
Testing Homotopy for Paths in the Plane
∗

Sergio Cabello
Inst Info & Comp Sci
Utrecht University
the Netherlands

sergio@cs.uu.nl

Yuanxin Liu
Dept Comp Sci

UNC Chapel Hill
NC, USA

liuy@cs.unc.edu

Andrea Mantler
Dept Comp Sci

UNC Chapel Hill
NC, USA

mantler@cs.unc.edu

Jack Snoeyink
Dept Comp Sci

UNC Chapel Hill
NC, USA

snoeyink@cs.unc.edu

ABSTRACT
In this paper we present an efficient algorithm to test if
two given paths are homotopic; that is, whether they wind
around obstacles in the plane in the same way. For simple
paths specified by n line segments with obstacles described
by n points, our algorithm runs in O(n logn) time, which
we show is tight. For self-intersecting paths the problem is
related to Hopcroft’s problem.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms]: Nonnumerical Algorithms—
Geometrical problems and computations

General Terms
Algorithms

Keywords
Homotopy, Computational Topology, Simple paths

1. INTRODUCTION
A basic topological question is determining if two paths

are homotopic, so that one can be deformed into another
without leaving the containing space. Specifically, suppose
that the input consists of a set P of up to n points in the
plane, and two paths, α and β, that start and end at the
same points and are represented as polygonal lines of at
most n segments each. The goal is to determine whether
α is deformable to β without passing over any points of P .
Equivalently, we determine whether the closed loop αβR,
which concatenates α with the reverse of β, is contractible
in the plane minus P . We assume (or simulate) general po-
sition, so that no three points are colinear and no two points

∗
The first author is partially supported by the Cornenlis Lely

Stichting, and second and third by NSF grants 9988742 and
0076984.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SoCG’02, June 5–7, 2002, Barcelona, Spain.
Copyright 2002 ACM 1–58113–504–1/02/0006 ...$5.00.

are on the same vertical line. We are primarily concerned
with paths that have no self-intersections.

α β

Figure 1: Are α and β homotopic?

The path homotopy question arises in several application
areas: In circuit board design, river routing, where the ho-
motopy class of each wire is specified, is one of the few
polynomial-time solvable variations of the wire routing prob-
lem [18]. In motion path planning, one might check to see
that two ways of getting from point A to point B are equiva-
lent [16]. In geographic information systems (GIS), one may
wish to simplify a linear feature (road or river) while respect-
ing the way in which the feature winds around points [4, 7].
Michael Goodchild, in an invited lecture at the 11th ACM
Symposium on Computational Geometry, pointed out that
even on a road map that has features with 60m accuracy,
you will still find all the houses on the proper side of the
road. In such a case, the operators entering data have used
topological constraints to make sure that the road winds
properly when creating the road layer or building layer.
There are several approaches

Figure 2: Θ(n2) segments in
shortest homotopic path

to the path homotopy prob-
lem for points in the plane
that give algorithms with
quadratic worst-case be-
havior. One approach would
be to find the Euclidean
shortest representatives of
the homotopy classes for
α and β using known al-
gorithms [16], then to check
if they are identical. The
known algorithms [16] trace each path through a triangula-
tion, taking time proportional to the number triangles that
intersect the paths, which may be Θ(n2). In fact, explicit
representation of the shortest path may take Θ(n2) segments
for a path like that of Figure 2. The more general problem
of testing if two paths are homotopic in compact surfaces,
with or without boundary, was treated in [8, 9]. Here the

specification of the path essentially must be as a sequence
of the edges that are crossed in the universal cover of the
surface, which may again be quadratic.
Our approach is to separately convert α and β to near-

canonical representations of their respective homotopy classes,
then compare representations to determine if the paths are
homotopic. After laying the topological groundwork in the
next section, we show how to test homotopy for simple paths
in Section 3. We comment on extending our algorithm for
non-simple paths in Section 4, establish lower bound on both
problems in Section 5. We conclude in Section 6.

2. TOPOLOGICAL PRELIMINARIES
We actually solve three natural variations of the path ho-

motopy question, so clear definitions are important.

2.1 Three variations on path homotopy
The topological concept of homotopy formally captures

the notion of deforming paths [1, 21]. Let I = [0, 1] denote
the unit interval andM denote a topological space, which for
us will be the complement of some point or polygonal obsta-
cles in the plane. A path is a continuous function α : I →M ;
that is, a function for which the preimage α−1(A) of an open
set A ⊆ M is open in I. Paths α and β that share starting
and ending points, α(0) = β(0) and α(1) = β(1), are said
to be path homotopic if one can be deformed to the other
in M while keeping the endpoints fixed. Formally, paths
α and β are path homotopic if there is a continuous map
Γ: [0, 1]× [0, 1]→M such that Γ(x, 0) = α(x) and Γ(x, 1) =
β(x), and Γ(0, y) = α(0) = β(0) and Γ(1, y) = α(1) = β(1).
By the standard topological definition, path end points

must lie in the space M , and the path can pass over them
by continuous deformation, creating self-intersections. This
may be undesirable in some applications, so we also consider
two alternative definitions that allow a path to begin or end
at obstacles in the plane. Informally, we can think of the
path as a thread winding above a plane that is punctured
with long needles that serve as obstacles. The three varia-
tions are whether a path end point is fixed by a tack, pin,
or pushpin.

tack A thumbtack pushed flat into the plane presents no ob-
stacle to the thread, so this corresponds to the stan-
dard definition given above.

pin A straight pin serves as a point obstacle, so that the end
points p0 and p1 are not included in the topological
space M . A path is a continuous function from an
open interval α : (0, 1) → M such that the one-sided
limits limx→0+ α(x) = p0 and limx→1− α(x) = p1.

pushpin A pushpin serves as a larger obstacle, so that closed
ε neighborhoods around the the end points are not
included in the topological space M . A path is defined
as in the pin case, but now the limit points p0 and p1
are chosen on the boundaries of the ε neighborhoods.
This is equivalent to fixing the path direction at the
endpoint, or to adding point obstacles infinitesimally
to the left and to the right of the path endpoint.

