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1 Introduction

In this report, we discuss two papers that deal with computing Morse function on tri-
angulated manifolds.

Axen [1] gives an algorithm for computing Morse function on a triangulated mani-
fold of arbitrary dimension but it not practical because of its space requirement. Hence,
he describes an

�����������
	�	
algorithm for computing critical points and their Morse in-

dices for a 2-manifold.
Edelsbrunner et al. [2] deals with compact 2-manifolds without any boundary. The

paper describes how to derive a Morse complex for such a manifold and also talks about
how to simply the complex by canceling pairs of critical points in order of increasing
persistence.

2 Morse Functions on Triangulated Manifolds[1]

A smooth differentiable function defined over a smooth manifold is called a Morse
function if all its critical points (points where the gradient vanishes) are isolated. Such
a definition only applies to the continuous world where gradient is continuous over
a smooth manifold. However, for a triangulated mesh, Morse theory does not apply
directly. This paper talks about how to extend Morse theory so that it is applicable to
triangulated meshes which are homeomorphic to manifolds.

The input is assumed to be � , a  -dimensional simplicial complex embedded in
some ��� . A height function � is defined over this complex as ����������� which
assigns a scalar value to all points on � . For any pair of vertices ��������� , it is
assumed that � � � 	 �! � � � 	 . For such a � , it has been shown that � is indeed a Morse
function given that � is a complex homeomorphic to a manifold.

The steps involved in the algorithm for computing such a � is as follows:

" compute the $#&% barycentric subdivision ')(+*-,/.0� of � .

" for an �1�1� , compute ( � ����� 	 as the minimum number of edges from � to � for
all �2�3')(4*-,/.5� .
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" for every simplex � , let ( � � ��� 	 !������ ( � � ��� 	 where � is a any vertex in � .

" wave �
	��������� ���5	 represents the sub-complex with all vertices at the same dis-
tance

�
from � .

"�� 	�� ���� � ���5	 denotes all the simplices with ( � � ��� 	 ! �
, but �������	�� ���� � ���5	 .

" let (�� be the distance function from vertex � � on a component of wave ��	��������� ���0	
defined by ( ��!#" � � ��!#" ��� 	 , where (%$ ! ( .

" since there can be multiple components of a wave, compute a unique component
number &'��!#" ��� ��� 	 , (*)+&,��!-" ��� ��� 	 )+.
/10 , for each component of wave

�
which

is associated with each � in the component

" Finally for every �2� � , � is defined as:

� � � 	 !32 $ (4$ � � $ ��� 	 / 2 " &5$ � (%$ � �6$ ��� 	 ��� 	8797:7 / 2'; , !#" & , !#"
� ( , !#"

� � , !-" ���
	 ��� 	 (1)

for some small 2=< ( . Once the Morse function is defined over the mesh as above,
critical points and their Morse indices can be found by local neighborhood analysis
of each vertex as in the case of 2-manifolds. Such an algorithm using barycentric
coordinates involves a growth in data size by a factor

��� *>?0 	�@ 	 , and hence is not a
practical algorithm.

In a search for a practical algorithm, the author has designed an algorithm tailored
only to 2-manifold. In this approach, instead of computing the general function � , only
the critical points with their Morse indices are computed from � , and � , . This works
because of the claim that “all critical points of � are in the wave sub-complex � , or
in the grounded simplices of � , ” where grounded simplices refer to the simplices of� � ���5	 which have all vertices in � � ���0	 . This algorithm runs in

�����������
	�	
, where�����
	

denotes the inverse Ackermann function.

2.1 Comments

Unlike the Betti numbers, which are a global property of the manifold, critical points
and their Morse indices are local properties and hence, can be evaluated locally. As
noted earlier, the storage requirement for the algorithm for  -manifold is huge ren-
dering the algorithm impractical. Details about why equation (1) is indeed a Morse
function is not given in this paper. So this paper is more like an algorithm description
rather than containing proofs as to why this is true. The subdivision process helps to
make the distance to vertex into a Morse function.

3 Hierarchical Morse Complexes for PL 2-Manifolds[2]

This paper deals with Morse complexes for piecewise linear (PL) 2-manifold. The
algorithm first computes a complex having the same combinatorial description as the
Morse complex, then derives the Morse complex by applying local transformations.
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Finally, the Morse complex is simplified via local transformations to generate a hierar-
chy of Morse complexes. The algorithm uses the simulation of differentiability (SoD)
to ensure that computed complex of the PL manifold have same structural form as those
in the smooth case.

