Application of Simplicial Sets to
Computational Topology

Patrick Perry*
June 10, 2003

Abstract

This paper presents the concept of a Simplicial Set, which is a general-
ization of a Simplicial Complex, to the Computational Topology commu-
nity. We show how to reduce the size of a simplicial set while preserving
homotopy type, and also present an algorithm for computing the betti
numbers of a simplicial set.

1 Introduction

Within the last ten years, there has been increasing interest in a new field of
Computer Science called Computational Topology. The field involves taking
ideas and constructions from Topology, and either finding efficient ways of com-
puting them, or applying them to real-world problems As a field of computer
science Topology is relatively young, but Mathematicians have been working on
problems in Topology for hundreds of years. Thus, there is a wealth of knowl-
edge to be gained by looking into the Mathematical literature and applying the
work there to computational methods. In this paper we apply one such idea
from the Mathematics, that of a Simplicial Set.

Currently, the standard way of representing a topological space in compu-
tational topology is as a simplicial complex. In a simplicial complex, we fix an
ordering on our vertices, and define higher simplices as sets of vertices. The ad-
vantage of such a representation is that it is relatively simple, and thus very easy
to work with. Unfortunately, the simplicial complex construction requires that
each k-simplex contain ezactly (k+ 1) unique points, a restriction that turns out
to be quite a hindrance. In a simplicial set, we do not have this restriction, and
we are therefore allowed a great deal of flexibility that is absent in a simplicial
complex.

In Section 2, we give the motivation for and introduce the concept of simpli-
cial set. In Section 3 we show how to reduce the size of a simplicial set, thereby
speeding up computations on the set—in particular betti-number computations.

*Department of Mathematics, Stanford University

Section 4 defines some useful data structures for dealing with a simplicial set,
which we will rely upon for the rest of the paper. Section 5 gives a straightfor-
ward method of computing the homology group of any chain complex— this will
be useful both as an algorithmic tool, and as a point of comparison. Lastly, Sec-
tion 6 presents a new algorithm for computing the betti numbers of a simplicial
set.

2 Simplicial Sets

The simplicial complex may be an adequate frameworks to work with when
dealing with topological spaces arising from Euclidean objects, but it is too
structured to admit such constructions as quotient spaces and identifications.
We introduce the class of simplicial sets, which contains the class of simplicial
complexes, and is flexible enough to allow constructions like those mentioned
above.

2.1 Motivation

Two desirable features that are absent from the simplicial complex framework
are quotients and identifications. We describe why such constructions may be
desirable below.

2.1.1 Quotients of Spaces

We recall from Topology [6] that if X is a topological space and A is a subspace
of X homotopic to a point, then X and the quotient space X/A are homotopy
equivalent. For instance, in Figure 1, each edge of the triangle is homotopic to a
point. We can quotient by two of the edges, one at a time, thereby simplifying
the description of the space. This quotient operation will be known as a collapse,
as it “collapses” a given subspace to a point while leaving the rest of the space
unchanged.

After collapsing trivial simplices, we were able to reduce the representation
of S* from 3 edges and 3 vertices to a representation needing only 1 simplex and
1 edge. Even though this is a small example, one can image that such collapses
would be useful in dealing with large representations of topological spaces.

A*/\\ —

Figure 1: Simplifying a triangle through edge collapses

2.1.2 Identification Spaces

In an identification space, we take a topological space, and a disjoint partition
of it, and create a new space whose points are the members of the partition [1].
For example, in the standard construction of the torus, we take a rectangle and
identify opposite sides, preserving orientation.

v b v
S
a ¢ a
T
v b v

Figure 2: Triangulating a torus

To realize this construction in the context of a simplicial complex, we must
triangulate a rectangle with its opposing sides identified. Unfortunately, the
obvious first attempt, shown in Figure 2, is not a valid simplicial complex as
both triangles contain only 1 unique vertex, which violates the rule that each
n-simplex must contain (n + 1) vertices. In fact, a minimal legal triangulation
of the torus requires at least 7 vertices in the simplicial complex setting [8].

In a simplicial set, however, n-simplices are allowed to have fewer than (n+1)
unique vertices. The situation in Figure 2 is completely valid. In general, by
allowing such identifications, we are able to drastically reduce the size of a
representation of a topological space.

2.2 Mathematical Framework

We now present the Mathematical basis for simplicial sets and their associated
Homology groups. We also include the realization of quotients and identifica-
tions.

2.2.1 Formal Definition
The formal definition of a simplicial set, as given in [2] is as follows:

Definition 1 (Simplicial Set) A Simplicial set K is a sequence of sets, K =
{Ko,K1,...,Ky,...} together with functions:

d; - K, — anl,
S; - Kn — Kn—i—l;

for each 0 < i < n. These functions are required to satisfy the simplicial iden-
tities:

did; = dj_1d; for i < j,
sj_1d; fori < j,

dis; = identity fori=j4, i=j+1,
sjdi—1 fori>j+1,

8i8; = 8j118; for i <j.

d; is called the ith face map, and s; is called the ith degeneracy map.

Like in the simplicial complex setting, every n-simplex has n + 1 faces. The
difference is in the addition of so-called “degenerate” simplices, those simplices
z which can be written z = s;y for some degeneracy map s;.

2.2.2 The Simplicial Set Derived from a Simplicial Complex

Simplicial complexes fit very naturally into the simplicial set framework [2]. Let
X be a simplicial complex and let the vertices of X be well-ordered. Then, we
define K to be the set of vertices of X, and for n > 0 we define

K,=X,U (LnJ Si(Kn1)>

=0

where X, is the set of n-simplices of X. The term on the right is the set of
degenerate simplices.

Now, the face map d; acts on a simplex by deleting the ith vertex, and the
degeneracy map s; acts by repeating the ith vertex:

di([vo,---,0n]) = [vo,---sUiy---,Vn],

$i([voy---,vn]) = [V0,---50i,V4...,0p]

It is easy to see that these maps satisfy the simplicial identities. Note that
since X is a simplicial complex, all faces of a simplex are in the simplicial
complex as well, so d; is well-defined. The degeneracies of a simplex, however,
are not in the simplicial complex, as they have repeated vertices.