The two examples of Figure 3 show that these definitions
lead to different notions of path homotopy. Paths α and
β are homotopic under the tack definition, but not under
either the pin or pushpin definitions. In fact, any homotopy

α γ δ
β

Figure 3: Distinguishing between path definitions

will have to pass over an endpoint and create a path with
self-intersections. Paths γ and δ are homotopic under the
tack and pin definitions, but are not homotopic under the
pushpin definition, which will preserve how γ winds around
the starting point.
Because we can add obstacles to the plane to handle the

pin and pushpin definitions, we consider the tack (standard)
definition in greatest detail. This does cause extra complica-
tions in handling self-intersections, especially in Section 3.5;
we will comment in Section 3.6 on the modifications to han-
dle the other definitions.

2.2 Canonical sequences
Whatever definition of path we choose, path homotopy is

an equivalence relation [1, 21], which implies we can identify
a homotopy class by giving a representative path.

A E

B D

C
α β

Figure 4: Paths α = ABBBCDDCCDEEDCBA and
β = ABCDEEDDDCBBBA

We can write a simple representation of a path as the
sequence of points that it passes above (overbar) and be-
low (underbar). We can depict this by drawing vertical
rays upward and downward from each point of P to form
vertical slabs. The sequence just records intersections with
these rays as we traverse a path through the slabs. Fig-
ure 4 illustrates the paths α = ABBBCDDCCDEEDCBA and
β = ABCDEEDDDCBBBA. This representation can be con-
structed for paths with or without self-intersections.
A repeated point with opposite bars is a turn point. Our

α sequence has two turn points, BB and DD. Polygonal path
α can have at most n − 1 turn points, since there must be
at least one vertex of α between intersections with two rays
from the turn point, and each vertex is claimed by at most
one turn point.
An adjacent pair of repeated symbols can be deleted by

deforming the curve out of a slab without changing the ho-
motopy class. This deletion can be repeated until we obtain
a canonical sequence. (The canonical sequence may even be
empty.) For example, from α we delete BB and DCCDEE,
and from β we delete EE, DD, and BB, to find that both
have the same canonical sequence ABCDDCBA. In fact, two
paths have the same canonical sequence if and only if they
are homotopic. This is most easily seen using universal cov-
ers, which we sketch in the next subsection. (Unfortunately,
canonical sequences can have quadratic length, so we cannot
store and manipulate them explicitly.)

2.3 Covering space
Informally, a topological space U is a covering space of a

space X if, at each point u ∈ U , there is a corresponding
point x ∈ X such that things around u and x look the same
in their respective spaces, but there may be many points of
U mapping to the same point x.
A space is always a covering space of itself under the iden-

tity map [1, 21]. A more interesting covering space is the
universal covering space, which is simply connected—every
loop in this space can be contracted to a point. In our set-
ting (Figure 4), this space is most easily described by an
procedure that grows a region by gluing together copies of
vertical slabs at their boundary rays. Start with a region
that consists of any single vertical slab, and therefore has
four boundary rays (or two if we started with the leftmost
or rightmost slab.) Then loop forever, selecting a boundary
ray and gluing on a copy of the missing slab along that ray.
Never form a cycle or enclose a ray’s endpoint.
When the set of obstacle points, P , is non-empty, the uni-

versal covering space is infinite, which is why our procedure
does not terminate. It is relatively easy to construct only
the portions of the universal cover that intersect the given
paths α and β because any path can be lifted to the uni-
versal cover by choosing the sequence of rays and slabs in
the order that a path intersects them. In fact, every path in
the plane minus P has a unique lift into the universal cover
once the starting point is specified [1, 21]. To test path ho-
motopy, one can simply lift both α and β to the universal
cover starting from the same point and ask if they end at
the same point in the universal cover.
Because the universal cover is simply connected, the dual

graph, with a vertex for each slab, is an infinite tree. The
dual of the portion visited by a path is a finite tree, and the
operation of constructing a canonical sequence prunes leaves
from this tree so that what remains is the unique shortest
path from the slab of the start point to the slab of the end
point. This establishes the difficult-to-prove direction of the
following lemma.

Lemma 1. Two paths have the same canonical sequence
if and only if they are homotopic.

Proof. It is clear that two paths with the same canonical
sequence are homotopic, since the construction of a canon-
ical sequence from a path is a concatenation of homotopies
on slabs. For the reverse, suppose that paths α and β are
homotopic. When we lift both to the universal cover, start-
ing at the same point, they end at the same point. Their
canonical sequences, therefore, must go from the same start-
ing slab to the same ending slab. There is only one shortest
path that does so in the tree, so the canonical sequences are
the same.

The following Corollary will be useful in proving that
paths have the canonical sequence.

Corollary 2. Any path that can be lifted to the univer-
sal cover to start and end on the same vertical segment has
an empty canonical sequence.

Proof. The path is homotopic to the vertical segment,
which has an empty canonical sequence.

3. HOMOTOPY TEST FOR SIMPLE
PATHS

In this section we focus on homotopy testing for paths α
and β that are simple—that is, they have no self-intersections.
An aboveness ordering allows us to find a rectified represen-
tation of a path. Using orthogonal range queries, we can
adjust the path to have the canonical sequence, then test
homotopy for two adjusted paths in O(n log n) time.

3.1 Aboveness ordering
For sets in the plane one can define an aboveness rela-

tion that is useful in many algorithms in computational ge-
ometry [23]: A � B if there are points (x, yA) ∈ A and
(x, yB) ∈ B with yA > yB .
We say that a set is vertically convex if it is path con-

nected and the intersection with any vertical line is an (open
or closed) interval. Break a path α into monotone fragments
and conceptually separate them at their common endpoints
to give a collection of disjoint vertically convex sets. When
applied to disjoint, vertically convex sets, the aboveness re-
lation is a partial order.

