
Optimally Cutting a Surface into a Disk∗

Jeff Erickson† Sariel Har-Peled

University of Illinois at Urbana-Champaign
{jeffe,sariel}@cs.uiuc.edu

http://www.cs.uiuc.edu/∼{jeffe,sariel}

ABSTRACT

We consider the problem of cutting a set of edges on a poly-
hedral manifold surface, possibly with boundary, to obtain
a single topological disk, minimizing either the total num-
ber of cut edges or their total length. We show that this
problem is NP-hard, even for manifolds without boundary
and for punctured spheres. We also describe an algorithm
with running time nO(g+k), where n is the combinatorial
complexity, g is the genus, and k is the number of bound-
ary components of the input surface. Finally, we describe a
greedy algorithm that outputs a O(log2 g)-approximation of
the minimum cut graph in O(g2n log n) time.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems—Geometrical

problems and computations; G.2.m [Discrete Mathemat-

ics]: Miscellaneous—Combinatorial topology

General Terms

Algorithms

Keywords

computational topology, polyhedral 2-manifold, polygonal
schema, cut graph, NP-hardness, approximation

1. INTRODUCTION

Several applications of three-dimensional surfaces require
information about underlying topological structure in addi-
tion to geometry. In some cases, we wish to simplify the

∗See http://www.cs.uiuc.edu/∼jeffe/pubs/schema.html for the
most recent version of this paper.
†Partially supported by a Sloan Fellowship, NSF CAREER award
CCR-0093348, and NSF ITR grant DMR-0121695.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SoCG’02, June 5-7, 2002, Barcelona, Spain.
Copyright 2002 ACM 1-58113-504-1/02/0006 ...

�
5.00.

surface topology, to facilitate algorithms that can be per-
formed only if the surface is a topological disk.

Applications when this is important include surface pa-
rameterization [14, 29] and texture mapping [2, 28]. In the
texture mapping problem, one wish to find a continuous
mapping from the texture, usually a two-dimensional rect-
angular image, to the surface. Unfortunately, if the surface
is not a topological disk, no such map exists. In such a
case, the only feasible solution is to cut the surface so that
it becomes a topological disk. (Haker et al. [18] present
an algorithm for directly texture mapping models with the
topology of a sphere, where the texture is also embedded on
a sphere.) Of course, when cutting the surface, one would
like to find the best possible cut under various consider-
ations. For example, one might want to cut the surface
so that the resulting surface can be textured mapped with
minimum distortion [14, 29]. To our knowledge, all current
approaches for this cutting problem either rely on heuristics
with no quality guarantees or require the user to perform
this cutting beforehand [14, 28].

The problem of just cutting a surface into a topological
disk is not trivial by itself. Lazarus et al. [25] presented
and implemented two algorithms for computing a canonical
polygonal schema of an orientable surface of complexity n
and with genus g, in time O(gn), simplifying an earlier algo-
rithm of Vegter and Yap [34]. Computing such a schema re-
quires finding 2g cycles, all passing through a common base-
point in M, such that cutting along those cycles breaks M
into a topological disk. Since these cycles must share a com-
mon point, it is easy to find examples where the overall size
of those cycles is Ω(gn). Furthermore, those cycles share
several edges and are visually unsatisfying.

For most applications, computing a canonical schema is
overkill. It is usually sufficient to find a collection of edges
whose removal transforms the surface into a topological disk.
We call such a set of edges a cut graph; see Figure 1 for an
example. Cut graphs have several advantages. First, they
are compact. Trivially, any cut graph contains at most n
edges of the surface mesh, much less than any canonical
schema in the worst case, although we expect it to be much
smaller in practice. Second, it is quite easy to construct a cut
graph for an arbitrary polyhedral surface in O(n) time, using
a breadth-first search of the dual graph [9], or simply taking
a maximal set of edges whose complement is connected [25].
Finally, the cut graph has an extremely simple structure: a
tree with O(g) additional edges. As such, it should be easier
to manipulate algorithmically than other representations.
For example, Dey and Schipper [9] describe fast algorithms

cb
d

e

a

e

d

c
c d

b

a

e

a

b

c

a b c

de

Figure 1. A cut graph for a two-holed torus and its induced (non-
canonical) polygonal schema.

to determine whether a curve is contractible, or two curves
are homotopic, using an arbitrary cut graph instead of a
canonical schema.

In this paper, we investigate the question of how find the
“best” such cutting of a surface, restricting ourselves to cuts
along the edges of the given mesh. Specifically, we want to
find the smallest subset of edges of a polyhedral manifold
surface M, possibly with boundary, such that cutting along
those edges transforms M into a topological disk. We also
consider the weighted version of this problem, where each
edge has an arbitrary non-negative weight and we want to
minimize the total weight of the cut graph. The most nat-
ural weight of an edge is its Euclidean length, but we could
also assign weights to take problem-specific considerations
into account. For example, if we want to compute a tex-
ture mapping for a specific viewpoint, we could make visible
edges more expensive, so that the minimum cut graph would
minimize the number of visible edges used in the cuts. Our
algorithms do not require the edge weights to satisfy the
triangle inequality.

We show that the minimum cut graph of any polyhedral
manifold M with genus g and k boundary components can
be computed in nO(g+k) time. We also show that the prob-
lem is NP-hard in general, even if g or k is fixed. Finally,
we present a simple and efficient greedy approximation algo-
rithm for this problem. Our algorithm outputs a cut graph
whose weight is a factor O(log2 g) larger than optimal, in
O(g2n log n) time.1 If g = 0, the approximation factor is
exactly 2. We plan to implement this algorithm and present
experimental results in the near future.

1To simplify notation, we define log x = max{1, dlog2 xe}.