2.2.3 The Homology of a Simplicial Set

We form the chain complex of a simplicial set K in a similar way to the chain
complex of a simplicial complex. We define the n-chain group C,, to be the free
group on the non-degenerate n-simplices of K. The boundary map is defined as

where degenerate faces are treated as 0. Now, 0 has the property that 0,,0,+1 =
0, as desired. The n-th Homology group is defined in the usual way as H,, =
ker Oy, /im Oy 1.

Notice that the simplicial set derived from a simplicial complex has an iden-
tical chain complex, and thus the same Homology as the simplicial complex.

2.2.4 Identifications

The spaces arising from identifications easily fit into the context of simplicial
sets. For instance, the torus in Figure 2 is described by the following simplicial
set:

The non-degenerate simplices are v, a, b, ¢, S, and T. These simplices,
together with their degeneracies define the sets K;. Now, the face maps are
defined as:

dO(S) = dO(T) = a
dl(S) = dl(T) = G
d(S) = do(T) = b,
di(a) = di(b) = di(c) = w

and the degeneracy maps are defined to satisfy the simplicial axioms. This is a
completely valid representation of the torus, and it is much more compact than
any torus in the simplicial complex setting.

2.2.5 Quotients

Quotient spaces may be constructed explicitly, but the real power of a quotient
is to modify an existing topological space, as in Figure 1. In particular, we are
interested in “collapses” —identifications of a simplex to a single point. Such an
operation fits very naturally within the context of a simplicial set.

To construct a simplicial set K’ from collapsing the simplex z in K, i.e.
K' = K/z, we introduce a new vertex zo, and replace all instances of z—its
faces, and its degeneracies—with degeneracies of xo. Specifically, we perform
the following construction:

Say z is a simplex of dimension n (i.e. € K,). For k > 0, define the
non-degenerate face set of dimension k of z, Fy j inductively as:

0 for k>n
Fx,k = {1'} fork=n
Uf:ol di(Fypy1) fork<n

Now, for k > 0 we define the complete face set of dimension k of x as:

k-1
Fop=Fy U (U Si(Fz,k—1)>

=0

for k > 0, and say that F_’z’o = F, 0. With these sets, we are ready to define the
simplicial sets and maps for K'. Define the simplex set K, as

Kj, = (Ki \ For) U{sg(z0)}

where sf denotes applying the 0-th degeneracy operator k times. s§ is not

already in the simplex set Kj, so we must add it explicitly. This is the only
degeneracy of xy we need to add; it is easy to check via the simplicial relations
that since g is a vertex, applying k arbitrary degeneracy operators to xg is the
same as applying sg to xo k times.

Notice that we are just removing all faces and degeneracies of z, and we
are adding a single new simplex to each simplex set, the only non-degenerate
addition being zg.

Now, we define the simplicial maps as:

{ d?(y) if di(y) ¢ Fu,i

1 _
diy) = zo) otherwise

(
si(y) = { S’(y)(if 5i(y) ¢ Fa,ipt

xg) otherwise

Again, we are just replacing instances of x with xg or one of its degeneracies.

The collapses in Figure 1 are exactly the geometric realizations of the result
of collapsing two edges in the simplicial set representation. Such collapses would
not be possible in a simplicial complex.

2.3 Combinatorial Representation

We see that there is a very natural way to perform quotients in a simplicial
set. With an efficient combinatorial representation for a simplicial set and a
collapse, we will, indeed, have a powerful tool.

2.3.1 Design Goals

We would like a data structure to store a simplicial set supporting a BOUNDARY
operation, as well as a COLLAPSE operation, which replaces the simplicial set
with a new simplicial set obtained by identifying a simplex with a single point.
In addition, it will be useful for some algorithms to support an UNCOLLAPSE
operation that will “undo” a collapse. Of course, we would also like to be able
to iterate through the simplices of each dimension.

If there are n total simplices in the set, it is reasonable to request that
the memory usage be ©(n). Also, we would like the BOUNDARY operation to
take constant time, and the COLLAPSE and UNCOLLAPSE operations to take
amortized constant time.

It will not be necessary to store all of the degenerate simplices in the simpli-
cial set (after all, there are infinitely many of them). However, a degenerate sim-
plex will be important if it came from collapsing a non-degenerate simplex. We
would like to test if a simplex is degenerate or not via a HAS-BEEN-COLLAPSED
method.

2.3.2 Data Storage

An n-simplex, z, will have pointers to each of its n + 1 faces. These pointers
will be labeled explicitly by the face operator d; they come from. In practice,
this can be accomplished by storing an array of n + 1 pointers, where the ith
element of the array is d;(z). The dimension of the simplex, n, will be stored
in a dimension field. Also, each simplex will need to know if it is degenerate
or not, and which collapse operation caused it to be degenerate. To achieve
this, the simplex will have a collapsedTo field, initially set to NIL, which may be
replaced by a pointer to simplex that collapses it.

As collapsing a simplex can cause two or more vertices to be identified, we
will need a different way of representing O-simplices. Following the lead of [3],
we choose to store the them as a disjoint partition of identified points. We use
the Disjoint Set data structure, which supports the MAKE-SET, UNION, and
FIND-SET operations, all of which run in amortized O(a(m,n)) time, where n
is the number of MAKE-SET operation, m is the total number of operations,
and « is the inverse Ackermann function [7]. Initially, each point will reside in
a separate set, but through identifications, we will take the unions of these sets.

In addition to the local simplex information, the global simplicial set data
structure will maintain separate arrays for the simplices of each dimension.
Tterating through all n-simplices will be a simple matter—just iterate through
the appropriate array.

2.3.3 Operations

Boundary Given a simplex z, computing it’s boundary involves iterating
through its face array and returning a chain with the appropriate coefficients
(positive or negative 1):

BOUNDARY(x)
1 return E;de"m"[z](—l)idi (x)

The explicit chain representation will be discussed below, but one can imagine
two arrays sufficing: one for pointers to simplices, and one for coefficients. The
run time is ©(k), where k is the dimension of the simplex.