Lemma 3. For pairwise disjoint, vertically convex sets
A1, A2, . . . , Ak in the plane, the aboveness relation is acyclic.

It is easy to develop a plane sweep algorithm that can
compute in O(n logn) time, a total order for monotone frag-
ments of a path and points that is consistent with the above-
ness relation. We sketch an algorithm adapted from Palazzi
and Snoeyink [22].
Define an aboveness tree on disjoint points and monotone

path fragments, in which each point and path is a child of
the path directly above its rightmost endpoint. This is a
k-ary tree, in which children can be ordered left to right
by rightmost endpoints. We add a horizontal segment at
y = ∞ to serve as the root of this tree. For disjoint paths
specified by n total segments, this tree can be constructed in
O(n log n) time by a plane sweep algorithm. We represent

0

1
2

3

4
5 6

7

8

9

1011

Figure 5: Inorder numbering of the child/sibling
representation of the aboveness tree for path α.

this k-ary tree as a binary tree by giving each path a pointer
to its left sibling and rightmost child, as in Figure 5. We
then number the points and paths according to an inorder
traversal that recursively visits the left sibling, the node,
and then the rightmost child.
We can prove that this numbering is consistent with the

aboveness relation. Define a rightward trace from any point
or monotone path by tracing paths to their rightmost end-
points, and to parent pointers, up to the root. Note that
traces do not cross. If s � t then a trace from s must come
from the left to meet a trace from t, and the inorder traversal
numbers the subtree containing s before the subtree contain-
ing t. See [22] if more detail is desired.

0

1

A

2

3

B

4

5 6
7

8

D

E

9

1011

C

0

5

10

0

5

10

A
E

B

C

D

0
1 2 3

4
5

6
7 8

9
10 11

α

α

β

β

Figure 6: Numberings for α and β are used to form rectified pairs (α, P) and (β, P). Rectifying preserves
path simplicity and sequences.

3.2 Rectified pairs
We can use a total ordering that respects the aboveness

to rectify any simple path α around points P . Simply rank
each point of P and monotone fragment of the path and
replace all y coordinates by their ranks. We call the result
a rectified pair (α, P).
Figure 6 shows the rectified pairs (α, P) and (β, P). Each

path is considered to consist of horizontal segments that
come from monotone path fragments and vertical segments
that connect these fragments in order.
Notice that the points receive different ranks for the num-

berings of the two paths, and therefore different y coordi-
nates in the two rectified pairs. The points can still be dis-
tinguished by their x coordinates, which were assumed to
be distinct and do not change. All aboveness relationships
are preserved, so rectifying a pair does not change a path
sequence or cause self-intersection.

3.3 Orthogonal range queries
Rectifying a pair makes it easier to compute a canoni-

cal sequence, because we can search for turn points using
orthogonal range queries. Our problem is to preprocess a
set of points P in the plane to answer queries of the form,
“Report the rightmost point in an axis-aligned query rect-
angle Q, or ‘none’ if the rectangle Q is empty.” (We use a
symmetric structure to query for leftmost points.) These are
sometimes known as three-sided range queries, because it is
sufficient to supply the top, bottom, and right side of the
query rectangle. This problem can be solved in O(n logn)
time and linear space using Chazelle’s data structure for seg-
ment dragging [5]. The RT of Edelsbrunner [11] or the range
priority tree of Samet [24] achieve the same time, with an ex-
tra logarithmic factor in space but a savings in programmer
complexity.

Lemma 4. Using O(n logn) preprocessing and linear space,
three-sided range queries can be answered in O(log n) time.

Proof. Chazelle’s segment dragging structure achieves
this bound with linear space [5]. We describe a simple struc-

ture with O(n logn) space based on persistence [10] in the
hope that it can be improved: Sort the points by increas-
ing x coordinate, so that p1, p2, . . . , pn are ordered from left
to right. Denote the prefixes by Pi = {p1, p2, . . . , pi}, for
1 ≤ i ≤ n. Let P0 = ∅.
Build a balanced priority search tree Ti for i = 0 to n. The

leaves of Ti contain the points of Pi ordered by y coordinate,
and every internal node indicates the point in its subtree
with greatest x coordinate. We can build these incremen-
tally using node-copying persistence. Form Ti by adding pi

to Ti−1: copy the nodes on a root-to-leaf path, and mod-
ify the copies to preserve balance and update priority. This
takes a total of O(n logn) time and space.
To answer a query for the rightmost point in Q, simply

search on x to find the tree Ti that is right of the line through
the right side of Q, search in Ti for the subtrees between the
top and bottom sides of Q, then find the maximum x in all
these subtrees. This takes O(log n) time.

3.4 A rectified canonical path
Given a rectified pair (α, P), we can compute a new path

whose sequence is the canonical sequence for α. For ease of
expression, we call this new path a canonical path. It must
be understood that this is defined with respect to a rectified
pair, and not the original points. We show how to compare
canonical paths for (α, P) and (β, P) in the next subsection.
We can use an incremental algorithm to compute a canon-

ical path from the rectified pair (α, P). We assume that α
is represented by the list x0, y0, x1, y1, . . . , yn−1, xn, which
indicates that the path visits (x0, y0), (x1, y0), (x1, y1), . . . ,
(xn−1, yn−1), (xn, yn−1), alternating between horizontal and
vertical segments.
We consider the horizontal segments of α in order. We

maintain the invariant that after i segments, for 0 ≤ i ≤
n, stack S contains a canonical path starting from x0 and
ending with xi. That is, the canonical sequence for the path
in S has no adjacent repeated symbols.
Begin by setting i = 0 and pushing x0 onto S. This

establishes the initial stack invariant.
While i < n, let X denote the top element on the stack,

IV: erase curr

XsXX=x0

yi

Ys

xi+1 xi+1

p

yi

Ys
Xs

Xxi+1

Xs

Xxi+1

Xs

Xxi+1

I: start II: continue III: turn V: erase old

Figure 7: Five cases in incrementally computing a canonical path

and if X �= x0, let Ys and Xs be the pair just below X.
Figure 7 illustrates cases (I)–(V) as we consider the current
segment from (X, yi) to (xi+1yi). We assume that xi+1 < X,
since the reverse is symmetric.
If we are not doubling back—that is, if (I): X = x0 or

(II): xi+1 < X < Xs—then push yi and xi+1, and incre-
ment i. The canonical sequence for this path will not gain
any repeated pair of symbols.
If we are doubling back, Xs ≤ X and there are three cases.

