simple closed curve in
M , and that this curve represents a trivial element of the first homology group of
M with integer coefficients. We then form the second barycentric subdivision of
the triangulation of M , replacing each tetrahedron by 576 tetrahedra. Removing
all closed tetrahedra that meet K results in a 3-manifold MK with a single torus
boundary component, the “peripheral torus” that surrounds the knot K. The knot
K bounds a surface of genus g in M if and only if there is a surface in MK of
genus g with a single boundary component that is an essential curve on ∂MK . We
restate our problem in the triangulated manifold MK as the question of whether
there exists in MK an orientable surface of genus g with a single essential boundary
component on ∂MK . By Schubert [21], if such a surface exists, then such a surface
exists among the fundamental normal surfaces in MK . The certificate consists of
an integer vector w in Z

7t giving the normal surface coordinates of this surface.
Recall that not all vectors in Z

7t correspond to normal surfaces. It is necessary
that w satisfies the matching, positivity and quadrilateral conditions. These con-
ditions can be checked for the coordinates of w in time linear in t logW , where W
is the weight of this surface. So we can verify that there is a normal surface F with
w = v(F ).

To verify that ∂F is essential on the peripheral torus, we include in the certificate
a non-trivial cycle in the 1-skeleton of ∂MK that intersects ∂F in an odd number of
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points. Such a cycle can be found in the 1-skeleton of ∂MK since curves contained
in the 1-skeleton generate its first homology. The existence of such a cycle implies
that ∂F is non-separating on ∂MK , and in particular does not bound a disk on
∂MK , ensuring that ∂F corresponds to a longitude curve parallel to K in NK .
Using the orbit counting algorithm, we can count the number of components of
the normal surface F and verify that F is connected in time polynomial in t log N ,
where N = W is the total number of points in which F meets the 1-skeleton of MK ,
We can also apply Corollary 14 to verify that ∂F is connected in time bounded by
a polynomial in t log N . (This last step can be avoided. The number of boundary
components must be odd, since ∂F represents a non-trivial element in H1(∂MK ; Z2,
and an even number of them can be removed by joining adjacent pairs of curves
with annuli on ∂MK . This gives a surface with one boundary component and the
same Euler characteristic.)

To check that F is orientable, we take the normal vector 2v(F ), that doubles
each coordinate of F , and apply the orbit counting algorithm to determine if it
is connected. Since M is orientable, 2v(F ) is connected if F is connected and
non-orientable, and has two components if F is connected and orientable.

The Euler Characteristic of F is determined by the number of vertices, edges and
faces of F , which are easily derivable from its normal coordinates. Following [11],
we let ti be the number of tetrahedra containing edge ei and set εij = 1 if the edge
ei meets the jth normal disk. Then the normal surface F with coordinates {vj}
has χ(F ) = (1/2)f3−σ(F )+wt(F ) where σ(F ) =

∑

vj and wt(F ) =
∑

i,j εijxi/ti.
The values of εij , ti are determined by the triangulation and are independent of
F . They can be computed in time polynomial in t. Since the genus of a connected
orientable surface with one boundary component and Euler characteristic χ is equal
to (1 − χ)/2, we can determine the genus of F in time polynomial in t log N .

Theorem 4 implies that the normal coordinates of this surface are at most t27t+2.
There are 7t normal coordinates, and each represents a triangle or quadrilateral, so
that the total number of intersections with the 1-skeleton satisfies N ≤ 28t227t+2.
In particular, log N is bounded above by a polynomial in t. So the fact that F is a
spanning surface for K can be verified in time polynomial in t.

6. An extended counting algorithm

In this section we develop a generalized version of the orbit counting algorithm,
that counts not only the number of orbits of a collection of isometries between
subintervals of an interval, but also more general quantities which are useful in ap-
plications. For example, we can use the extended algorithm to answer the following
question: given a normal surface and a triangulation, how many times does each
component of the surface intersect a fixed edged of the triangulation? The extended
algorithm allows one to effectively compute the normal coordinates and the Euler
characteristic, hence the genus, of each connected component of the surface, even
when there are exponentially many components. To carry out such computations,
we extend the previous analysis to pairings of weighted intervals, in which each
point of the interval has associated to it a vector in Z

d. We are interested in the
sum of these vectors over an orbit, the orbit weights.