2. BACKGROUND

Before presenting our new results, we review several use-
ful notions from topology and describe related results in
more detail. We refer the interested reader to Hatcher [21],
Munkres [27], or Stillwell [30] for further topological back-
ground and more formal definitions. For related computa-
tional results, see the recent surveys by Dey, Edelsbrunner,
and Guha [7] and Vegter [33].

A 2-manifold with boundary is a set M such that every
point x ∈ M lies in a neighborhood homeomorphic to either
the plane IR2 or a closed halfplane. The points with only
halfplane neighborhoods constitute the boundary of M; the
boundary consists of zero or more disjoint circles. This pa-
per will consider only compact manifolds, where every infi-
nite sequence of points has a convergent subsequence.

The genus of a 2-manifold M is the maximum number
of disjoint non-separating cycles γ1, γ2, . . . , γg in M; that
is, γi ∩ γj = � for all i and j, and M \ (γ1 ∪ · · · ∪ γg) is
connected. For example, a sphere and a disc have genus 0,
a torus and a Möbius strip have genus 1, and a Klein bottle
has genus 2.

A manifold is orientable if it has two distinct sides, and
non-orientable if it has only one side. Although many ge-
ometric applications use only orientable 2-manifolds (pri-
marily because non-orientable manifolds without boundary
cannot be embedded in IR3 without self-intersections) our
results will apply to non-orientable manifolds as well. Every
(compact, connected) 2-manifold with boundary is charac-
terized by its orientability, its genus g, and the number k of
boundary components [15].

A polyhedral 2-manifold is constructed by gluing closed
simple polygons edge-to-edge into a cell complex : the in-
tersection of any two polygons is either empty, a vertex of
both, or an edge of both. We refer to the component poly-
gons has facets. (Since the facets are closed, every poly-
hedral manifold is compact.) For any polyhedral manifold
M, the number of vertices and facets, minus the number
of edges, is the Euler characteristic χ of M. Euler’s for-
mula [13] implies that χ is an invariant of the underlying
manifold, independent of any particular polyhedral repre-
sentation; χ = 2 − 2g − k if the manifold is orientable, and
χ = 2 − g − k if the manifold is non-orientable. Euler’s
formula implies that if M has v vertices, then M has at
most 3v − 6 + 6g edges and at most 2v − 4 + 4g − k facets,
with equality for orientable manifolds where every facet and
boundary circle is a triangle. We let n ≤ 6v − 10 + 10g − k
denote the total number of facets, edges, and vertices in M.

The 1-skeleton M1 of a polyhedral manifold M is the
graph consisting of its vertices and edges. We define a cut

graph G of M as a subgraph of M1 such that M \ G is
homeomorphic to a disk.2 The disk M \ G is known as a
polygonal schema of M. Each edge of G appears twice on
the boundary of polygonal schema M\G, and we can obtain
M by gluing together these corresponding boundary edges.
Finding a cut graph of M with minimum total length is
clearly equivalent to to finding a polygonal schema of M
with minimum perimeter.

Any 2-manifold has a so-called canonical polygonal schema,
whose combinatorial structure depends only on the genus g,

2Cut graphs are generalizations of the cut locus of a manifold M,
which is essentially the geodesic medial axis of a single point.

the number of boundary components k, and whether the
manifold is orientable. The canonical schema of an ori-
entable manifold is a (4g + 3k)-gon with successive edges
labeled

x1, y1, x̄1, ȳ1, . . . , xg, yg, x̄g, ȳg, z1, e1, z̄1, . . . , zk, ek, z̄k;

for a non-orientable manifold, the canonical schema is a
(2g + 3k)-gon with edge labels

x1, x1, . . . , xg, xg, z1, e1, z̄1, . . . , zk, ek, z̄k.

Every pair of corresponding edges x and x̄ is oriented in
opposite directions. Gluing together corresponding pairs in
the indicated directions recovers the original manifold, with
the unmatched edges ei forming the boundary circles. For a
manifold M without boundary, a reduced polygonal schema
is one where all the vertices are glued into a single point
in M; canonical schemata of manifolds without boundary
are reduced. We emphasize that the polygonal schemata
constructed by our algorithms are neither necessarily canon-
ical nor necessarily reduced.

Dey and Schipper [9] describe an algorithm to construct
a reduced, but not necessarily canonical, polygonal schema
for any triangulated orientable manifold without boundary
in O(n) time. Essentially, their algorithm constructs an ar-
bitrary cut graph G by depth-first search, and and then
shrinks a spanning tree of G to a single point. (See also Dey
and Guha [8].) Vegter and Yap [34] developed an algorithm
to construct a canonical schema in optimal O(gn) time and
space. Two simpler algorithms with the same running time
were later developed by Lazarus et al. [25]. The “edges” of
the polygonal schemata produced by all these algorithms are
(possibly overlapping) paths in the 1-skeleton of the input
manifold. We will modify one of the algorithm of Lazarus
et al. to construct and essential cycles and nearly-minimal
cut graphs.

3. COMPUTING MINIMUM CUT

GRAPHS IS NP-HARD

In this section, we prove that finding a minimum cut graph
of a triangulated manifold is NP-hard. We consider two
extreme cases: boundary but no genus, and genus but no
boundary. Both reductions are from the rectilinear Steiner

tree problem: Given a set P of n points from a m × m
square grid in the plane, find the shortest connected set
of horizontal and vertical line segments that contains every
point in P . This problem is NP-hard, even if m is bounded
by a polynomial in n [17]. Our reduction uses the Hanan grid

of the points, which is obtained by drawing horizontal and
vertical lines through each point, clipped to the bounding
box of the points. At least one rectilinear Steiner tree of the
points is a subset of the Hanan grid [20].

Theorem 3.1. Computing the length of the minimum
(weighted or unweighted) cut graph of a triangulated punc-
tured sphere is NP-hard.