Either (III): there is a turn point p with max{Xs, xi+1} <
p.x ≤ X, or there is no turn point and (IV): Xs < xi+1 < X
or (V): xi+1 < Xs ≤ X. We check for a turn point by
performing an orthogonal range query with the rectangle
[max{Xs, xi+1}, X] × [Ys, yi]. We handle each case sepa-
rately.

(III): Turn point (p.x, p.y) is found, so replace X with p.x at
the top of S, then push yi and xi+1, and increment i.
Because of the turn point, adjacent symbols in the
canonical sequence will not be identical. (Note: we
may wind over and under p in this case.)

(IV): No turn point; erase current segment. Replace X with
xi+1 at the top of S and increment i. This shortens the
path stored in S, so cannot create repeated symbols.

(V): No turn point; erase old segment. Pop stack S twice
to remove the old segment at the top. This case may
apply repeatedly, as it does not increment i, but each
repetition shortens the path in S.

We continue until i = n.

Theorem 5. The algorithm above correctly computes a
path whose sequence is the canonical sequence for (α, P) us-
ing at most 2n orthogonal range queries plus O(n) time.

Proof. First, we show that the algorithm terminates af-
ter 2n iterations. Each case (I)–(IV) increments the loop
variable i and pushes at most two elements onto S. Case
(V) pops S twice and leaves i unchanged. Initially i = 0,
and we stop when i = n, so we have n iterations in total
with cases (I)–(IV) and at most 2n elements pushed onto S.
Case (V) never empties the stack—the sentinel x0 triggers
case (I)—so we have at most n iterations with case (V).
Using the arguments given in the description of the cases,

we can inductively establish the invariant that, after i seg-
ments, stack S contains a canonical path starting from x0

and ending with xi. When the algorithm terminates at
i = n, we have our canonical path.

3.5 Comparing canonical paths
Canonical sequences can have quadratic size, as the ex-

ample of Figure 2 shows, so we still cannot compute the
sequences for the canonical paths from (α, P) and (β, P).
Fortunately, the canonical paths can be compared by a more
complicated version of the sweep algorithm for rectifying
paths.
Geometrically, the algorithm of the previous section con-

tracts portions of the path α to vertical line segments. If we
“unrectify” the canonical path contained in the stack S, we
obtain a path α̂ that consists of fragments of α connected
by vertical line segments. We can think of α̂ as a sequence
of monotone chains delimited by turn points: let the path
starting point be p0, the path end point be pm, and the
ith turning point we encounter as we trace α̂ be pi; the i

th

monotone chain αi is defined as the portion of the path α̂
from pi−1 to pi.
Using this notation, we first state two lemmas that will

allow us to compare canonical paths, then we describe a
sweep algorithm to perform the comparison. Finally, we
show that the number of self-intersections is linear, which is
necessary to make the sweep efficient.

Lemma 6. If the paths α̂ and β̂ have the same canonical
sequences, the corresponding monotone chains αi and βi are
defined by the same two end points pi−1 and pi.

Proof. Each turning point pi corresponds to a label pair
with opposite bars (pipi

or p
i
pi) in the canonical sequence.

Since the path α and β have the same canonical sequences,
the sequence of point label pairs with opposite bars are also
the same. Therefore, the sequence of turning points are the
same. By the definition of monotone chain, each monotone
chain αi and βi has the same end points.

Lemma 6 gives a necessary condition for α̂ and β̂ to have
the same canonical sequences: their monotone chains must
have the same end points. If this is not satisfied, we can re-
port that α̂ and β̂ do not have the same canonical sequence,
therefore α and β are not homotopic. Otherwise, further
tests are needed.

Lemma 7. For each point p in the plane, let A(α, p) ⊂
{1, 2, . . . ,m} be the set of indices of monotone chains {αi}
that lie above p. Similarly, define A(β, p) as the set of indices
of monotone chains {βi} that lie above p. If Lemma 6 is also

satisfied, then the paths α̂ and β̂ have the same canonical
sequence if and only if A(α, p) = A(β, p) for each p ∈ P .

Proof. To compare the canonical sequences, we can tra-
verse the path α’ and β’ with the same speed along the

x-coordinate. Since the end points of each monotone chain
αi are the same as βi, we pass the same sequence of points
above or below in the plane as we traverse α̂ and β̂. Suppose
that monotone chains αi and βi are being traversed (since
their indices are both i) and we pass a point p. If the canon-

ical sequences for α̂ and β̂ are the same, this point has the
same bar (p or p), so index i is either in both A(α, p) and
A(β, p) or in neither. Conversely, if A(α, p) = A(β, p), then
p will have the same bar in the canonical sequences for α̂
and β̂.

The result of Lemma 7 allows us to compare the canon-
ical sequences using a sweep algorithm. The input of the
algorithm is the set of α-monotone-chains and β-monotone-
chains. We sweep these chains together from left to right
with a vertical line. We maintain three invariants during
the sweep:

1. We know the set of α-monotone-chains and the set
of β-monotone-chains intersected by the sweep line at
position x.

2. Within each set, we know the aboveness order of the
monotone chains and the rank of each chain in this
order. (It should be noted that the monotone chains
could intersect, so this aboveness order depends on
the current sweep line position x. We keep the orders
for α and for β separate, otherwise we would need to
compute all intersections between α and β.)