Consider again a pseudogroup of interval isometries acting on [1, ..., N ]. We will
assume that there is given as input a weight function z : [1, ..., N ] → Z

d, associating
to each element of [1, ..., N ] a vector in Z

d satisfying the following condition: the
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weight at successive points j and j + 1 changes at most 4k times. The algorithm
proceeds as before, while maintaining data on the orbit weights. We keep track of
these weights by maintaining two lists of weighted subintervals. The first

L = {([p1, q1], z1), ..., ([pm, qm], zm)}, 1 ≤ pi ≤ qi < pi+1

records the current weight values at each point in [1, N ], with qm initially equal to
N . This list is updated as the algorithm proceeds. Points in the interval [pj, qj ] are
assigned a constant weight zj ∈ Z

d. A second list of t subintervals

L′ = {([r1, s1], v1), ..., ([rt, st], vt)}, 1 ≤ ri ≤ si < ri+1

contains one point for each orbit, along with an orbit weight vi for that orbit.
Initially empty, at the algorithm’s conclusion L′ records the total number of orbits
∑

i

(si − ri + 1), along with an orbit weight vi assigned to each of the (si − ri + 1)

orbits in the interval [ri, si].
We define an additional operation, called transferring weights by a pairing g.

Suppose that g : [a, b] → [c, d] is a pairing and that [c, d] carries n different weights,
given by the list

{([c = r1, s1], v1), ..., ([rn, sn = d], vn)}, 1 ≤ ri ≤ si < ri+1.

The weight function can be split into constant functions on n subintervals of [c, d],
where 1 ≤ n ≤ d − c + 1.

The transfer operation sets the weights on [c, d] to zero and keeps the orbit
weights the same by translating the weight vectors of [c, d] to smaller orbit repre-
sentatives, as below:

Case 1: g is orientation preserving and b < c. Set the weights on [c, d] to zero
and for each 1 ≤ j ≤ n, add vj to g−1([rj , sj]).

Case 2: g is orientation preserving and b ≥ c. Then g : [a, b] → [c, d] is a periodic
pairing of period t = c − a. We will set the weights of points in [c, d] to zero and
adjust weights in [a, c − 1] to compensate. The points in [c, d] have weights given
by its intersection with intervals in L. These weights are described by

{([c = r1, s1], v1), ..., ([rn, sn = d], vn)}, 1 ≤ ri ≤ si < ri+1.

For each constant weight interval ([rj , sj ], vj), 1 ≤ j ≤ n, of width wj , add [[
wj

t
]]vj

to the weight of each point in [a, c − 1], and add an additional vj to each point in
[a + (rj − a)(mod t), a + (sj − a)(mod t)]. Finally, set the weights on [c, d] to zero.

Case 3: g is orientation reversing. We first trim g. This does not affect the orbits
or the orbit weights. For a trimmed, orientation reversing pairing g : [a, b] → [c, d],
set the weights on [c, d] to zero and for each 1 ≤ j ≤ n add vj to g−1([rj , sj ]).

Lemma 15. The operation of transfer sets the weights on [c, d] to zero and pre-
serves the orbit weights of a collection of pairings. The number of distinct weights
taken by the weight function on [1, N ] increases by at most four following a transfer
operation.

Proof. In Cases (1) and (3), the decrease in the weight function at one point x in
an orbit is exactly offset by an equal increase at the point g−1(x) in the same orbit.

In Case (2), each point in [a, d] is in the orbit of a unique point in [a, t − 1] =
[a, c−1] under the iterates of g. The total weight of an orbit within a periodic pairing
is transferred to the orbit representative in this initial subinterval by applying
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powers of g. Adding weight vj to an orbit representative in [a, c − 1] of each point
in [rj , sj while setting the weight at that point to zero, preserves the orbit weight.
The resulting weights on [a, c−1] are gotten by adding appropriate multiples of vj ,
with the factor being the number of orbits of a point in [a, c − 1] that lie in [rj , sj.

The number of orbits under g of a point in [a, c − 1] that lie in [rj , sj ] is [[
wj

t
]] or

one more than this for points whose orbit hits the last wj(mod t) points of [rj , sj ].
This latter set of points lies in the interval [a+(rj −a)(mod t), a+(sj −a)(mod t)].
The formula in Case (2) follows.