Proof: Let P be a set of n points in the plane, with integer
coordinates between 1 and m. We construct a punctured
sphere in O(n2) time as follows. Assume that P lies on the
xy-plane in IR3. We modify the Hanan grid of P by re-
placing each terminal with a square of width 1/2n, rotated
45 degrees so that its vertices lie on the neighboring edges.

(a) (b)

(c)

Figure 2. (a) A set of integer points. (b) The modified Hanan grid.
(c) A cut-away view of the resulting punctured sphere.

These squares will form the punctures. We then attach a
basin under each face f of the modified Hanan grid, by join-
ing the boundary of f to a slightly scaled copy of f on the
plane z = −n2. We also attach a basin of depth n2+1 to the
boundary of the entire modified Hanan grid. The side facets
of each basin are trapezoids. The basins are tapered so that
adjacent basins intersect only on the modified Hanan grid.
Triangulating this surface arbitrarily, we obtain a polyhedral
sphere M with n punctures and overall complexity O(n2).
See Figure 2.

Let G∗ be a minimum weighted cut graph of M. We easily
observe that G∗ contains only “long” edges from the mod-
ified Hanan grid and contains at least one vertex of every
puncture. Thus, the edges of G∗ are in one-to-one corre-
spondence with the edge of a rectilinear Steiner tree of P .

For the unweighted case, we modify the original m×m in-
teger grid instead of the Hanan grid. To create a punctured
sphere, we replace each terminal point with a small diamond
as above. We then fill in each modified grid cell with a trian-
gulation, chosen so that the shortest path between any two
points on the boundary of any cell stays on the boundary
of that cell; this requires a constant number of triangles per
cell. The resulting manifold M′ has complexity O(m2). By
induction, the shortest path between any two points on the
modified grid lies entirely on the grid. Thus, any minimal
unweighted cut graph of M′ contains only edges from the
modified grid. It follows that if the minimum unweighted
cut graph of M′ has r edges, the length of any rectilinear
Steiner tree of P is exactly r. �

We can easily generalize the previous proof to manifolds
with higher genus, with or without boundary, oriented or
not, by attaching small triangulated tori or cross-caps to
any subset of punctures.

Theorem 3.2. Computing the length of the minimum
(weighted or unweighted) cut graph of a triangulated man-
ifold with boundary, with any fixed genus or with any fixed
number of boundary components, is NP-hard.

4. COMPUTING MINIMUM CUT

GRAPHS ANYWAY

In this section, we describe an algorithm to compute the
minimum cut graph of a polyhedral manifold in nO(g+k)

time. For manifolds with constant Euler characteristic, our
algorithm runs in polynomial time.

Our algorithm is based on the following characterization
of the minimum cut graph as the union of shortest paths. A
branch point of a cut graph is any vertex with degree greater
than 2. A simple path in a cut graph from one branch point
or boundary point to another, with no branch points in its
interior, is called a cut path.

Lemma 4.1. Let M be a polyhedral 2-manifold, possibly
with boundary, and let G∗ be a minimum cut graph of M.
Any cut path in G∗ can be decomposed into two equal-length
shortest paths in M1.

Proof: Let G be an arbitrary cut graph of M, and consider
a cut path between two (not necessarily distinct) branch
points a and c of G. Let b be the midpoint of this path, and
let α and β denote the subpaths of β from b to a and from
b to c, respectively. Note that β may lie in the interior of
an edge of M1. Finally, suppose α is not the shortest path
from b to a in M1. To prove the lemma, it suffices to show
that G is not the shortest cut graph of M.

Let α′ be the true shortest path from b to a. Clearly, α′ is
not contained in G. Walking along α′ from b to a, let s be
the first vertex whose following edge is not in G, and let t
be the first vertex in G whose preceding edge is not in G.
(Note that s and t may be joined by a single edge in M\G.)
Finally, let σ′ ⊂ α′ be the shortest path from b to s, and let
τ ′ ⊂ α′ be the shortest path from s to t. Thus, τ ′ is the first
maximal subpath of α′ whose interior lies in M \ G. See
Figure 3.

The subpath τ ′ cuts M\ G∗ into two smaller disks. We
claim that some subpath τ of either α or β appears on
the boundary of both disks and is longer than τ ′. Our
claim implies that cutting M\ G along τ ′ and regluing the
pieces along τ gives us a new polygonal schema with smaller
perimeter, and thus a new cut graph shorter than G. See
Figure 3 for an example.

We prove our claim by exhaustive case analysis. First
consider the case where the manifold M is orientable. We
can subdivide the entire boundary of the disk M \ G into
six paths labeled consecutively α, β, γ, β̄, ᾱ, δ. Here, ᾱ and β̄
are the corresponding copies of α and β in the polygonal
schema. Because M is orientable, α and ᾱ have opposite
orientations, as do β and β̄. Either or both of γ and δ could
be empty. See the lower left part of Figure 3. The subpath τ ′

can enter the interior of the disk M\ D from four of these
six paths (α, β, ᾱ, and β̄) and leave the interior of the disk
through any of the six paths.

Suppose τ ′ enters the interior of M\G from α; the other
three cases are symmetric. Figure 4 shows the six essentially
different ways for τ ′ to leave the interior of M \ D. In

a
b

c
s t

c

b

a

a

b

c

s

s

t

α β

α β

γδ

b

a

a

b

c

s

s

t

ss

tc

Figure 3. If the dashed path from a to b is shorter than the equal-
length paths ab and bc in the cut graph, then the cut graph can be
shortened by cutting and regluing.

each case, we easily verify that after cutting along τ ′, some
subpath τ of either α or β is on the boundary of both disks.
Specifically, if τ ′ leaves through α or ᾱ, then τ to be the
subpath of α from s to t. If τ ′ leaves through β or β̄, then τ
is the subpath of β from b to t. If τ ′ leaves through γ, then
τ = β. Finally, if τ ′ leaves through δ, then τ is the subset
of α from a to s.