3. For each rank 1 < k < m and γ ∈ {α, β}, we de-
fine above set A(γ, k) as the set of indices of monotone
chains from γ having rank at most k. We maintain
the size of symmetric differences between A(α, k) and
A(β, k), and denote these difference numbers Dx(k) =
|diff(A(α, k), A(β, k))|.

The invariants allow us to check the hypothesis of Lemma 7
to compare the canonical sequences. When the sweep en-
counter a point p, we locate p in the set of ordered α-
monotone-chains and the set of β-monotone-chains. This
gives us the sizes of the above sets, |A(α, p)| and |A(β, p)|.
If these sizes are not equal, then the canonical sequences
are not the same according to Lemma 7. Otherwise, we
let k equal this size, and check if Dx(k) = 0. If it is not,
A(α, p) �= A(β, p), and Lemma 7 again tells us that the
canonical sequences are not the same. If it is, we continue.
If these conditions are satisfied by all p ∈ P , then the canon-
ical sequences are the same by Lemma 7.
Having shown that the invariants allow us to compare

canonical sequences, we describe algorithms to maintain these
invariants and establish its complexity. To maintain the
aboveness order and the difference numbers, we keep these
data structures:

• Two balanced binary search trees that use aboveness
as the order: Tα stores the α-monotone-chains indices,
and Tβ stores β-monotone-chain indices. Trees Tα and
Tβ allow us to search for the interval at which a point
splits the monotone chains into above sets and below
sets. By keeping counts in each subtree, we can also
find the sizes of these sets.

• A balanced binary tree TD that stores difference num-
bersDx(k) and uses k as the order. Difference numbers
may be inserted or deleted.

Although we usually maintain these structures by han-
dling events during a sweep, let us briefly describe how to
initialize these data structures for a given sweep position x.

Lemma 8. The sweep data structures can be initialized
for n chains at a sweep position x in O(n log n) time.

Proof. We need to form Tα, Tβ , and TD, as defined
above. For γ ∈ {α, β}, order the chains of γ by aboveness
to form Tγ .
To form TD, we must compute the difference numbers

Dx(k), for k = 1 . . .m. First build two auxillary tables: Let
Iγ(r) be the chain index at a given rank in Tγ and Rγ(i) be
the rank of a given index; these are inverses Iγ(Rγ(i)) = i
and Rγ(Iγ(r)) = r. Initialize Dx(k) = 0. Then, for k =
1 . . .m, compute

Dx(k) = Dx(k−1)+sgn
(
Rβ(Iα(k))−k

)−sgn(Rα(Iβ(k))−k
)
.

This simply says that the difference number increases by one
whenever the kth chain in the α list ranks higher in the β
list and decreases when it ranks lower, with the reverse for
the kth chain in the β list.
The most time-consuming step of this computation is sort-

ing and ranking, which takesO(n logn) time for n chains.

Now, we return to maintaining the data structure by sweep-
ing the plane. At certain events, the sweep reaches the x-
coordinate of a point at which we must update the data
structures or compare the canonical sequences. In order to
do this, the events clearly need to include monotone chain
end points and points in the plane. Since the monotone
chains from one path could intersect each other, the events
also need to include all self-intersections of α̂ and β̂. These
intersections are computed during the sweep [3].
Before we describe how each event is handled, we make

some simplying assumptions about the monotone chains so
that the algorithm is easier to describe—we will remove
these assumptions later. First, we will treat each mono-
tone chain as strictly monotone, even though chains from
the canonical path may contain vertical line sements. Sec-
ond, we will assume that no two event points have the same
x-coordinate, even though this is not the case because of
the vertical line segments. Now, we consider five types of
events.

(I) point in the plane: We check that the canonical se-
quences are still the same. First, locate the point
among the monotone chains using Tα and Tβ , then
check that the difference number is equal to zero thereby
verify that the α above set is the same as the β above
set.

(II) intersection event: Suppose the intersection is caused
by monotone chains αi and αj so that αi is below
αj after the intersection. To update Tα and Tβ , we
simply swap the monotone chain indices i and j. To
update the TD, first find the aboveness rank k of αi.
Then, we know that the monotone chain αi has left
the aboveness set A(α, k); and the monotone chain αj

has entered A(α, k). Recall that the difference num-
ber Dx(k) = |diff(A(α, k), A(β, k))|. So it is clear that
Dx(k)—and only Dx(k) in TD—needs to be changed.
To change Dx(k) appropriately, we find out whether

the monotone chain βi is in A(β, k). If it is, then incre-
ment Dx(k). Otherwise, do nothing. Symmetrically, if
the monotone chain βj is in A(β, k), decrement Dx(k).
Otherwise, do nothing.

(III) path end point: At a path endpoint we must have
either both the α chain and β chain begin or both end
for the paths to be homotopic. Since there are only
two path endpoints, we use Lemma 8 to reinitialize
the data structures at these events.

(IV) chain starting event: At a turn point, we may have m
monotone chains begin in α and in β. We first apply
Lemma 8 just to the m new chains to compute the
difference numbers restricted only to the new chains,
which we denote D′

x(r), for r = 1 . . .m.

To update the algorithm’s data structures, we next
locate the event point in the trees Tα and Tβ and then
insert the new chains in these trees in the aboveness
order.

We must now update the difference numbers in TD.
Note that because the event is a turning point, if the
insertion does not take place at the same rank k in
both Tα and Tβ , or if different numbers of α and
β chains are inserted, then the paths are not homo-
topic by Lemma 7. Thus, we need only insert m
new differences; the old difference numbers do not
otherwise change. Since the rth interval in the new
monotone chains becomes the (r + k)th interval af-
ter the insertion, we insert the new difference numbers
{Dx(r + k) = D

′
x(r)+Dx(k), r = 1, 2, . . . ,m} into TD.

(V) chain ending event: The operations for updating data
structures at a turning point wheremmonotone chains
end are exactly the reverse of the operations at a chain
starting event. To update Tα and Tβ , we delete the in-
dices of all monotone chains ending at the event point.
Assuming that these had ranks k + 1 through k +m,
we delete the difference numbers {Dx(k + 1), Dx(k +
2), . . . , Dx(k +m)} from TD.