Has-Been-Collapsed Testing to see whether or not a simplex has been col-
lapsed, which is the same as testing for degeneracy for non-point simplices, only
involves checking the collapsedTo attribute:

Has-BEEN-COLLAPSED(x)
1 if collapsedTo[x] = NIL
2 then return FALSE
3 else return TRUE

The run time is constant.

Collapse As we would like COLLAPSE to be “undoable” via the UNCOLLAPSE,
we must keep track of which COLLAPSE operation causes a simplex to be col-
lapsed. To this end, as described above, each simplex is equipped with a col-
lapsedTo field. When a simplex is to be collapsed, we call the COLLAPSE-TO(x)
method for each of it’s faces. For a non-degenerate face, this private method
sets the collapsedTo field to z and recursively calls COLLAPSE-TO(f, z) for each
face, f. For a degenerate face, the COLLAPSE-TO method does nothing.
Handling points is different from other simplices, because when an edge
connecting two points gets collapsed, the points must be marked as identified.
This is done via the disjoint partition data structure that is stored with the
simplicial set so identifying the points u and v only involves calling UNION(u, v).
The pseudocode for the collapsing functions is given here:

CoLLApse-To(f, z)

1 collapsedTo[f] + =

2 if dimension[f] =1

3 then UNION(dy(f), d1(f))

4 else for i + 0 to dimension[f]

5 do if Has-BEEN-COLLAPSED(d;(f))
6 then continue

7 else CoLLAPSE-To(d;(f),z)

COLLAPSE(2)

1 if HAS-BEEN-COLLAPSED(z)
2 then return

3 else COLLAPSE-TO(z,)

Collapsing an entire simplicial set will cause COLLAPSE-TO(f,z) to get
called exactly once for each simplex f of dimension greater than 0 in the set K.
The time spent on this function call for 1-simplices is amortized O(a(n1,no),
where n; is the number of 1-simplices, ng is the number of 0-simplices, and
« is the inverse Ackermann function. For other simplices, the run time is
O(dimension[f]). Thus, the amortized cost of each collapse operation when
collapsing the entire simplicial set is O(max(k, a(ni,mno))) (where k is the di-
mension of the simplicial set), which is essentially constant.

Uncollapse The inverse to the COLLAPSE(z) operation, UNCOLLAPSE(z)
takes all faces of z which were collapsed as a result of a COLLAPSE(z) func-
tion call, and returns them to the prior state. The pseudocode for the function
and its helper, UNCOLLAPSE-FROM(f, z) are given here:

UNCOLLAPSE-FROM(f, x)
1 collapsedTo[f] < NIL
2 if dimension[f] #1

3 then for i + 0 to dimension|[f]
3 do if collapsedTo[d;(f)] = =
4 then UncoLLAaPSE-FroM(d;(f),z)

UNCOLLAPSE(x)
1 if collapsedTo[z] = x
2 then UNcoLLAPSE-FrROM(z, z)

Notice that this is not a true inverse to the COLLAPSE function, as we are not
undoing the point identifications. While such un-identifications may be desir-
able, the disjoint-set data structure does not support an “undo-union” function
that runs in reasonable time.

The run-time analysis for uncollapsing a completely-collapsed simplicial set
is essentially the same as that for collapsing the entire set, with the absence of
the point-identification term. The amortized cost of a single UNCOLLAPSE when
uncollapsing the entire simplicial set is thus O(k) where k is the dimension of
the simplicial set.

To allow for undoing point identifications, we provide the following function:

UPDATE-POINT-IDENTIFICATIONS()
1 for each v € K

2 do MAKE-SET(v)

3 for each e € K;

4 do if HAs-BEEN-COLLAPSED(e)
5 then UNION(dy(e), d;(e))

Notice that the function throws away the previous point identification par-
tition and builds another one from scratch. The run time for this function is
thus O(ny a(ni,ng)), which is essentially linear, and therefore very expensive.

3 Simplifying Computation by Reducing Sim-
plicial Set Size

As a first application of simplicial sets to computational topology, we show
how how they can be applied to speed up an existing algorithm for computing
an invariant of a simplicial complex. We assume we have an algorithm for
computing the betti numbers {3} of a chain complex (C., d.). We also assume
that the algorithm runs in O(g(n)) time, where n is the number of objects in the
complex!'. Now, say we are trying to compute an invariant using an algorithm
that runs in time Q(f(n)). We show how to produce an algorithm that runs at
least as fast as the existing algorithm, often with a substantial speedup.

3.1 Motivation

We know from topology [6] that if X is a cell complex and if A is a contractible
subcomplex, then the quotient map X — X/A is a homotopy equivalence, and
therefore X and X/A have the same homology.

1Such an algorithm is presented in Section 5

Now, in the context of the simplicial set, we know how to replace X with
X/A. Also, to start with, every simplex of a simplicial complex has trivial ho-
mology. The idea, then, is to iteratively collapse simplices with trivial homology,
thereby reducing the size n of the derived chain complex, and speeding up the
homology computation.

As collapsing is a local operation, collapsing the simplex z affects the ho-
mology of the cofaces of the faces of z 2. If only a subset of x’s cofaces were
affected (for instance, the cofaces of one dimension higher), then some intelli-
gent bookkeeping might be able to keep track of which simplices are a priori
trivial. Unfortunately, there is no obvious restriction, and as z and its faces
have potentially exponentially many cofaces, this bookkeeping does not seem
practical.

3.2 Algorithm

The algorithm is simple: look for s simplex with trivial homology, and then
collapse it. We loop through all simplices a specified number of times, collapsing
more simplices on each iteration.

SIMPLIFY-COMPLEX (K)
1 for ¢ « 0 to MaxNumlterations
2 do noNewNonvial Simplices + TRUE
for x € K

do if z has trivial homology

then COLLAPSE(z)
noNewNonvial Simplices < FALSE

if noNewNonvial Simplices = TRUE

then break

00 ~J O Ut i W

To test if a simplex, z is trivial, we use the existing homology algorithm,
which will take O(g(2¥)) for a simplex of dimension k. Actually, since we are
only interested in whether or not z has trivial has trivial homology and we are
not actually computing the betti numbers of z, in practice we can improve on
this worst-case bound. Testing triviality of 1- and 2-simplices can be done in
constant time by counting the numbers of nontrivial faces. For example, any
2-simplex with 2 nontrivial edges and 1 nontrivial vertex must be nontrivial.
The rest of the 1- and 2-simplices are shown in Figure 3.