If M is non-orientable, the path αβ could appear either
with the same orientation or with opposite orientations on
the boundary of the disk M\G. If the orientations are oppo-
site, the previous case analysis applies immediately. Other-
wise, the boundary can be subdivided into six paths labeled
consecutively α, β, γ, α, β, δ. Without loss of generality, τ ′

enters the interior of M\G from α and leaves through any
of these six paths. The six cases are illustrated in Figure 5.
Again, we easily verify that in each case, some subpath τ
of either α or β is on the boundary of both disks. We omit
further details. �

For any cut graph G of a manifold M, we define the corre-
sponding reduced cut graph Ĝ has follows. We first augment
the cut graph by adding all the boundary edges of M. Next,
we remove every vertex of degree one and its only edge, mak-
ing the graph 2-edge-connected. Finally, we replace each

c

b

a

a

b

c

s

s t

t

α β

α β

γδ

c

b

a

a

b

c

s

s

t

α β

α β

γδ

c

b

a

a

b

c

s

s

t

t

α β

α β

γδ

c

b

a

a

b

c

s

s
t

t

α β

α β

γδ

c

b

a

a

b

c

s

s

t

α β

α β

γδ

c

b

a

a

b

c

s

s

t

t

α β

α β

γδ

Figure 4. Six cases for the proof of Lemma 4.1 for orientable manifolds; all other cases are reflections of these. In each case, some subpath
of α or β appears on the boundary of both sub-disks.

c

b

a

a

b

c

s

st

t

α β

αβ

γδ

c

b

a

a

b

c

s

s

t

α β

αβ

γδ

c

b

a

a

b

c

s

s

t

t

α β

αβ

γδ

c

b

a

a

b

c

s

s
t

t

α β

αβ

γδ

c

b

a

a

b

c

s

s

t

α β

αβ

γδ

c

b

a

a

b

c

s

s

t

t

α β

αβ

γδ

Figure 5. Six additional cases for the proof of Lemma 4.1 for non-orientable manifolds; all other cases are reflections or rotations of these. In
each case, some subpath of α or β appears on the boundary of both sub-disks.

maximal path through degree-2 vertices with a single edge,
so that each vertex in the reduced cut graph Ĝ has degree
at least 3. Every vertex of Ĝ is either a branch point or a
boundary point of G, and every edge of Ĝ corresponds to
either a cut path or a boundary path in G. However, in
general, not all branch points and cut paths are represented
in Ĝ.

Lemma 4.2. Any reduced cut graph Ĝ of a manifold M
has at most 4g + 2k − 2 vertices and 6g + 3k − 3 edges.

Proof: Let v and e denote the number of vertices and edges
in Ĝ, respectively. If any vertex in Ĝ has degree d ≥ 4, we
can replace it with d−3 trivalent vertices and d−3 new edges
of length zero. Thus, in the worst case, every vertex in Ĝ
has degree exactly 3, which implies that 3v = 2e. Since Ĝ is
embedded in M with a single face, Euler’s formula implies
that v − e + 1 = χ = 2 − 2g − k if M is orientable, and
v − e + 1 = χ = 2 − g − k if M is non-orientable. It follows
that v ≤ 4g + 2k − 2 and e ≤ 6g + 3k − 3, as claimed. �

Our minimum cut graph algorithm exploits Lemma 4.1 by
composing potential minimum cut graphs out of O(g + k)
shortest paths. Unfortunately, a single pair of nodes in M
could be joined by 2Ω(n) shortest paths, in 2Ω(g+k) different
isotopy classes, in the worst case. To avoid this combina-
torial explosion, we can add a random infinitesimal weight
ε · w(e) to each edge e. The Isolation Lemma of Mulmuley,
Vazirani, and Vazirani [26] implies that if the weights w(e)
are chosen independently and uniformly from the integer set
{1, 2, . . . , n2}, all shortest paths are unique with probability
at least 1 − 1/n; see also [6, 23].3

We are now finally ready to describe our minimum cut
graph algorithm.

Theorem 4.3. The minimum cut graph of a polyhedral 2-
manifold M with genus g and k boundary components can
be computed in time nO(g+k).

Proof: We begin by computing the shortest path between
every pair of vertices in M in O(n2 log n) by running Dijk-
stra’s single-source shortest path algorithm for each vertex
[10, 22], breaking ties using random infinitesimal weights as
described above. Once these shortest paths and midpoints
have been computed, our algorithm enumerates by brute
force every possible cut graph that satisfies Lemmas 4.1
and 4.2, and returns the smallest such graph.

Each cut graph is specified by a set V of up to 4g +2k−2
vertices of M, a set E of up to 6g + 3k − 3 edges of M, a
trivalent multigraph Ĝ with vertices V , and a assignment of
edges in E to edges in Ĝ. Each edge (v, w) of Ĝ is assigned
a unique edge e ∈ E to define the corresponding cut path
in M. This cut path is the concatenation of the shortest
path from v to e, e itself, and the shortest path from e to w.
If the midpoint of this cut path is not in the interior of e,

3Alternately, if we choose w(e) uniformly from the real inter-
val [0, 1], shortest paths are unique with probability 1. This may
sound unreasonable, but recall that no polynomial-time algorithm
is known to compare sums of square roots of integers in any model
of computation that does not include square root as a primitive
operation[5]. Thus, to compute Euclidean shortest paths in a
geometric graph with integer vertex coordinates, we must either
assume exact real arithmetic or (grudgingly) accept some approx-
imation error [16].

we declare the cut path invalid, since it violates Lemma 4.1.
(Because shortest paths between vertices are unique, the
midpoint of any cut path in the minimal cut graph must lie
in the interior of an edge.) If all the cut paths are valid, we
then check that every pair of cut paths is disjoint, except
possibly at their endpoints, and that removing all the cut
paths from M leaves a topological disk.