The number of intersection events depends on the defini-
tion of path that we use, but we will show a linear upper
bound in the next section. Thus, our sweep to compare
canonical sequences is efficient.

Theorem 9. Comparing the canonical sequences of canon-
ical path α̂ and β̂ takes O(n) space and O(n logn) time, as-
suming that the number of self-intersections in each canon-
ical path is O(n).

Proof. The space is linear since all the data structures
we used are linear (Tα, Tβ and TD). To see the time, note
that each operation to maintain Tα and Tβ (insertion or
deletion of the chain indices) can be charged to a mono-
tone chain end point, and each operation for maintaining
TD (computing, insertion or deletion of the difference num-
bers) can be charged either to a monotone chain end point
or an intersection point. Since the time for each of these op-
erations is at most O(log n), and we assume that there are
O(n) number of monotone chain end points and intersection
points, the total time is O(n logn).

By careful implementation, we can get rid of the assump-
tions that simplified the algorithm description. First, we
assumed that the chains were strictly monotone, but in fact
they contain vertical line segments. Therefore, in order for
intersection points to be handled correctly, the sweep line
should stop at a vertical line segment, compute the intersec-
tions on it and order these intersection events by the order
they are encountered by the path. Second, we assumed that
no two events have the same x-coordinate, although some
points in the plane, such as the turning points, lie on ver-
tical line segments. To handle these points correctly, we
need to perturb them away from the vertical line segments
in the right direction: from the canonical path computation,
we know whether the line segment is some path contracted
from the right side of the point or from the left. If it is
from the left, this event should be handled immediately af-
ter the vertical line segment; if is from the right, it should
be handled immediately before the vertical line segment.

3.6 Modifications for path definitions
We have described the algorithm for the standard (tack)

definition of path homotopy. For the pin and pushpin defi-
nitions, we need only a few modifications.
To compute a canonical sequence, we add path endpoints

to the set of obstacle points P . Under the pushpin definition,
we add two points that are infinitesimally left and right of
the start point. Then the algorithm of Section 3.4 correctly
winds around the start in the pushpin case, and unwinds
in the pin case. For the pin case we may need to unwind
around the end point in postprocessing.
As we show in the next two lemmas, a canonical path un-

der the pin and pushpin definitions has no self-intersections,
whereas a canonical path under the tack definition has a
linear number of self-intersections. Thus, the sweep to com-
pare canonical paths (Section 3.4) becomes simpler for pins
and pushpins. All sorting can be performed at the begin-
ning using the aboveness ordering, and the intersection case
(II) never occurs. We need not even maintain the table of
difference numbers, since they change only on insertion and
deletion of a chain.

Lemma 10. Under the pin and pushpin definitions, a sim-
ple path α has a canonical path α̂ that is also simple.

Proof. Because the path α is simple, intersections occur
only if some vertical line segment L ⊂ α̂, coming from the
contraction of a portion θ ⊂ α, intersects some point q ∈
α̂ ∩ α. Let γ be the portion of α \ θ that contains q—note
that one end of γ is an endpoint of α, and the other end is
open with limit point at an endpoint of both L and θ. We
will show that the existence of q contradicts the assumption
that α̂ is a canonical path.
Lift L and θ to L′ and θ′ in the universal cover. The

pair (L′, θ′) defines a region R′ in the universal cover, which
must necessarily be simply connected. Lift γ to γ′ contain-
ing q′ ∈ L′. Since θ and γ are portions of a curve with no
self-intersections, γ′ cannot cross θ′. If we trace γ′ into R′,
no matter whether we trace toward the endpoint of α or
toward the endpoint of θ′, then we must encounter another
intersection with L′: in the first case, because R′ cannot
contain a path endpoint under the pin or pushpin defini-
tion, and in the second, because the endpoint of θ′ is itself
on L′. But Corollary 2 implies that this portion of γ would

be contracted to an empty sequence, eliminating the inter-
section at q in the canonical path α̂. This contradiction
establishes the lemma.

We can also limit the number of self-intersections of a
canonical path under the tack definition.

Lemma 11. A n-segment simple path α under the tack
definition has a canonical path α̂ with ≤ 2n self-intersections.

Proof. As in the previous lemma, an intersection occurs
only if some θ ⊂ α was contracted to a vertical line segment
L ⊂ α̂ that intersected α̂. Figure 8(a) shows an example
having two intersections with L.

L1

θ1 γ1

γ1

L1

θ1

L2

L2

α

θ
L

α

(a) (b)

(c)

Figure 8: In (a) α (dashed) has a self-intersecting
canonical path α̂ (solid) with θ (dark dashes) con-
tracting to vertical segment L. In (b), we lift to
the universal cover an trace γ to find the copies
of L that are intersected, which are represented
schematically in (c).

To find the number of intersections on a vertical seg-
ment L, we examine the original path before and after θ
in the universal cover. Define the size |θ| as the number of
vertices in the chain θ, not counting those that are the end-
points of L. Let γ ⊂ α be the path after θ, and γ̂ ⊂ α̂ be
the canonical path after L, which is homotopic to γ.
We claim that γ̂ intersects L at most |θ| times, which will

imply that L has at most 2|θ| intersections. Because the
vertical segment of the canonical path arise by contracting
disjoint portions of the original path α, the total number of
intersections is at most 2|α| = 2n. Thus, it is sufficient to
establish this claim.
Let {Li} denote the set of “copies” of L created by lifting

L to the universal cover. By applying Corollary 2, we can
find a path γ1 in the universal cover that is homotopic to γ
and does not intersect a copy more than once. Thus, we can
number the copies L1 . . . Lk in the order that γ1 intersects
them. Figure 8 (b) shows γ1 intersecting L1 and L2.
The pair (L1, θ1), where θ1 is the lift of θ starting at the

endpoints of L1, bounds a region R
′ in the universal cover

that contains γ1 and all its intersections. Figure 8 (c) shows
this schematically. If we follow θ1 around the boundary of
this region, then we encounter a vertex of θ1 to the right or

left of L between each endpoint of a copy of L. Each vertex
is encountered at most twice; once from each side of θ1.
Therefore, if there are k intersections, we have 2|θ| ≥ 2k−1,
or k ≤ |θ|+ 1/2. Since k is an integer, k ≤ |θ|.