Since the input to the algorithm is a mesh, the natural neighborhood for a point �
is its star, which is defined as ��� � !�� ��� ���5� ) ��� consisting of all the edges
and triangles sharing � as a vertex. Since we can assume (and simulate using SoD)
vertices having different heights, we have unique minimum and maximum vertices for
each complex. Since height of each vertex is assumed to be distinct, lower and upper
stars of � can be defined as,

��� � ! � � � ��� �	��
 � � 	 )�
 � � 	 � � ) ������ � ! � � � ��� �	��
 � � 	� 
 � � 	 �+� ) ���
Based on ��� � , ��� � , ��� � we can classify a vertex � as maximum, minimum, reg-

ular or saddle. In case of a  -fold saddle, a simple recursive algorithm which splits
wedges of ��� � , can be used to break the multiple saddle into  simple saddles. The
important thing is that though the splitting process may be ambiguous but it is usually
sufficient to pick any arbitrary splitting or unfolding order.

The concept of integral lines from the smooth 2-manifold does not extend directly
to a PL function. So the paper proposes to use monotonic curves which never cross.
When these curves merge or fork they are considered to maintain an infinitesimal sep-
aration without crossing each other. Junctions are used to represent these merging and
forking.

The algorithm begins by constructing a quasi Morse complex. All the vertices are
classified and the steepest edge in each wedge is determined. Each path starts in its
own wedge and follows a sequence of steepest edges till it hits a minumum, maximum,
a saddle or intersects a previously traced path at a regular point. Quad-edge structure
has been used to store the complex defined by these paths.

In the second stage, paths are extended and re-routed infinitesimally close to al-
ready existing paths in an effort to reduce junctions. Vertices are processed in a se-
quence to prevent cyclic dependencies. First ascending paths are extended in order
of increasing height and then descending paths are extended in order of decreasing
height.. Paths are extended by duplication and concatenation without creating cross-
ing. Finally in the third stage, multiple saddles are unfolded into simple saddles by
splitting wedges.

In the second phase of the algorithm, a few local operations transform the quasi
Morse complex to a Morse complex. The primitive operation is to apply a handle slide
which flips between the quadrangulations of a octagon. The decision about applying a
handle flip is based on rerouting the interior paths following the direction of steepest
ascent. SoD approach is used for the rerouting. The algorithm applies handle slides in
the order of decreasing height , where the height is defined of an octagon is the height
of the lower saddle of the middle quadrangle.

The
�

vertices of � are sorted in order of increasing height to get the sequence
� " � � ; � 797:7 ��� �+��
 � ��� 	�� 
 � � � 	 for all 0 ) ����� ) � . Let � � be the sub-complex
of � consisting of the

�
lower stars, � � !�� ������� � ��� ��� . These � � define a filtration
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of � with corresponding Betti numbers as � �$ , � �" , � �; . Using the fact that the Betti
numbers can only change at a minimum, maximum or a saddle points (but not at regular
points), the Betti numbers for � ��� " can be computed from those of � � and using the
information about the type of � ��� " along with how its lower star connects to � � .

Persistence of critical point pairs is defined and are used for manifold simplifica-
tion. A critical point is called positive if it creates and negative if it destroys. Every
negative saddle is paired with its preceding positive minimum and every negative max-
imum with a preceding positive saddle. Such a process is possible since all multi-fold
saddles have been transformed to simple saddles. Now persistence of a critical point �
is defined to be the absolute height difference between � and its paired critical point.
The pairing of critical points and their persistence computation is done using the per-
sistence algorithm as proposed by the Edelsbrunner et al in [3]. The complexity of the
algorithm is

���&��� �&�
	�	
.

For simplification, the paper introduces a cancellation operation that removes criti-
cal points depending on persistence. In the one-dimensional case, the critical points can
appear as alternating maximum and minimum. They are paired and canceled depend-
ing on increasing persistence. In case of meshes, critical points are paired as described
before. They are also removed in a similar persistence order. The contraction of a crit-
ical point pair pulls the points to the minimum (or maximum) of the quadrangle, and
the minimum (or maximum) also inherits the connects of the canceled pairs. The al-
gorithm requires the critical point pairs to share an edge before they can be contracted.
This is ensured by the Adjacency Lemma which states that for every positive

�
, the

�
-th

critical point pair ordered according to persistence forms an arc in the complex formed
after cancellation of the first

� / 0 pairs.

3.1 Comments

The results apply only to meshes from 2-manifolds without any boundary. The fact that
splitting a multiple-saddle in any order still leads to an unfolded manifold is important
for the success of the algorithm. After the first phase, the rest of the algorithm assumes
an unfolded manifold since any  -saddle has been decomposed to  simple saddles by
that point. The adjacency lemma is very important for the success of the simplification
algorithm since only adjacent control points can be cancelled. Some experimental
results have also been provided to show the correct working of the algorithm.
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