As noted above, collapsing one simplex affects potentially exponentially
other simplices. Thus, if we test a simplex once and find it to have nontriv-
ial homology, collapsing another simplex later may make the original nontrivial
simplex into a simplex with trivial homology. The question that arises,then is
how many times are we to iterate through the simplices. The first answer may
be to iterate until no more simplices can be collapsed. However, doing so may

2A coface is a simplex that has z as a face. More precisely, a simplex y is a coface of z if
there is some sequence of face operators indexed by ¢1 ...4x such that d;d;n_, - di;y = 2.

10

1-Simplices

— D

2-Simplices

Figure 3: All possible 1- and 2-simplices in a simplicial set

take O(n?) iterations for certain configurations. For example, in Figure 4, the
entire simplicial set has trivial homology. However, if we are iterating from right
to left, we can only make 1 simplification per pass, and we must make n total
passes. A better choice may be to limit the number of iterations to cf(n)/g(2*),
where c is some constant and k is the dimension of the highest-dimensional sim-
plex in K. By limiting our iterations as such, we are guaranteed that computing
the betti numbers will still be O(f(n)).

3.3 Analysis

Unfortunately, there are no asymptotic guarantees as to how much we can sim-
plify a simplicial set. However, empirical evidence suggests that this simpli-
fications is a worthwhile endeavor. In the case of the triangulated torus in
Figure 5, after two iterations the simplifying process terminates, reducing 18
faces, 27 edges, and 9 vertices to 10 faces, 11 edges, and 1 vertex, reducing the
size of the complex by over 50 percent. With such a drastic reduction in such
a small complex, it is expected that simplifying a large simplicial set will have
similarly positive results.

4 Supporting Data Structures

In dealing with simplicial sets, it will be convenient to have some data structures
to simplify operations like homology computation. As a bare minimum, we will

11

(n 2—simplices)

Figure 4: A worst-case situation for simplifying a simplicial set

1 2 3 1 1 2 3 1

Figure 5: Simplifying a Torus (darker areas denote collapsed simplices)

need a structure for storing a chain on a simplicial set, as the BOUNDARY oper-
ation needs to return a chain. We suggest a simple structure for storing a chain
that supports basic arithmetic operations, and then build more complicated
structures built around the chain.

We recall that in defining homology, we first define the Chain Group, which is
the free module with the simplices of our set as a basis. In the most general case,
this construction is over a Euclidean Domain (ED). Typically, the integers (Z)
are used, but it is often more convenient to use a field—either the rational
numbers (Q), or the finite field with two elements (F2). In a field, in addition
to the standard ring operations of addition, subtraction, and multiplication,
we are also allowed to divide by an element. An ED does not allow division,
but does allow us to use the Euclidean Algorithm to find the greatest common
divisor (ged) of two elements and write the ged as a linear combination of the
two elements [4].

12

In the data structures defined below, we focus primarily on the Fy case, but
we will refer to the ring in the abstract as R.

4.1 The Chain Data Structure

The Chain is the fundamental object when studying homology. It is defined
as a member of the Chain Group, the free R-module on the simplices. As
a member of an R-module, a chain must support addition and subtraction of
another chain, in addition to multiplication by scalars. It will also be convenient
to support getting the coefficient of a given simplex, as will as a “leading term”
construction, which is entirely artificial, but can be imposed by ordering the
basis elements (the simplices). This ordering can be arbitrary, and order of
creation or order by memory address are suitable choices.

4.1.1 Design Goals

We would like the storage for a chain to be linear in the number of basis elements.
It is also reasonable to expect that arithmetic operations be linear in the number
of basis elements, as well. Lastly, we expect that GET-LEADING-TERM be a
constant-time operation.

4.1.2 Data

We store the chain as an ordered NiL-terminated singly-linked list [7]. firstN-
ode[c] will be the first node in the linked list, and nextNode[node] will be the
node pointed to by node.

Each node of the list represents a nonzero scalar from R and a pointer to a
simplex. coefficient[node] will be the scalar from R, and simplez[node] will be
the simplex.

We force each node to point to a unique simplex, and we also force that the
list be ordered by the ordering induced from a simplex ordering. By storing our
chain in this way, a chain involving m basis elements requires 2m pointers and
m coeflicients from R, so the total space is O(m).

4.1.3 Operations

Leading Term The leading term of a chain will prove to be a useful for the
structures we define below. We provide two methods, LEADING- COEFFICIENT,
and LEADING-SIMPLEX for accessing the leading terms. Both are trivial opera-
tions, and we provide code only for LEADING-COEFFICIENT.

LEADING-COEFFICIENT(c)
1 return coefficient[firstNode|c|]

Simplex Coefficient We will often need the coeflicient of a given simplex in
the chain. If the simplex is not part of the chain, the coefficient is zero.

13

SIMPLEX-COEFFICIENT(c,)

1 node + firstNode|c]

2 while node # NIL

3 do if simplez[node] = x

4 then return coefficient[node]
5 else node + nextNode[node]
6 return 0

The run time is linear in the size of the chain. This operation could be made
constant-time by using a hash table [7] instead of a linked list, but it would
be at the expense of making the arithmetic operations more costly for sparse
chains. As most chains are typically sparse, we choose to stick with the liked
list by default.

Arithmetic The arithmetic operations are all relatively simple. We present
the code for addition, and the reader can easily see how scalar multiplication
and subtraction are performed. It is easy to see that all arithmetic operations
can be performed in time linear in the length of the chain.