Our brute-force algorithm considers � n
4g+2k−2 � different

vertex sets V , � n
6g+3k−2 � different edge sets E, � (4g+2k−2)2

6g+3k−2 �
different graphs Ĝ, and (6g + 3k − 2)! different edge assign-

ments. Thus, nO(g+k) potential cut graphs are considered
altogether. The validity of each potential cut graph can be
checked in O(n) time. �

5. APPROXIMATE MINIMUM CUT

GRAPHS

In this section, we describe a simple polynomial-time
greedy algorithm to construct an approximate minimum cut
graph for any polyhedral manifold M.

To handle manifolds with boundary, it will be convenient
to consider the following simplified form. Given a mani-
fold M with genus g and k boundary components, the cor-
responding punctured manifold (M, P) consists of a mani-
fold M with the same genus as M but without boundary,
and a set P of k points in M, called punctures. To con-
struct M, we contract every boundary component of M to
a single point, which becomes one of the punctures in P .4 If
any vertex of M has multiple edges to the same boundary
component, M contains only the edge with smallest weight,
breaking ties using the Isolation Lemma as above. If M has
no boundary, then M = M and P = � . This reduction is
motivated by the following trivial observation.

Lemma 5.1. The minimum cut graph of M has the same
length as the minimum cut graph of M that includes every
puncture in P .

A simple cycle γ in M is essential if it does not bound a
disk or an annulus. In terms of punctured manifolds, a cycle
in M is essential if it does not bound a disk containing less
than two punctures in P .

Our approximation algorithm works as follows. We re-
peatedly cut along a short essential cycle until our surface
becomes a collection of punctured spheres, connect the punc-
tures on each component by cutting along a minimum span-
ning tree, and finally (if necessary) reglue some previously
cut edges to obtain a single disk. The resulting cut graph
is composed of a subset of the edges of the short essential
cycles and all the edges of the minimum spanning forest.

Before we describe our algorithm in more detail, we first
describe how to execute each of the cutting operations and
how the lengths of each type of cut compare to the minimum
cut graph length.

5.1 Shortest Essential Cycles

We now describe an algorithm to compute the short-
est essential cycle in the 1-skeleton M1 of a polyhedral 2-
manifold M. Although our most efficient approximation
4We could simulate this contraction by artificially assigning every
boundary edge of M a weight of zero, although this would require
a few simple changes in our algorithms.

algorithm for cut graphs does not use require the shortest
essential cycle, we believe this algorithm is of independent
interest. Our algorithm uses a combination of Dijkstra’s
single-source shortest path algorithm [10] and a modifica-
tion of the canonical polygonal schema algorithm of Lazarus
et al. [25].

The algorithm of Lazarus et al. builds a connected sub-
set S of a triangulated manifold, starting with a single trian-
gle and adding new triangles one at a time on the boundary.
If a new triangle intersects the boundary of S in more than
one component, the algorithm checks which of the following
three cases holds: (1) M\ S is connected; (2) neither com-
ponent of M\S is a disk; or (3) one component of M\S is a
disk. In the first two cases, S contains an essential cycle. In
case (1), the check runs in O(n) time; in the other two cases,
the running time of the check is proportional to the size of
the smaller component of M\ S. In case (3), the algorithm
adds the disk component to S and continues searching the
other component of M \ S. If we run this algorithm until
either case (1) or case (2) holds, the total running time is
O(n). See Lazarus et al. [25] for further details.

Lemma 5.2. Let u be a vertex of a polyhedral 2-manifold M.
The shortest essential cycle in M1 that contains u can be
computed in O(n log n) time.

Proof: We find the shortest essential cycle through u by
simulating a circular wave expanding from u. Whenever
the wave touches itself, either we have the shortest essential
cycle through u, or one component of the wave bounds a disk
in M and we can continue expanding the other component.

We modify the algorithm of Lazarus et al. in three ways.
First, S is no longer a set of triangles but a more general
connected subset of vertices, edges, and facets of M. Ini-
tially, S contains only the source vertex u. Second, we use
Dijkstra’s algorithm to determine the order for edges to be
added. We add a facet to S only when all its vertices have
been added to S, either directly or as part of another facet.
We run the Lazarus topology check when S is no longer
simply connected, that is, when we add a new edge vw with
both endpoints on the boundary of S. (In the unweighted
case, our algorithm behaves similarly to the ‘wave traversal’
algorithm of Axen and Edelsbrunner [1].) Our third change
is that if M\S is disconnected, we continue only if one com-
ponent of M\S is a disk or an annulus. In that case, we add
the disk or annulus component of M \ S to S, discard the
vertices of that component from the Dijkstra priority queue,
and continue searching in the other component. Otherwise,
we have found the shortest essential cycle through u, con-
sisting of the shortest path from u to v, the edge vw, and
the shortest path from w to u.

Altogether, Dijkstra’s algorithm requires O(n log n) time.
By our earlier discussion, the total time spent modifying the
wave set S is only O(n). Thus, the total running time of our
algorithm is O(n log n). �

Running this algorithm once for every vertex of M gives
us the following:

Corollary 5.3. Let M be an polyhedral 2-manifold. The
shortest essential cycle in M1 can be computed in O(n2 log n)
time.

The following lemma relates the length of the shortest
essential cycle to the length of the minimum cut graph.

Lemma 5.4. Let G be any cut graph of a 2-manifold M
with genus g and no boundary. The shortest cycle in G
contains O((log g)/g) of the total length of G.