4. HOMOTOPY TESTING FOR NON-
SIMPLE PATHS

When paths are allowed to intersect themselves, as well
as each other, then we cannot use aboveness to rectify the
paths as in the previous section. In this section we show
that we can use a different construction of a universal cover
and achieve a running time near O(n3/2).
Since the paths may self-intersect, we simply concatenate

them as suggested in the introduction and consider whether
a closed loop α is contractible in the plane minus P . The
idea is to lift the path into a universal cover constructed in
an appropriate way, and test if the endpoints of the lifted
path coincide. We will use a simple path d going through all
points in P in order to construct such a universal cover, but,
in order to minimize the number of operations during the
lifting of α, we have to minimize the number of intersections
between d and α. The way to construct d is using a spanning
tree with low crossing number.

Lemma 12. A simple spanning tree of P with crossing
number O(

√
n) can be constructed in O(n1+ε) time, for any

ε > 0.

Proof. We combine ideas and results from [12, 15, 19,
20]. Start by computing a spanning tree T1 of P with cross-
ing number O(

√
n). In [20] it is shown how a simplicial

partition {P1, . . . , Pn/2} with |Pi| ≤ 4 and crossing number

O(
√
n) can be constructed in time O(n1+ε). This partition

plays the role of the partial matching used in [19]: for each
class Pi with |Pi| ≥ 2, we put an edge between a pair of
points lying in it, and remove anyone of its endpoints from
the set of points P . Iterating this step O(log n) times, we
get the spanning tree T1 within O(n

1+ε) operations.
Tree T1 can have self-intersections, but we can use it to

construct a Steiner spanning tree T2 that is simple [12]. We
start with an empty T2. Then, we traverse T1 in preorder,
and when we visit a vertex p ∈ P , we shoot a ray along the
edge connecting p toward its parent. Then we add to T2

the segment from p to the first intersection of the ray with
current T2. The dynamic data structure for ray shooting
described in [15] supports updates and queries in O(log2 n)
time, so T2 can be constructed in O(n log

2 n) time. Observe
that T2 has O(n) edges, and that, as subset of T1, it also
has crossing number O(

√
n).

As proved in [12], from T2 we can construct in O(n log n)
time a spanning tree T3 with no Steiner points, and whose
crossing number is twice that of T2.

Theorem 13. We can decide if a closed loop α is con-
tractible in the plane minus P in O(n3/2 logn) time.

Proof. Take a bounding box B enclosing α and P , and
let p− and p+ be two points on the left and on the right
of B, respectively. We apply the previous lemma to the set
P ∪ {p−, p+} to obtain a simple spanning tree, and then we
use it to make a tour starting at p− and finishing at p+. If

we perturb some edges of this tour slightly, we can convert
it into a simple path d from p− to p+, passing through all
points, that has crossing number O(

√
n).

This path d splits B into two pieces, B0 and B1, which
we can use as building blocks for the portion of a universal
cover that contains the lift of the loop α. We actually build
the dual graph T (a tree) for the universal cover, and keep
just one copy of each block. Thus, we can represent the
portion of the universal cover containing the lift of α in
space proportional to n plus the number of nodes of the
dual tree T .
Here is the construction of T . Preprocess blocks B0 and

B1 for ray shooting [17]. Start with some vertex of α in Bi,
where bit i ∈ {0, 1}, and create a tree node ν to represent
this copy of Bi.
Now, use ray shooting along the segments of α to trace

α in Bi until it leaves by crossing an edge e of the path d.
If edge e has never been crossed before, then make a new
node η in the dual tree T , put an edge between current
node ν and η, annotated with the edge e. If edge e has been
crossed, then ν has an edge annotated with e that connects
to a node η. In either case, update the current node ν = η,
and complement i to switch to the other block. When we
complete the tracing, we know that α is contractible if and
only if we ended up in the same node of T in which we
started.
Because each edge of T comes from one intersection of d

and α, and given that the crossing number of d is O(
√
n),

tree T has size O(n3/2). An additional logarithmic factor in
the running time is sufficient to pay for the ray shooting.

5. LOWER BOUNDS
In this section we establish lower bounds for the path

homotopy question among points in the plane. The bounds
are different if the paths are simple or not.

5.1 Simple paths
When both paths α and β are simple, to decide if they

are homotopic takes a minimum of Ω(n log n) operations in
the decision tree model. In order to show this, consider the
following problem: given a set of n disordered numbers x1,
. . . , xn, and a set of n disjoint intervals [a1, b1], . . . , [an, bn],
ordered by increasing order, is there any interval containing
any point? Using Ben-Or’s theorem [2], it is straightforward
to see that in the algebraic decision tree model, this problem
has a lower bound of Ω(n log n).

a1 a2b1 b2 an bn

xi xj

α

β

1
2

Figure 9: Lower bound for simple paths

But this problem can be reduced to a test whether two
simple paths are homotopic. Consider α to be the segment
with endpoints (a1, 0) and (bn, 0), and β to be the path fol-
lowing α except when it overlaps with some interval [ai, bi],
in which case it will follow the horizontal segment at height
2, as shown in Figure 9. If we consider the set of points
P = {(xi, 1) | 1 ≤ i ≤ n}, then no point belongs to any

interval if and only if the paths α and β are homotopic.