SuM(a, b)
1 ¢+ List-Cory(a)

2 p. + firstNode|c]

3 pp « firstNode[b]

4 while p, # NIL

5 do while p. # NIL and simplex[p.] < simplexpy]
6 do p. + nextNode[p,]

7 if simplex[p.] = simplex]ps)

8 then coefficient[p.] < coefficient[p.] + coefficient|ps]
9 if coefficient[p.] =0

10 then LIST-REMOVE(p,)

11 else LisT-INSERT-HERE(p,, ppy)

12 py — nextNode[py]

13 return ¢

4.2 The Boundary Cycle Data Structure

A Boundary Cycle is a special type of chain, an n-chain that is the boundary
of some (n + 1)-chain. We store such a cycle as a pair of chains, (8, 9n+1(8)).
We allow access to the individual parts via boundaryPart and boundingCycle
attributes. We also support arithmetic on boundary cycles by performing the
operations on the individual components, as in:

(@, 0(a)) + (8,0(8)) = (a + 8,0(c) +0(B))

for addition. Since 9 is an R-homomorphism, d(a) + 0(8) = d(a + 3), and
rd(a) = d(ra), so these operation are valid.

14

4.3 The Homology Group Data Structure

We present a data structure for storing the homology group of a simplicial
set. This data structure supports some sophisticated operations that a true
homology group does not have, making our data structure more like the cycle
group decomposition Z,, = H, @& B,,. Nonetheless, the extra operations are
quite useful in many situations involving homology groups.

4.3.1 Design Goals

In addition to knowing the rank of the homology group, we would like to be able
to get a cycle’s projection into the group. What’s more, we ask that given a
chain, z € C,, with boundary 0, we be able to write the chain as z = 9+ 0,41 (b),
where 7 is the projection of z into H,, and b € C,41 is an (n + 1)-chain. Note
that, as 0,41 is not necessarily injective, the choice of b will not, in general, be
unique. However, since the cycle group decomposes as Z,, = H, & B,,, n € H,
and Op,41(b) € By, are uniquely determined by z.

The other basic operations required are iterating through a basis for the
homology group, as well as iterating through the chains that form a basis for
the boundary group, B,,.

4.3.2 Reduced Echelon Form

To perform our projection and decomposition operations, we will need to store
bases for H,, and B,, in a convenient form. We call this form Reduced Echelon
Form, and define it here:

Definition 2 (Reduced Echelon Form) A set of chains {c1,...,cny} C Cp
is said to be in reduced-echelon form if:

1. As elements of the Chain R-module, {c1,...,cn} are R-linearly indepen-
dent, and

2. For each c;, if x; is the leading simplex of c;, then for j # i, the coefficient
of x; in c; is 0.

Why such a form would be desirable is answered by the following lemma:

Lemma 3 (Gaussian Elimination) If {ci,...,cy} C C, are in reduced ech-
elon form, and c is in the span of {c1,...,cN}, then expressing c as an R-linear
combination
N
c= Zrici where r; € R
i=0

can be done with O(N) divisions in R and O(N) additions and scalar multipli-
cations of chains from {cy,...,en} U {c}.

It is an easy result from linear algebra that given any set of chains, we can
find a set of chains in reduced echelon form that spans the given set.

15

Proposition 4 Given a set of chains {c1,...,cn} C Cp, we can find another
set of chains {d1,...,dp} C Cy in reduced echelon form spanning our original
set. Moreover, if R is a field, we can find such a set with O(N?) divisions in
R and O(N?) additions and scalar multiplications of vectors from {c1,...,cn}.
If R is an ED, we do through O(N?) instances of the Euclidean Algorithm, and
O(N?) additions and scalar multiplications of vectors from {ci,...,cn}.

4.3.3 Data

To data for a homology group consists of a basis for H,, along with a basis for
B,,, stored in two arrays, homologyBasis and boundaryBasis. The basis for H,
will be a set of chains, and the basis of B,, will be a set of cycles. We require
that the set {H,, B,} be in reduced echelon form.

We also build a balanced binary trees leadingHCoefficients, and leadingZ-
Coefficients (Red-Black trees [7] are suitable candidates). The first tree stores
the homologyBasis chains and the second tree stores both the homologyBasis
chains and the boundaryBasis cycles, with an additional attribute in each node,
type, indicating whether or not the given chain is a homology cycle or a bound-
ary cycle. In both trees, the leading simplices of the chains as used as the
search keys. Since the bases are in reduced echelon form, the search keys are
unique. Building the trees takes O(nlogn) time, and the SEARCH operations
take O(logn).

4.3.4 Operations

Rank The rank of the homology group (otherwise known as the betti number)
is just the number of H,, basis elements. It can be returned in constant time.

Projections Since the basis for the cycle group decomposition Z, = H,, & B,
is in reduced echelon form, finding the representative element of a cycle can be
done in time linear in the number of basis elements of B,,:

PROJECTION(H, 2)
1 projection < 0
2 node + firstNode[z]

3 while node # NIL

4 do h < SEARCH(leadingH Coefficients[H], simplex[node])
5 if h # NIL

6 then projection < (projection + h)

7 node < nextNode[node]

8 return projection

This method requires |2| SEARCH operations, and at most |Hy| chain additions.
If [is the longest homology basis chain length, m is the input chain length, and
there are n homology basis vectors, then the total runtime is O(m logn + [m).

16

Cycle Decomposition If we know that a chain, z has boundary 0, we can
query the homology group for its cycle decomposition z = 1 + db, where n € H
and 8 = 0b € B. The cycle decomposition is carried out as follows:

CYCLE-DECOMPOSITION(H, z)
1 h+0

2 (b,B) «(0,0)

3 node « firstNode[z]

4 while node # NIL

5 do v < SEARCH(leadingZCoefficients|H], simplex[node])
6 if type[y] = “homology”

7 then h + (h+7)

8 else (b,8) « ((b,8) +7)

9 node < nextNode[node]

10 return (h, (b, 3))

This procedure takes |z| SEARCH operations, and O(|H| + |B|) chain additions.
Letting m be the length of z, and n be the size of Z,i.e. n = |H|+|B|, if [is the
longest cycle basis element. Then the total runtime is O(mlogn + ml). Note
that since, in general, | B| is much larger than |H|, the CYCLE-DECOMPOSITION
function is considerably slower than the PROJECTION operation.

