Topology Preserving Edge Contractions: What are they and how do we find them?

Jon McAlister

December 4, 2002

Edge contractions

replaces St $\overline{ab} = \operatorname{St} a \cup \operatorname{St} b$ by the star of a new vertex, St c. The contraction of an edge ab is a local transformation of K that

What can go wrong?

Basic definitions

- The closure of $B \subseteq K$ is $\overline{B} = \{ \tau \in K \mid \tau \leq \sigma \in B \}$.
- The star of $B \subseteq K$ is St $B = \{ \tau \in K \mid \tau \geq \sigma \in B \}$.
- The link of $B \subseteq K$ is Lk $B = \overline{\operatorname{St} B} \operatorname{St} \overline{B}$.
- topology. An edge is *contractable* if its contraction does not change the surface
- contractible A triangulation of a 2-manifold is *irreducible* if no edge is
- not effect the same triangle. That is, St $ab \cap St \overline{cd} = \emptyset$. Two edge contractions in a 2-manifold are independent if they do

Results overview

- Topology Preserving Edge Contractions, by Dey, Edelsbrunner, Guha, and Nekhayev, 1999.
- Results in characterization of topology preserving edge contractions for simplicial complexes up to dimension 3 [1].
- Hierarchy of Surface Models and Irreducible Triangulation, by Cheng, Dey, and Poon, 2002.
- Greedy algorithm to find $\Theta(n)$ independent topology preserving edge contractions in an orientable 2-manifold, each of which effect a small number of triangles [2].
- Computing a topology preserving hierarchy of $O(n+g^2)$ size and $O(\log n + g)$ depth for an orientable 2-manifold [2].
- Improved bound on the number of vertices in an irreducible triangulation of an orientable 2-manifold [2].

Simplicial map

- A vertex map for two complexes K and L is a map $f: Vert K \rightarrow$ Vert L.
- reals $b_u(x), u \in \text{Vert } K$, so $b_u(x) \neq 0$ only if $u \leq \sigma$ and The barycentric coordinates of a point $x \in \sigma$, $\sigma \in K$, are the unique

$$x = \sum_{u \in \text{Vert } K} b_u(x) \cdot u$$
 $1 = \sum_{u \in \text{Vert } K} b_u(x)$

 $\phi(x) = \sum b_u(x) \cdot f(u)$

The simplicial map $\phi: |K| \to |L|$ for a vertex map f is defined by

Unfoldings

- $f:|K|\to |L|$ is a simplicial homeomorphism iff f is bijective and f^{-1} is also a vertex map.
- simplicial map $\varphi_{ab}: |K| \to |L|$ defined by the surjective vertex map An edge contraction of ab can then be defined as a surjective

$$f(u) = \begin{cases} u & \text{if } u \in \text{Vert } K - \{a, b\} \\ c & \text{if } u \in \{a, b\} \end{cases}$$

- Note that outside $|\overline{\text{St}} \ \overline{ab}|$, φ_{ab} is the identity, but inside it is not even injective
- An unfolding of φ_{ab} is a simplicial homeomorphism $\psi: |K| \to |L|$.
- ψ is a *local unfolding* if it differs from φ_{ab} only inside |St|ab|.
- ψ is a relaxed unfolding if it differs from φ_{ab} only inside $|\overline{St}| \overline{St} | \overline{ab}|$.

Order and Boundary

dimension i. homeomorphic to $\mathbb{R}^{k-i} \times \mathbb{X}$, for some topological space \mathbb{X} of Since the interior of η is homeomorphic to \mathbb{R}^{k-i} , the star of σ is simplex η such that St σ and St η are combinatorially equivalent. The order of σ is the smallest integer i for which there is a (k-i)

with order no less than j: The j-th boundary of a simplicial complex K is the set of simplices

$$Bd_j K = \{ \sigma \in K \mid \text{ord } \sigma \ge j \}$$

1-complexes

 ω , and cones from ω to all simplices in the (i+1)-st boundary: For each i we extend the i-th boundary by adding a dummy vertex

$$\mathrm{Bd}_i^{\omega} K = \mathrm{Bd}_i K \cup \omega \cdot \mathrm{Bd}_{i+1} K$$

For a simplex $\sigma \in \operatorname{Bd}_i^{\omega} K$, we denote the link within $\operatorname{Bd}_i^{\omega} K$ as $\operatorname{Lk}_i^{\omega} \sigma$.