5.2 Non-simple paths
When the polygonal lines α and β are allowed to self-

intersect, then the problem becomes harder: we can reduce
Hopcroft’s problem to the problem of testing if two paths
are homotopic.
Given n points and n lines, Hopcroft’s problem asks if any

point lies on any line. The best algorithms known to solve
Hopcroft’s problem take just slightly more than O(n4/3)
time [6]. Erickson showed that partition algorithms, a cer-
tain class of algorithms that includes the natural and known
algorithms, take at least Ω(n4/3) time [14].
We give a reduction that works for partition algorithms,

and any other algorithm whose primitive tests check the
signs of bounded-degree polynomials of the input point co-
ordinates. We need this restriction so that we can use in-
finitesimal quantities in the construction. As is common
in perturbation methods, we can expand the primitives as
polynomials in one infinitesimal variable and determine the
sign of the term of smallest degree [13].

β

α

Figure 10: Reduction from Hopcroft’s problem

Given an instance of Hopcroft’s problem, determine a
bounding box that contains all the points and intersects the
faces of the arrangement of lines that are above all lines and
below all lines. Let p and q be points on the bounding box
that lie in these faces and, as illustrated in Figure 10. This
can be done in linear time after sorting the lines by slope.
Let β be the left path along the bounding box from p to
q. Let α be the path that follows β except for leaving the
bounding box at every line, crossing the box infinitesimally
above the line, and returning infinitesimally below the line
to β. Paths α and β are homotopic iff no point lies on any
line.

6. CONCLUSION
We have given an efficient, elementary algorithm to test

homotopy for simple paths in the plane by using an above-
ness ordering to rectify paths. We believe that it may be
possible to eliminate the range queries by adding segments
to the path in aboveness order instead of traversal order,
but each way we have tried so far slips back to a quadratic
worst case. For non-simple paths, we use standard machin-
ery to give a subquadratic algorithm. Lower bounds show
that our first algorithm is tight, but that it may be possible
to improve the second.
The first author is grateful to Mark de Berg and Marc

van Kreveld for helpful discussions regarding this research.
He also wants to thank Pankaj Agarwal for pointing him
to hierarchical cuttings to reduce the construction time in
Lemma 12.

References
[1] M. A. Armstrong. Basic Topology. McGraw-Hill, Lon-

don, UK, 1979.

[2] M. Ben-Or. Lower bounds for algebraic computation
trees. In Proc. 15th Annu. ACM Sympos. Theory Com-
put., pages 80–86, 1983.

[3] J. L. Bentley and T. A. Ottmann. Algorithms for re-
porting and counting geometric intersections. IEEE
Trans. Comput., C-28(9):643–647, September 1979.

[4] B. Buttenfield. Treatment of the cartographic line. Car-
tographica, 22:1–26, 1985.

[5] Bernard Chazelle. An algorithm for segment-dragging
and its implementation. Algorithmica, 3:205–221, 1988.

[6] M. de Berg and O. Schwarzkopf. Cuttings and appli-
cations. Internat. J. Comput. Geom. Appl., 5:343–355,
1995.

[7] M. de Berg, M. van Kreveld, and S. Schirra. A new
approach to subdivision simplification. In Proc. 12th
Internat. Sympos. Comput.-Assist. Cartog., pages 79–
88, 1995.

[8] T. K. Dey and S. Guha. Transforming curves on
surfaces. Journal of Computer and System Sciences,
58:297–325, 1999.

[9] T. K. Dey and H. Schipper. A new technique to com-
pute polygonal schema for 2-manifolds with application
to null-homotopy detection. Discrete Comput. Geom.,
14:93–110, 1995.

[10] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E.
Tarjan. Making data structures persistent. J. Comput.
Syst. Sci., 38:86–124, 1989.

[11] H. Edelsbrunner. A note on dynamic range searching.
Bull. EATCS, 15:34–40, 1981.

[12] H. Edelsbrunner, Leonidas J. Guibas, J. Hershberger,
R. Seidel, Micha Sharir, J. Snoeyink, and Emo Welzl.
Implicitly representing arrangements of lines or seg-
ments. Discrete Comput. Geom., 4:433–466, 1989.

[13] H. Edelsbrunner and E. P. Mücke. Simulation of sim-
plicity: A technique to cope with degenerate cases in ge-
ometric algorithms. ACM Trans. Graph., 9(1):66–104,
1990.

[14] Jeff Erickson. New lower bounds for Hopcroft’s prob-
lem. Discrete Comput. Geom., 16:389–418, 1996.

[15] M. T. Goodrich and R. Tamassia. Dynamic ray shoot-
ing and shortest paths in planar subdivisions via bal-
anced geodesic triangulations. J. Algorithms, 23:51–73,
1997.

[16] J. Hershberger and J. Snoeyink. Computing minimum
length paths of a given homotopy class. Comput. Geom.
Theory Appl., 4:63–98, 1994.

[17] J. Hershberger and Subhash Suri. A pedestrian ap-
proach to ray shooting: Shoot a ray, take a walk. J.
Algorithms, 18:403–431, 1995.

[18] F. M. Maley. Single-Layer Wire Routing and Com-
paction. MIT Press, Cambridge, MA, 1990.

[19] J. Matoušek. More on cutting arrangements and span-
ning trees with low crossing number. Technical Re-
port B-90-2, Fachbereich Mathematik, Freie Univer-
sität Berlin, Berlin, 1990.

[20] J. Matoušek. Efficient partition trees. Discrete Comput.
Geom., 8:315–334, 1992.

[21] J. R. Munkres. Topology: A first course. Prentice Hall,

Englewood Cliffs, NJ, 1975.

[22] L. Palazzi and J. Snoeyink. Counting and reporting
red/blue segment intersections. CVGIP: Graph. Mod-
els Image Process., 56(4):304–311, 1994.

[23] F. P. Preparata and M. I. Shamos. Computational Ge-
ometry: An Introduction. Springer-Verlag, 3rd edition,
October 1990.

[24] H. Samet. The Design and Analysis of Spatial Data
Structures. Addison-Wesley, Reading, MA, 1990.