5 A Straightforward Approach to Computing
Homology

In this section we present a method for computing the homology group of a
simplicial set, K, using the data structure defined above. The algorithm is
somewhat naive in that it does not take advantage of the underlying structure in
the boundary maps, but it serves both as a building block for more sophisticated
algorithms, and as a point of comparison.

5.1 Problem Constraints

We are assigned with the task of computing H,, = ker 8,,/im0,+1. The con-
straints of our particular problem are as follows:

1. We must basis for H,, that is in reduced echelon form.

2. In addition to the basis for H,,, we must find a basis for B, = im0, 4;.
The union of the bases H,, U B,, must be in reduced echelon form.

3. For each basis chain 8 € B,,, we must find a corresponding b € C,, 41 such
that 0,41 (b) = 8.

4. Although we do not have an explicit matrix representation of 9,, : C,, —
Ch_1, we have a list of all the n-simplices in K,, for each n, and for each
simplex, z € K,, we can compute the chain 9, (z) in time O(n).

17

Note that as our boundaries are stored in Chain data structures, taking the
transpose of 9,, or even performing row operations on the matrix 8, can be
costly. We therefore limit ourselves to performing “column” operations only.

5.2 Solution

As we must compute both the kernel and the image of every boundary map,
and both involve Gaussian Elimination, it would be ideal to perform Gaussian
Elimination on each boundary matrix only once, computing the kernel and
image simultaneously. We propose the following scheme:

Let I be the size of K,,, and let m be the size of K,,_1. Then, (8,) is an
m x | matrix. To find the kernel and image, we augment (9,) vertically with
the ! x [identity matrix I; as:

On
()

Now, via column operations, we put the top half of the matrix in column-
echelon form. We are left with the block-triangular matrix:

(,31 ,B’r'|0"' 0)
b; -+ b, | Cl Cl—r

We have that {f1,...,5-} is a basis for im9, = B,—1 with d,(b;) = ;.
Also, we have that {¢i,...,{_+}, span kerd,, = Z,, although the chains {(;}
are not necessarily linearly independent.

Now, to find a basis for H,, = Z,,/ B,,, we take our basis for B, {f1,.-.,0r}
from our column reduction of (9,4+1), and we take our spanning set for Z,,

{¢1,.--,G—r} from the column reduction of (9,). We put all the chains in a
matrix:

(Br - BrlG - G)

and, using column operations, we put the matrix into reduced-column echelon
form without modifying {f1,...,0r}. We will have:

(ﬂ1 /Br|"71 T 0)

where {n1,...,n:} form are in reduced echelon form and form a basis for H,.

At this point, we have all that is necessary to build our Homology Group
data structure. Also, all of these computations can be implemented using the
Cycle and Chain data structures.

5.3 Analysis

Column-reducing the first matrix (8,, augmented with I;) requires O(I?) column
operations. Each column starts out with at most (n + 2) nonzero entries, but at
the worst case, has [4+ m nonzero entries. We thus estimate the first Gaussian
Elimination stage to take time O(I2(l + m)). That is, determining the image
and kernel of 8, is approximately O(|K,|?).

18

The next stage, computing ker 0, /im 0,41 via the second Gaussian Elimi-
nation takes at most O(dimg(Z,) dimg(B,)) column operations. Since B, C
Zy, C Cp, and since each column has at most | K, | nonzero entries, a bound for
this stage is O(|Kp[®).

Thus computing the n-th homology group, H,, takes O(|K,|?) operations.
Computing all homology groups of a simplicial set K takes O(Zﬁio |Kyn|?), or
O(|K?)

In this analysis, we have not taken advantage of the sparse structure of the
boundary map. It is important to note that more sophisticated methods may
give betters bounds for these computations..

6 Computing Betti Numbers Using Simplicial
Sets

We now present an algorithm for computing the betti numbers of a set that
takes advantage of the quotient capabilities of the simplicial set. The algorithm
relies heavily on the Long Exact Sequence, which we review below.

6.1 The Long Exact Sequence

It is a standard result from Topology that if X is a topological space, and
A C X is a subspace, then the homology groups of X, A, and X/A are very
closely related. In particular, we have the following theorem as given in [6]:

Theorem 5 If X is a space and A is a nonempty closed subspace that is a
deformation retract of some neighborhood in X, then there is an exact sequence

o Ho(A) 5 Ho(X) 25 Ha(X/A) 22 Hy oy (A) 2 By (X)) — -
<o — Ho(X/A) — 0

where i is the inclusion A — X and j is the quotient map X — X/A.

In the statement of the theorem, i, and j, denote the induced maps on ho-
mology from the maps on topological spaces. H,, denotes the reduced homology
group.

The reduced homology group H differs from the regular homology group in
that the boundary map 8y is defined to take the value @) for all points in Xj.
This has the effect of making H,, = H, forn>0and Hy = Hy® Z.

An “exact” sequence is so-called because the kernel of one map is equal to
the image of the map that precedes it. For example, ker j, = imi.,.

The maps i, j«, and 0, fit naturally within the context of our simplicial
set data structures. As chains defined on a subcomplex of X point to the same
simplices as the global chains in X, the inclusion map 4, is essentially trivial. j,
corresponds to replacing all simplices in A with degenerate ones, exactly what
happens to a chain after our COLLAPSE operation. Lastly, 9, is the standard
boundary construction.

19

The Long Exact Sequence provides a convenient way of seeing how a local
homology computation relates the the global homology.

6.2 Outline of The Homology Computation Algorithm

Our algorithm for computing homology is essentially a direct implementation
of the Long Exact Sequence. To compute the homology of the simplicial set X,
we use the following algorithm:

CoMPUTE-HoMoOLOGY(X)
1 A <+ CHOOSE-SUBCOMPLEX(X)

H,(X) + PiecE-TOGETHER(H, (X/A),fI*(A))
return H,(X)

2 H,(A) + CoMPUTE-FULL-HOMOLOGY-GROUP(A)
3 COLLAPSE(A)

4 H,(X/A) « CompuTE-HOMOLOGY(X/A)

5 UNCOLLAPSE(A)

-

7

First, we choose a subspace A C X. The exact details of the selection are
given in Section 6.5. Next we compute the full homology group of A (including
the boundaries) using an existing homology algorithm, such as the one presented
in 5. Now, we collapse A and recursively compute a basis for the homology group
of X/A. Lastly, we “piece together” the homology of X from the homology of
X/A and A using the properties of exactness.