Proof: First consider the reduced cut graph Ĝ, constructed
by repeatedly contracting any edge with a vertex of degree
less than three, as in Section 4. Every vertex in Ĝ has degree
at least 3. Without loss of generality, assume that every
vertex in Ĝ has degree exactly 3, splitting each high-degree
vertex into a tree of degree-3 vertices if necessary, as in the
proof of Lemma 4.2. A straightforward counting argument
implies that any trivalent graph whose girth (minimum cycle

length) is c must have at least 3
√

2 · 2c/2 − 2 vertices if c is

odd, and at least 2 · 2c/2 − 2 vertices if c is even [4]. By

Lemma 4.2, Ĝ has at most 4g − 2 vertices, so Ĝ must have
a cycle γ̂ with most 2(lg g + 1) = O(log g) edges.

Starting with Ĝ0 = Ĝ, we inductively define a sequence of
reduced graphs Ĝ1, Ĝ2, . . . as follows. For each i > 0, let γ̂i

denote the shortest cycle in Ĝi−1. We obtain Ĝi by reducing
the graph Ĝi−1 \ γ̂i, or equivalently, removing the vertices
of γ̂i and all their edges, and then contracting |γ̂i| nearby
length-2 paths to single edges. Our earlier argument implies
that each cycle γ̂i has at most 2(lg g + 1) edges. Thus, for

each i, we have |E(Ĝi)| = |E(Ĝi−1)| − 6(lg g + 1). Since the

original reduced cut graph Ĝ contains at least g edges, it
follows that we can repeat this process at least g/6(lg g + 1)
times.

Let γi denote the cycle in the original cut graph G corre-
sponding to Ĝi. By our construction, γi and γj are disjoint
for all i 6= j, so we have a set of at least g/6(lg g+1) disjoint
cycles in G. At least one of these cycles has length at most
6(lg g +1)/g = O((log g)/g) times the total length of G. �

Corollary 5.5. For any 2-manifold M with genus g and
no boundary, the length of the shortest essential cycle is
at most O((log g)/g) times the length of the minimum cut
graph.

5.2 Nearly-Shortest Essential Cycles

As we will argue shortly, computing short essential cycles
is the bottleneck in our approximate cut graph algorithm.
Fortunately, exact minimum essential cycles are not neces-
sary. We can speed up our cut graph algorithm, without sig-
nificantly increasing the approximation factor, by searching
for an essential cycle at most twice as long as the shortest.

Our approximation algorithm works as follows. First, we
compute a set of shortest paths (in fact, a cut graph) that
intersects every essential cycle in the manifold M. Then we
contract each shortest path π in this set to a point, and find
the shortest essential cycle through that point, as described
by Lemma 5.2.

Lemma 5.6. Let π be a shortest path between two vertices
in a polyhedral 2-manifold M, and let γ∗ be the shortest es-
sential cycle in M1 that intersects π. In O(n log n) time, one
can compute an essential cycle γ in M such that |γ| ≤ 2|γ∗|.

Proof: Let M′ be the manifold obtained by contracting
the shortest path π to a single vertex v. Because π has no
cycles, M′ has the same topological type as M. Let γ ′ be
the shortest essential cycle in M′ that passes through v.
Clearly, |γ′| ≤ |γ∗|.

We construct a cycle γ in M by concatenating two paths
α and β, where α contains the edges of γ ′ and β is the
subpath of π between the endpoints of α. The sequence of
edge contractions that transforms M to M′ also transforms
γ′ to γ. Hence, γ′ is an essential cycle of M. Because β is
a subpath of a shortest path, β is actually the shortest path
between the endpoints of α, so |β| ≤ |α| = |γ ′|. It follows
that |γ| = |α| + |β| ≤ 2|γ′| ≤ 2|γ∗|. �

This lemma suggests a natural algorithm for finding a
short essential cycle: Compute a set of shortest paths that
intersect every essential cycle, and then run the algorithm
from Lemma 5.6 for each path in this set.

Lemma 5.7. In O(gn log n) time, one can compute a set Π
of O(g) shortest paths on M1 such that every essential cycle
in M1 intersects at least one path in Π.

Proof: We use another variant of the algorithm of Lazarus
et al. [25], replacing the simple breadth-first search with Di-
jkstra’s shortest path algorithm. The cut graph G computed
by our algorithm consists of a shortest-path tree T from the
starting vertex v, plus an additional set E ′ of O(g) edges.

Let Π be the set of O(g) shortest paths from v to the
endpoints of E′, and let G′ = Π ∪ E′. We easily observe
that G′ is also a cut graph; that is, M\ G is a topological
disk. Thus, every essential cycle in M intersects G′. Since
every vertex of G′ is also a vertex of Π, every essential cycle
intersects at least one path in Π. �

Corollary 5.8. Let M be a polyhedral 2-manifold with
genus g and no boundary, and let γ∗ be its shortest essen-
tial cycle. In O(gn log n) time, one can compute an essential
cycle γ of M such that |γ| ≤ 2|γ∗|.

5.3 Puncture-Spanning Trees

A second component of our cut graph algorithm is com-
puting the minimum puncture-spanning tree of a punctured
manifold (M, P): the minimum spanning tree of the punc-
tures P in the shortest-path metric of M1.

Lemma 5.9. The minimum puncture-spanning tree of any
punctured polyhedral 2-manifold (M, P) can be computed
in O(n log n) time.