Setting the weights on [c, d] to zero can cause at most two new points where
a weight change occurs. The transferred weights from a constant weight interval
[rj , sj ] result in a net increase of at most two pairs of successive points where
the weight changes, at the preimages of its two endpoints. In Cases (1) and (3),
transferred weights from an interval with non-constant weights results in an increase
in the number of weight changes in the domain of g. The increase in the number
of weight changes in the domain is exactly canceled by the decrease in the number
of weight changes in the range of g, except possibly for two extra weight changes
at the boundary points a, b of the domain. In Case (2) the same holds, but with
[a, c−1] replacing the domain. In each case the number of constant weight intervals
m′ is increased by at most four during a transfer operation.

We now describe the modified algorithm. Again N ′ represents the current inter-
val length, and we set m′ to be the current number of constant weight intervals.

Weighted orbit counting algorithm: Let {gi : [ai, bi] → [ci, di], 1 ≤ i ≤ k} be
a collection of pairings between subintervals of {1, 2, . . .N}, and let

L = {([p1, q1], z1), ..., ([pm, qm], zm)}, 1 ≤ pi ≤ qi < pi+1 = N

be a list representing a collection of weights on [1, N ], with the weight on [pj, qj ]
equal to zj ∈ Z

d. Initialize a second weight list L′ to be empty. The algorithm
proceeds as before, reducing the interval size N until it reaches zero, but this time
keeping track of orbit weights by maintaining the lists L, L‘.

1. Search through the pairings and delete any pairings which are restrictions of
the identity. Leave the weight lists L, L′ unchanged.

2. Search for and contract static intervals. If the interval [r, s] is contracted, has
constant weight z, and is not contained in a larger contracted interval with
the same weight z, add an interval ([N ′+1, N ′+s−r+1], z) of width s−r+1
to the end of L′, with associated weight z. Alter L by replacing [1, N ′] by
[1, N ′− (s− r+1)], and altering each gi by replacing any point x in a domain
or range greater than s by x − (s − r + 1). Replace the weight function by a
new weight function w′, which at points x > s satisfies w′(x) = w(x + s) and
agrees with w at points x < r.

3. Trim all orientation reversing pairings whose domain and range overlap. Leave
the weight lists L, L′ unchanged.

4. Find a maximal pairing gi. Recall that its range contains both N ′ and the
range of any other pairing containing N ′. If gi is periodic, search for other
periodic pairings gj that also have range [cj , N

′] containing N ′. If any such
gj exists, and if ti ≤ wj , then perform a merger as in Lemma 10, replacing
gi and gj by a single periodic pairing, with translation distance GCD(ti, tj),
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acting on the union of the domains and ranges of gi and gj. Leave the weight
lists L, L′ unchanged.

5. Find a maximal gi. For each gj with j6 = i, if the range of gj is contained in
[ci, N

′], transmit gj by gi. Leave the weight lists L, L′ unchanged.
6. Find the smallest value of c such that the interval [c, N ′] intersects the domain

or range of at most one pairing gi, with gi : [ai, bi] → [ci, N
′]. Transfer the

weights on [ci, N
′] by gi, and then truncate the pairing gi.

7. If the interval size N ′ has decreased to zero, output the list L′ and stop.
Otherwise start again with Step (1).

For a Z
d-valued function on [1, 2, ..., N ] whose values are given by the list L =

{([p1, q1], z1), ..., ([pm, qm], zm)}, 1 ≤ pi ≤ qi < pi+1, define the total weight of L to
be

∑m

i=1 |zi|.

Theorem 16. Suppose there is an action of k pairings with Z
d-valued weights,

{gi}
k
i=1 on [1, . . . , N ], total weight bounded by D and constant weight on m sub-

intervals. Then the weighted orbit counting algorithm outputs a list with one point
for each orbit and corresponding orbit weights, and runs in time polynomial in
kmd logD log N .

Proof. We will check that the running time of the algorithm is larger than that of
the previous unweighted version by a factor which is a polynomial in md log D.

The proof that the algorithm terminates is the same as that given for Theorem 12.
There is some extra overhead involved in keeping track of weights that modifies the
calculation of the running time. We indicate these additional calculations below.
We now check that at each step in the algorithm the orbit weight is unchanged for
any orbit remaining in L, that eliminated orbits have their orbit weights correctly
recorded in L′, and that k, m, d, D, N of controlled size.

As we run through the steps of the algorithm, Steps (1),(3),(4),(5) and (7) pre-
serve the orbit structure, the weight function and the interval [1, N ′], so neither
of the lists L, L′ are changed. The number of constant weight sub-intervals is also
unchanged.