The “piecing together” works by observing that H,(X) splits as

H,(X) = kerOulp, (x/a) ® (Hn(A)/imdniilgy (x/a))

when our homology coefficients are from a field. This limits the algorithm to
computing field homology only, but as the betti numbers are the same for integer
and field homology, it is an acceptable limitation.

Calculating both of the summands is relatively easy using the structure we
have already established. However, we must also find an explicit isomorphism to
compute a basis for H,,. For this reason, we need to compute the full homology
group of A, as described in section 4.3.

6.3 Piecing Together X from X/A and A

The real work of the algorithm is in the piecing together step. It will be useful
to keep the following diagram in mind as we go over the details of how our
procedure works.

A (X) 25 Ho(X/A) 25 Hyoy(A) 25 Hoor (X)

The PIECE-TOGETHER function uncollapses A C X, and computes the ho-
mology of X from the homology of X and X/A. The inputs to the function
are H.(X/A), a basis for the set of homology groups of X/A, and H,.(A), the

20

complete set of homology groups of A. H, (A) is stored in our data structure de-
scribed in 4.3 and H,(X/A) is just an array of Chains. We use collections ker 9,
and im 0,,, which are collections supporting constant time insertion, and linear
time to iterate through all elements (a linked list meets these requirements). d
is assumed to be the dimension of the complex X. We also use the convention
that H_, = {0}.

P1ECE-TOGETHER(H, (X/A), H,(A))
1 forn+0tod

2 do ker 0, < 0

3 imd, « 0

4 for each n € homologyBasis|H,,(X/A)]

5 do (h, (b, B)) + CYCLE-DECOMPOSITION(H,, 1(A),8,(n))
6 if h=0

7 then INSERT(ker 0,1 — 3)

8 else INSERT (im O, h)

9 H,_1(A)/im 8, < QuoTiENT(homologyBasis[H,_1(A)],im 8,)
10 E[1(X) «— (_E[n_l(A)/lm an) U ker an_l

n—
11 return H,(X)

Lines 4 and 5 compute the boundary of each basis cycle of H, (X /A), which
is guaranteed to be in H,_;(A) by the long exact sequence. If the boundary
is 0, then, the cycle is in ker 9, by definition. We lift the cycle n € X/A to a
cycle in X by subtracting S from it. The boundary of n — 8 in X isb—b =0,
so this is a valid lifting. When the boundary of n is not 0 in A, line 8 assigns
On(n) to im 9,.

By exactness, im j, = kerd,, 1. As the sequence is split, H, 1(A4)/imd, =
ker j,. Thus, line 10 correctly computes a basis for H,, 1(X) as ker j, U im j,.

6.4 Analysis

It is hard to perform a precise run-time analysis of the COMPUTE-HOMOLOGY
algorithm, as it is mostly determined by the sizes of the homology groups of X /A
after various collapses. These groups depend heavily on our choice of A, and
are not easily given tight bounds on their sizes. We perform an exact analysis
in terms of the sizes of the intermediate complexes X/A and their homology
groups, and then in the next section discuss the choice of A and approximate
conjectured run-time bases on this choice.

At any particular stage of the algorithm, we will have an A and an X/A.
To distinguish them over the course of the algorithm, at the i-th level of the
recursive algorithm we label them as A and (X/A)!. We also let N be the
number of collapses we are allowed to make before (X/A)® is a point set, which
is the same as the number of levels deep the algorithm gets.

Over the course of the processing, we completely collapse, and then com-
pletely uncollapse X. The total cost of the N collapses is linear in the size of
X.

21

We assume that line 1 of the COMPUTE-HOMOLOGY algorithm is a constant-
time operation. Over the lifetime of the algorithm, this line takes time O(N).

Line 2, computing the full homology groups of A%, is cubic in the size of A?.
More precisely, the i-th instance of line 2 takes time O(EZZO |AL3).

We now have that the run time T of CoOMPUTE-HOMOLOGY(X) is

T = O(X|) +O(N +ZOZ|A'

N
ZTIME(PIECE ToceTHER(H, ((X/A)Y), H,(AY)))
i=1

> 100 |4;P) + Tive(Piece-ToGETHER(H, (X/A)Y), H,(AY)))

The simplification is allowed since N < |X| and, assuming there are no “lone
points”—that is, each point is a face of at least one edge—we have that | X| =
> |Ai]l. We devote the rest of this discussion to analyzing the performance of
PIECE-TOGETHER.

In each iteration of the main loop, other than constant-time collection in-
sertion operations, the only work is computing the cycle decomposition of the
boundary of each homology basis cycle in lines 4 and 5, and then computing
the quotient H,, 1(A?)/imd,.

Computing the decomposition of the n-cycle 8,41(n) takes time

O(Inl(log |45, + [45]) = O((X/A) 111 145D

Thus, over a full homology computation, this line takes time

N d
DD HL(X/A) O((X/ A | [AL])

i=1 n=0

which, the reader will notice, is a degree 3 term. It will be crucial to choose our
At such that this term does not get out of hand.

The quotient operation of line 9 can be carried out with |H,_;(A%)||im 8,,]
chain additions. As each chain is of length O(]A%_,|), and as im 8, is of size
O(|H,((X/A))]), over the course of the algorithm line 9 takes time

Z Z O(| AL | 1H (A5)| [Ha ((X/4))))

i=1 n=0

Again, this is a degree 3 term.
We now have that the run time of CoMPUTE-HoMOLOGY(X) is

d

O > [14LF + (/)] (XA || AG]+ |4l | o1 (49)])])

i=1 n=0

22

Rearranging terms, we get see the run time to be

N d
0> 14 [IAZI2 + [Ha(X/A)) [(X/A) 1] + [Hor (X/A))] [Hi (49)]])

i=1 n=0

This is definitely an improvement over the straightforward computation, which
takes time O(ZZZO | X,|?). We now give discussion on how the A’ are to be
chosen, and approximate run-times based on these choices.