Proof: We simulate Prim’s minimum spanning tree algo-
rithm by adding shortest puncture-to-puncture paths one
at a time in increasing order of length [31]. To compute
the shortest paths, we simultaneously propagate wavefronts
from all k punctures using Dijkstra’s algorithm. Whenever
two wavefronts (i.e., two growing shortest-path trees) col-
lide, we add a new edge to the evolving minimum span-
ning tree and merge those two wavefronts. To implement
this algorithm efficiently, we maintain the wavefronts in a
union-find data structure. The resulting running time is
O(n log n). �

Lemma 5.10. The length of the minimum puncture-span-
ning tree of any punctured manifold (M, P) is at most twice
the length of any cut graph of (M, P).

Proof: The minimum Steiner tree of P is the subgraph of
M1 of minimum total weight that includes every point in P .
Since any cut graph of (M, P) must touch every puncture,
no cut graph is shorter than this minimum Steiner tree. On
the other hand, the minimum spanning tree of P has at most
twice the length of the minimum Steiner tree [24, 31]. �

5.4 Greedy Algorithm Analysis

We now have all the components of our greedy cut graph
algorithm. At any stage of the algorithm, we have a (pos-
sibly disconnected) punctured manifold (M, P). Our algo-
rithm repeatedly cuts along a short essential cycle of M,
using the algorithm of Corollary 5.8. This cut creates one
or two new boundary circles, which we collapse to new punc-
tures. When the manifold is reduced to a collection of punc-
tured spheres, we cut along the minimum puncture-spanning
tree of each component using the algorithm in Lemma 5.9.
Finally, we reglue some cut edges to obtain a single topo-
logical disk.

Each essential cycle cut is either a separating cut, which
breaks a component of M into two smaller components, each
with non-trivial topology, or a reducing cut, which decreases
the genus of some component of M by 1. The algorithm
performs at most g−1 separating cuts and exactly g reducing
cuts. Thus, the overall running time of our algorithm is

(2g − 1) · O(gn log n) + O(n log n) = O(g2n log n).

It remains only to analyze how well our greedy cut graph
approximates the true minimum cut graph G∗. For any
graph X, let |X| denote its total length. We split the al-
gorithm into phases numbered from g down to 1. In the
ith phase, we cut along the shortest essential cycle in every
component of the manifold whose genus is exactly i. Some
phases may include no cuts. Let (Mi, Pi) denote the punc-
tured manifold at the beginning of the ith phase, and let G∗

i

denote the union of the minimum cut graphs of its compo-
nents. Since collapsing edges cannot increase the minimum
cut graph length, we have |G∗

i | ≤ |G∗
g| = |G∗| for all i.

Let Mij denote the jth component of Mi with genus
i; let G∗

ij denote its minimum cut graph; let γij denote
the short essential cycle found by Corollary 5.8. (We eas-
ily observe that any cut graph of Mij must intersect this
cycle.) Lemma 5.4 and Corollary 5.8 imply that |γij | ≤
O((log i)/i) · |G∗

ij | for all i and j. Thus, we can bound the
total length of all cuts in phase i as follows.

�

j

|γij | ≤
�

j

O((log i)/i) · |G∗
ij | ≤ O((log i)/i) · |G∗

i |

Summing over all g phases, we conclude that the total length
of all cycle cuts is at most

g�

i=1

O((log i)/i) · |G∗
i | = O(log2 g) · |G∗|.

Similarly, Lemma 5.10 implies that the minimum puncture-
spanning forest has length at most 2|G∗|. Finally, regluing
previously cut edges to obtain a single disk only reduces the
length of the final cut graph. Thus, the final cut graph com-
puted by our algorithm has length at most O(log2 g) · |G∗|.

Theorem 5.11. Given a polyhedral 2-manifold M with
genus g and k boundary components, an O(log2 g)-approx-
imation of its minimum cut graph can be constructed in
O(g2n log n) time.

6. OPEN PROBLEMS

We have developed new algorithms to compute exact and
approximate minimal cut graphs for manifold surfaces with
arbitrary genus and arbitrary boundary complexity. Our
approximation algorithm is particularly simple. We plan to
implement this algorithm and present experimental results
in a future version of this the paper.

Our results suggest several open problems, the most ob-
vious of which is to improve the running times and ap-
proximation factors of our algorithms. Is the minimum
cut graph problem fixed-parameter tractable [11]? That
is, can we compute exact minimum cut graphs in time
f(g, k) · nO(1) for some function f? The similarity to the
Steiner problem offers some hope here, since the minimum
Steiner tree of k nodes in an n-node graph can be computed
in O(3kn+2kn2+n3) time [12, 19]. How well can we approx-
imate the minimum cut graph in nearly-linear time? More
generally, is there a simple, practical, O(1)-approximation
algorithm, like the MST approximation of Steiner trees? Un-
fortunately, the general Steiner tree problem is MAXSNP-
hard [3], so an efficient (1 + ε)-approximation algorithm for
arbitrary ε > 0 seems unlikely.

The approximation algorithm of Theorem 5.11 is some-
what indirect. It computes a short cut graph by repeatedly
computing a ‘reasonable’ cut graph and then extracting a
short essential cycle that interacts with this cut graph. It is
natural to conjecture that one can compute such a short cut
graph directly, resulting in a faster algorithm. In particular,
we conjecture that an approximately minimum cut graph
can be computed in O(gn log n) time.

Finally, can our ideas be applied to other useful families of
curves on manifolds, such as homology generators (families
of 2g cycles that intersect in g pairs) and pants decomposi-
tions (maximal sets of pairwise disjoint essential cycles [32])?

Acknowledgments. We would like to thank Herbert
Edelsbrunner for an enlightening initial conversation. We
are also grateful to Noga Alon, John Hart, Benjamin Su-
dakov, and Kim Whittlesey for helpful discussions.

References

[1] U. Axen and H. Edelsbrunner. Auditory Morse analysis
of triangulated manifolds. Mathematical Visualization,
223–236, 1998. Springer-Verlag.