Step (2), contraction, does change the orbit structure, and also shortens [0, N ′].
In Step (2) the procedure adds the eliminated orbits and their weights to L′. The
number of constant weight intervals is not increased, and may be decreased. Main-
taining the two lists requires at most O(md log D) additional steps.

In Step (6), truncation, points are eliminated from the end of the interval [1, N ′].
However since we first transfer the weights of these points, the eliminated points
all have weight zero, and the weight of an orbit is unaffected.

The number of steps involved in resetting the weights in L for a transfer operation
is given by a polynomial in m′d log D log N . Since m′ increases by at most four
at each of the polynomially many steps of the algorithm, m′ is bounded by a
polynomial in mk log N .

Combining the running time of each of the steps, whose number is given by a
polynomial in k log N , gives a polynomial in kmd log D log N for the total running
time.

Corollary 17. Let M be a 3-manifold with a triangulation T containing t tetra-
hedra and let F be a normal surface in M of total weight W . There is a procedure
for counting the number of components of F and determining the topology of each
component which runs in time polynomial in t log W .
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Proof. We begin as in Corollary 14 by assigning an integer in [1, N ] to each point
of intersection between the normal surface and an edge of the triangulation, where
N is the total number of intersections of F with the 1-skeleton, and again associate
three pairings to each face of the triangulation, one to each pair of edges in the
face. The number of pairings that results is bounded above by 12t.

We next define a weight function w(x) which assigns integer weights (z1, z2, . . . , z7t)
to each point in [1, N ]. Initially zi is set to zero for all i at all points x ∈ [1, N ]. A
tetrahedron can have as many as five distinct elementary disk types with non-zero
coefficients, four triangles and one quadrilateral. If the jth elementary disk type
occurs, then fix one of the edges that it meets, and add 1 to the jth component of
the weight vector at each of the indices that the jth elementary disk meets on that
edge. The orbit weights are then the normal coordinates of the components of the
normal surface F . Each point in the output list L′ corresponds to a component
of the normal surface with normal coordinates given by the corresponding weight
in Z

7t. Theorem 16 tells us that the list L′ is computed in time polynomial in
kmd logD log N . We now bound these constants in terms of t.

Since each edge of a tetrahedron meets at most three disk types in that tetra-
hedron, each edge of a tetrahedron can contribute at most six points at which the
weight vector changes. Given six edges to each tetrahedron, we have m ≤ 36t.
As before we have bound for the number of pairings k ≤ 12t and the number of
normal coordinates is given by d = 7t. The total weight bounds the normal coor-
dinates, and with D = W we get a bound on the running time that is polynomial
in t log W .

Corollary 18. Let M be a 3-manifold with a triangulation T containing t tetra-
hedra and let F be a fundamental normal surface in M . There is a procedure for
counting the number of components of F and the topology of each component which
runs in time polynomial in t.

Proof. Theorem 4 gives a bound for the normal coordinates of F of t27t+2. Recall
that there are 7t normal coordinates, and each represents a triangle or quadrilateral,
so the total number of intersections with the 1-skeleton satisfies W ≤ 28t227t+2. In
particular, log W is bounded above by a polynomial in t. Plugging this in for W in
Corollary 17 we get a bound for the running time which is a polynomial in t.

7. The complexity of minimal spanning area

In this section we examine the complexity of the problem of determining the
smallest area of a spanning surface for a curve in a 3-dimensional manifold. Such
an area calculation problem seems at first to be ill suited to a complexity analysis,
since it has real solutions depending on a choice of Riemannian metric.

We recast the area calculation problem into a discretized form where its complex-
ity can be analyzed. Given a curve in a suitably discretized Reimannian 3-manifold,
we ask whether it bounds a surface of area less than C, where C is an integer. To
describe a metric on a 3-manifold with a finite amount of data, we restrict to piece-
wise flat metrics, and manifolds constructed from collections of flat tetrahedra and
triangular prisms whose faces are identified by isometries. The curvature of such
PL metrics is concentrated along their edges and vertices. A particular manifold in
this class is described by a decomposition into tetrahedra or triangular prisms with
a rational (or integer) length assigned to each edge, corresponding to edge lengths
of Euclidean triangles. Prisms are allowed in order to form metrics with rational
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lengths on spaces that are products. Identified 2-dimensional faces are required to
be isometric. We do not require that the total angle around an edge is 2π, nor do
we make any metric conditions at a vertex. Such metrics are described by a finite
set of data, and can be used to approximate any Riemannian metric on a manifold.
We call these objects metrized PL 3-manifolds. A curve is given as a collection of
edges in the 1-skeleton of M . We will show that determining whether the smallest
spanning surface for a curve in such a 3-manifold has area less than an integer C
is NP-hard.