6.5 Choice of Subcomplex

There are three obvious choices for the subcomplex A C X. In traditionally
divide-and-conquer algorithms, we often divide our problem into two equal
parts. Thus, the first candidate for the choice of A is a subcomplex of half
the size of X. The second choice would attempt to minimize |A|. specifically,
we can always choose an A of size 2 or 3 by choosing the lowest-dimensional
simplex in the simplicial set. Lastly, we can choose the biggest possible simplex,
the highest-dimensional one, thereby hoping to minimize |H,(X/A)|.

Half of Complex We quickly see that even when ignoring issues of how to
partition a complex into two equal parts, choosing A so that |A| = %|X | is
an improvement over Gaussian Elimination, but still leaves us with a cubic
run-time. We can bound the run-time of the algorithm to be:

N d) N d |Xn|
O I = o Y5

i=1 n=0 i=1 n=0
d N 1
= O(Y 1% Y ()
n=0 =1

d
1
= O(? Z |Xn|3)a
n=0

which is asymptotically the same as Gaussian Elimination, but may be faster
in practice.

Although we have not discussed the specifics of choosing half of the complex,
one can imagine a greedy partitioning algorithm giving a choice of A to be
roughly half of X, and adding a linear term to the run-time.

Smallest Simplex The other extreme from choosing A as half of the complex
is choosing A to be the smallest simplex in X. First, this will mean choosing
edges, which will have size 2 or 3 depending on how many unique endpoints
there are. After all edges are gone, we proceed to choosing 2-simplexes, which
will be of size 2, and then 3-simplexes, and so on until we exhaust the highest-
dimensional simplexes. In this form, the algorithm is similar to the one presented
in [3], but there are some significant differences.

23

As we collapse each simplex individually, N in this case is equal to |X]|.
Computing the cycle group decomposition of A will now be bounded by O(3%) =
O(1). Likewise, if A is a k-simplex, computing the kernel of the boundary map
only requires searching for those cycles in Hy1(X/A) which do not have A in
their boundary. So far, we have been using linked lists to represent chains, but
here, if we switch to hash tables for the homology basis cycles, this step can be
performed in constant time. Consequently, at each stage computing ker 0,, will

either take time O(H,(X/A)) or it will not be necessary. The last remaining

piece, computing H,(A4)/im dp41, is also trivial and can be done in constant
time. The total run-time is now seen to be

|X| d

O3 S 1 ((X/4))))

i=1 n=0

Intuitively, choosing A in this way will cause H,((X/A)?) to get very large.
The highest H,((X/A)*) can possibly get is O(|X,|). Choosing A in this way
gives, like the way describe above, an approximately quadratic run-time.

Largest Simplex The last remaining method for choosing our subcomplexes,
At is to choose the highest-dimensional simplex in X. This will result in larger
cycle decomposition and quotient computation times, but will, intuitively, keep
H,((X/A)) to be a much smaller quantity.

Now, A? has at most (%) k-simplices, and | 47| is of size at most 2¢. Bounding

|(X/A)| by |X,| and H,(A) by (%), we see the run-time to be

d 2
0> 1X, B [(5) V(X A)) X1 + [(X/4))) @])
n=0

where E denotes expectation over ¢ = 1,..., N. This sum is seen to be an
d ~ .
A IXal2 B [|H, ((X/4))]])
n=0

quantity, and is thus worse than the case of choosing A? to be the smallest
simplex.

7 Conclusions

We have introduced the simplicial set construction in a computational setting,
and shown how the flexibility the construction provides can be useful in the
context of Computational Topology. In particular, we have shown how to reduce
the size of a simplicial set without affecting its homological type. We have also
presented an algorithm for computing the betti numbers of a simplicial set that
runs in approximately cubic time for dimensions higher than 3, which is an
improvement over current methods.

24

It is still necessary to implement the algorithms described above to test
them in a practical context, especially since some of the results above have
asymptotically the same run times as existing algorithms. The performance
of these algorithms depend heavily on constant factors, which have yet to be
determined.

The notion of topological persistence presented in [5] has yet to be applied to
the homology computation algorithm presented above. A direct translation of
the idea of topological persistence may not be possible, but we believe a similar
notion may be applicable.

Acknowledgments This thesis is the culmination of a year of weekly discus-
sions with my advisor, Professor Gunnar Carlsson. I'd like to thank Professor
Carlsson for introducing me to the field of Computational Topology in the first
place, and also for patiently teaching me the requisite mathematical founda-
tions. This last year has been a struggle, trying to fit my often naive intuitions
into a formal framework, but Professor Carlsson has always been patient with
me, and has always kept me on the right path.

T’'d also like to thank Afra Zomorodian and Vin de Silva for their early
instruction and encouragement. Afra introduced me to the Computer Science
end of Computational Topology, and Vin has always been extremely helpful
when I’ve needed guidance or clarification.

References

[1] M.A. Armstrong, Basic topology, Springer-Verlag, New York, 1983.

[2] Edward B. Curtis, Simplicial homotopy theory, Advances in Mathematics 6
(1971), 107-209.

[3] C. J. A. Delfinado and H. Edelsbrunner, An incremental algorithm for betti
numbers of simplicial complexes on the 3-sphere, Comput. Aided Geom.
Design 12 (1995), 771-784.

[4] D. Dummit and R. Foote, Abstract algebra, 2 ed., John Wiley and Sons,
Inc., New York, 1999.

[5] H Edelsbrunner, D. Letscher, and A. Zomorodian, Topological persistence

and simplification, 41st Symposium on Foundations of Computer Science
(Redondo Beach, CA), 2001.

[6] Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge,
England, 2002.

[7] Thomas H.Corman, Charles E. Leiserson, and Ronald L. Rivest, Introduction
to algorithms, The MIT Press, Cambridge, MA, 1990.

[8] M. Jungerman and G. Ringel, Minimal triangulations on orientable surfaces,
Acta Math. 145 (1980), 121-154.

25