- For a 1-complex K, the following are equivalent:
- $\mathsf{L.} \ (\mathrm{i}) \ \mathrm{Lk}_0^\omega a \cap \mathrm{Lk}_0^\omega b = \emptyset.$
- (ii) φ_{ab} has a local unfolding.
- 3. (iii) φ_{ab} has an unfolding.

2-complexes

- For a 2-complex K then the following statements are equivalent:
- 1. (i) $\begin{array}{ccc} \operatorname{Lk}_0^{\omega} a \cap \operatorname{Lk}_0^{\omega} b = \operatorname{Lk}_0^{\omega} a b, \text{ and} \\ \operatorname{Lk}_1^{\omega} a \cap \operatorname{Lk}_1^{\omega} b = \emptyset \end{array}$
- 2. (ii) φ_{ab} has a local unfolding.
- They demonstrate a 2-complex which has neither a local nor a

relaxed unfolding, but which does have an unfolding

- For a 2-manifold the following statements are equivalent:
- 1. (i) Lk $a \cap Lk b = Lk ab$.
- 2. (ii) φ_{ab} has a local unfolding

3. (iii) φ_{ab} has an unfolding.

9

Steinitz' Theorem (1922)

- A convex 3-polytope is the convex hull of finitely many points in \mathbb{R}^3 that do not all lie in a common plane.
- The 1-skeleton is the subcomplex of all vertices and edges.
- A graph G is planar if it is isomorphic to a 1-complex in \mathbb{R}^2 .
- A graph is 3-connected if the deletion of any two vertices together with their edges leaves the graph connected.
- Steinitz' Theorem (1922): For every 3-connected planar graph there is a convex 3-polytope with an isomorphic 1-skeleton.

3-complexes

For a 3-complex K then the following statements are equivalent:

$$\operatorname{Lk}_0^{\omega} a \cap \operatorname{Lk}_0^{\omega} b = \operatorname{Lk}_0^{\omega} ab,$$

1. (i) $\operatorname{Lk}_1^{\omega} a \cap \operatorname{Lk}_1^{\omega} b = \operatorname{Lk}_1^{\omega} ab$, and

$$\operatorname{Lk}_2^\omega a \cap \operatorname{Lk}_2^\omega b = \emptyset$$

- 2. (ii) φ_{ab} has a relaxed unfolding.
- For a 3-manifold the following statements are equivalent:
- 1. (i) Lk $a \cap Lk b = Lk ab$.
- 2. (ii) φ_{ab} has a local unfolding.
- 3. (iii) φ_{ab} has an unfolding.

Results overview

- Topology Preserving Edge Contractions, by Dey, Edelsbrunner, Guha, and Nekhayev, 1999.
- Results in characterization of topology preserving edge contractions for simplicial complexes up to dimension 3 [1].
- Hierarchy of Surface Models and Irreducible Triangulation, by Cheng, Dey, and Poon, 2002.
- Greedy algorithm to find $\Theta(n)$ independent topology preserving edge contractions in an orientable 2-manifold, each of which effect a small number of triangles [2].
- Computing a topology preserving hierarchy of $O(n+g^2)$ size and $O(\log n + g)$ depth for an orientable 2-manifold [2].
- Improved bound on the number of vertices in an irreducible triangulation of an orientable 2-manifold [2].

References

- [1] Tamal K. Dey, Herbert Edelsbrunner, Sumanta Guha, and Dmitry V. (Beograd) (N.S.), 66 (1999), 23-45, 1999. Nekhayev. Topology preserving edge contractions. Publ. Inst. Math
- [2] Siu-Wing Cheng, Tamal K. Dey, and Sheung-Hung Poon. Hierarchy of surface models and irreducible triangulation. Available at http://cs468.stanford.edu, 2002.