Problem: MINIMAL-SPANNING-AREA
INSTANCE: A 3-dimensional metrized PL manifold M , a 1-dimensional
curve K in the 1-skeleton of M , and a natural number C.
QUESTION: Does the 1-complex bound a surface of area A ≤ C?

The size of an instance is given by the number of bits needed to describe all the
edge lengths plus log C.

Theorem 19. MINIMAL-SPANNING-AREA is NP-hard.

Proof. We reduce in polynomial time an instance of the NP-hard problem ONE-
IN-THREE SAT to an instance of MINIMAL-SPANNING-AREA. This shows that
MINIMAL-SPANNING-AREA is at least as hard, up to polynomial time reduction,
as ONE-IN-THREE SAT.

As a first step, we set up a 2-dimensional version of MINIMAL-SPANNING-
AREA. We then construct a 3-manifold by a thickening process, with the property
that a minimizing surface must remain within the 2-complex.

Given a boolean expression representing an instance of ONE-IN-THREE SAT,
we construct a triangulated metrized 2-complex and an integer C. This complex
contains a curve K with the property that the expression admits a satisfying as-
signment if and only if K bounds a surface of area less than C. This metrized
complex is shown in Figure 5 for the expression (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x̄3).

The branched surface is similar to the one used in the proof of Theorem 1, but
carries the additional structure of a metrized triangulation, whose triangles have flat
metrics of prescribed edge length. The metrized triangles are constructed so that
near each of the m boundary components corresponding to clauses of the boolean
expression there are three triangulated disks of area close to one, one on each of
the three handles coming into the punctured sphere near the boundary component.
These disks are shaded in Figure 5. Each of these shaded disks is chosen to have
area between 1 and 1 + 1/2m. The surface is constructed so that the union of all
triangles in the rest of the surface has total area less than 1/2.

We saw in Theorem 1 that a spanning surface which has minimal genus goes
over each of the shaded disks at most once and goes over exactly one shaded disk
for each of the m clauses. It follows that such a surface has total area m < A <
m + 1. Furthermore, a satisfying assignment for ONE-IN-THREE SAT leads to
an embedded spanning surface, with the satisfying values of the variables selecting
branches of the surface, and such a spanning surface has area less than m + 1. So
an instance of ONE-IN-THREE SAT can be reduced to an instance of MINIMAL-
SPANNING-AREA for this 2-complex.

To pass to a 3-manifold, thicken each triangle in the branched surface to a
triangular prism, triangulated as in the proof of Theorem 1, and with a product
metric. This produces a 3-manifold M which is a thickened up version of the
2-complex. Projection to the branched surface is area non-increasing, and area
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l1

l2

l3

c2

c1

Figure 5. A metrized branched surface corresponding to the
boolean expression (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2 ∨ x̄3). The picture
is not to scale. The shaded prisms are constructed to each have
area one, while the rest of the surface has total area less than 1/2.

decreasing for a surface with boundary on the branched surface but not contained
in it. Therefore a least area surface spanning K must lie on the branched surface. A
closed manifold DM with a piecewise-smooth metric can be obtained by a doubling
construction as in Theorem 1. The doubling involution is an isometry, so that
reflecting a surface meeting DM\M into M does not increase area. It follows that
the embedded spanning surface on the branched surface is a least area surface in
DM .

8. Open questions

Among many unresolved questions are:
1. Does determining knot genus remain NP-hard if we restrict to knots in the

3-sphere?
2. Is determining the genus of a knot in a 3-manifold NP? This amounts to

showing that finding a lower bound to the knot’s genus is an NP problem, in
contrast to the upper bound we have investigated. Recall that the genus of a knot
is the least possible genus of all spanning surfaces. We have shown that certifying
that the genus is at most g is NP, but left open the possibility that the genus may
be smaller than g. If the answer to this question is yes, then we can certify that a
non-trivial knot has positive genus, and it would follow that UNKNOTTING is
both NP and coNP.
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