[2] C. Bennis, J.-M. Vézien, G. Iglésias, and A. Gagalowicz.
Piecewise surface flattening for non-distorted texture
mapping. Computer Graphics 25:237–246, 1991. Proc.

SIGGRAPH ’91.

[3] M. Bern and P. Plassman. The Steiner problem with
edge lengths 1 and 2. Inform. Proc. Lett. 32(4):171–
176, 1989.

[4] N. Biggs. Constructions for cubic graphs with large
girth. Elec. J. Combin. 5:A1, 1998.

[5] J. Blömer. Computing sums of radicals in polynomial
time. Proc. 32nd Annu. IEEE Sympos. Found. Comput.

Sci., 670–677, 1991.

[6] S. Chari, P. Rohatgi, and A. Srinivasan. Randomness-
optimal unique element isolation with applications to
perfect matching and related problems. SIAM J. Com-

put. 24(5):1036–1050, 1995.

[7] T. Dey, H. Edelsbrunner, and S. Guha. Computational
topology. Advances in Discrete and Computational Ge-

ometry, 109–143, 1999. Contemporary Mathematics
223, American Mathematical Society.

[8] T. K. Dey and S. Guha. Transforming curves on sur-
faces. J. Comput. Sys. Sci. 58:297–325, 1999.

[9] T. K. Dey and H. Schipper. A new technique to com-
pute polygonal schema for 2-manifolds with application
to null-homotopy detection. Discrete Comput. Geom.

14:93–110, 1995.

[10] E. W. Dijkstra. A note on two problems in connexion
with graphs. Numerische Mathematik 1:269–271, 1959.

[11] R. G. Downey and M. R. Fellows. Parameterized Com-

plexity. Monographs in Computer Science. Springer-
Verlag, 1999.

[12] S. Dreyfus and R. Wagner. The Steiner problem in
graphs. Networks 1:195–207, 1971.

[13] D. Eppstein. Seventeen proofs of Euler’s formula: V −
E + F = 2. The Geometry Junkyard, May 2001. 〈http:
//www.ics.uci.edu/∼eppstein/junkyard/euler/〉.

[14] M. S. Floater. Parametrization and smooth approxi-
mation of surface triangulations. Comput. Aided Geom.

Design 14(4):231–250, 1997.

[15] G. K. Francis and J. R. Weeks. Conway’s ZIP proof.
Amer. Math. Monthly 106:393–399, 1999. 〈http://new.
math.uiuc.edu/zipproof/〉.

[16] M. R. Garey, R. L. Graham, and D. S. Johnson. The
complexity of computing Steiner minimal trees. SIAM

J. Appl. Math. 32:835–859, 1977.

[17] M. R. Garey and D. S. Johnson. The rectilinear Steiner
tree problem is NP-complete. SIAM J. Appl. Math.

32:826–834, 1977.

[18] S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis,
G. Sapiro, and M. Halle. Conformal surface parameter-
ization for texture mapping. IEEE Trans. Visualizat.

Comput. Graph. 6(2):181–187, 2000.

[19] M. Hallett and T. Wareham. A compendium of
parameterized compplexity results. SIGACT News

25(3):122–123, 1994. 〈http://web.cs.mun.ca/∼harold/
W hier/compendium.html〉.

[20] M. Hanan. On Steiner’s problem with rectilinear dis-
tance. SIAM J. Appl. Math. 14:255–265, 1966.

[21] A. Hatcher. Algebraic Topology. Cambridge Uni-
versity Press, 2001. 〈http://www.math.cornell.edu/
∼hatcher/〉.

[22] D. B. Johnson. Efficient algorithms for shortest paths in
sparse networks. J. Assoc. Comput. Mach. 24(1):1–13,
1977.

[23] A. Klivans and D. A. Spielman. Randomness efficient
identity testing of multivariate polynomials. Proc. 33rd

Annu. ACM Sympos. Theory Comput., 216–223, 2001.

[24] L. Kou, G. Markowsky, and L. Berman. A fast algo-
rithm for Steiner trees. Acta Inform. 15:141–145, 1981.

[25] F. Lazarus, M. Pocchiola, G. Vegter, and A. Verroust.
Computing a canonical polygonal schema of an ori-
entable triangulated surface. Proc. 17th Annu. ACM

Sympos. Comput. Geom., 80–89, 2001.

[26] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Math-
ing is as easy as matrix inversion. Combinatorica 7:105–
113, 1987.

[27] J. R. Munkres. Topology, 2nd edition. Prentice-Hall,
2000.

[28] D. Piponi and G. Borshukov. Seamless texture mapping
of subdivision surfaces by model pelting and texture
blending. Proc. SIGGRAPH 2000, 471–478, 2000.

[29] A. Sheffer and E. de Sturler. Surface parame-
terization for meshing by triangulation flattening.
Proc. 9th International Meshing Roundtable, 161–
172, 2000. 〈http://www.andrew.cmu.edu/user/sowen/
abstracts/Sh742.html〉.

[30] J. Stillwell. Classical Topology and Combinatorial

Group Theory, 2nd edition. Graduate Texts in Mathe-
matics 72. Springer-Verlag, 1993.

[31] H. Takahashi and A. Matsuyama. An approximate solu-
tion for the network Steiner tree problem. Math. Japon-

ica 24:573–577, 1980.
[32] W. Thurston. Three-Dimensional Geometry and Topol-

ogy, Volume 1. Princeton University Press, New Jersey,
1997.

[33] G. Vegter. Computational topology. Handbook of Dis-

crete and Computational Geometry, chapter 28, 517–
536, 1997. CRC Press LLC.

[34] G. Vegter and C. K. Yap. Computational complexity of
combinatorial surfaces. Proc. 6th Annu. ACM Sympos.

Comput. Geom., 102–111, 1990.

