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Why Is CG Difficult?

* Floating Point Requirements
— Approximately 400 MFlops for 1M triangles

— For example: Infinite Reality: Eight geometry
engines at 480 MFlops each for 10 million
triangles per second peak

* Memory Bandwidth

— Approximately 250 million
frame buffer accesses to
rasterize 1 million 100-
pixel triangles

Rasterization

* Memory size increase 3-4 orders of magnitude
» Speeds have not kept up!
* Number of pins remained relatively constant.

* Distributed frame buffers were proposed to
address the problem [Fuchs77][Parke80].




A Pixel-Planes

* Henry Fuchs’ Idea: build processing into
the frame buffer, a processor per pixel.

—UNC designs are called enhanced
memories,

— not SIMD processors

» Enabler was linear expression tree...

A Linear Expressions

Ax+By +C
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Linear Expressions




Depth and Color Interpolation

z=F(x,y)
and color =
F(x,y)
for each of
red,
green, and
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* Pixel-Planes 1 - 4 processors
* Pixel-Planes 2 - 4 by 64
* Pixel-Planes 3 - 64 by 64




Pixel-Planes 4 (1986)

LN

* Full-size (512 by 512 pixel) prototype

» 2048 enhanced memory ICs
* One Geometry

Processor
72 bits memory

per pixel

Scanout

*512 x 512 frame buffer
*128 processors/chip
*2048 EMC chips

*32 boards

*Clock speed: ~ 10MHz




Performance

» 35K triangles per second < CSG

» Spheres as a primitive  Shadows

References

* The first reference describes the algorithms, while the
second describes the machine as-built.

* Fuchs, H., Goldfeather, J., Hultquist, J., Spach, S.,
Austin, J., Brooks, F., Eyles, J., and Poulton, J., "Fast
Spheres, Shadows, Textures, Transparencies, and

Image Enhancements in Pixel-Planes," SIGGRAPH '85
Conference Proceedings, Vol. 19, No. 3, July, 1985, pp

111-120.

John Eyles, John Austin, Henry Fuchs, Trey Greer and
John Poulton, “Pixel-Planes 4: A Summary”,
Eurographics Workshop on Graphics Hardware, 183-
207, 1987.

* Web pages at http://www.cs.unc.edu/~pxpl




Lessons Learned from Pxpl4

* Programmability useful!
* More pixel memory required
* Tris small,

— many processors unused

» Must extend parallelism to geometry
processing — fully parallel pipeline

Graphics Pipeline

User-Specified Screen Pixels with
Coordinates Coordinates correct
(floating pt.) (integer) color

(3.7,0.9) j (273, 407) é
A ® (240, 390) (298, 396)

(3.5, 0.4) (4.1, 0.5)

Geometry

. Rasterization
Processing




Sorting Classification

WarpEngine Pixel-Planes 5

Geometry
Processors

Pixel-level
Processors

video video
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Sort Middle

 Straightforward and well
known.

* Network limits
scalability.

¢ Somewhat scalable in
display size.
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PixelFlow




Sort Middle (Pixel-Planes 5)

C—

C—

Application
pp \_)

E—

0 Perform geometry processing
in parallel by primitive. Sort
each transformed primitive to
determine where on screen it
belongs.

Oct. 2001

—>

_—> Frame

Buffi
_) ufter

0 Route transformed
primitive to renderer
responsible for appropriate
screen regions.

Screen-Space Subdivision

Pixel processors (128 x 128)

remapped to screen tiles
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Virtual Frame Buffer

L\

» Must sort all primitives before scan
conversion

* Pipelined two frames,
—one in geometry stage,
—another in scan conversion

» Penalty: memory & increase in latency

ly) Load Balancing on pxpl5

» Greedy algorithm
» Master collects info on # of prims / region
« Starts token, which flows GP to GP

Rasterization
oder |1 | 2 | 3 [3][2]123

Size of box indicates # of primitives

* Last GP sends token back to master

When does this fail?
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160 MW/s ring network
=

Sun
Workstation

128 x 128

Technology

-

 1-bit ALU

» Quadratic evaluator
Ax?+By?+Cx+Dy+Exy+F

- 208 bits/pixel |

» 4K backing store/pixel

* 40 MHz clock speeds

<« | Frame
Buffer

multiple frame
buffers: hires,
dual NTSC,

color sequen.
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Shading

* Finally enough bits to do cool shading!

» Language was assembler with macros
(sqrt, norm, etc). Word length variable.

———
i
Video |
Image courtesy Division — from Pixel-Planes 6

Problem: too hard to write code!

Performance

 Triangles small, but

the size doesn’t matter as long as overlap
factor does not increase much!

Record Performance on GPC “head”

Dataset. 2M Triangles/Sec Sierra Nevada

Elevation
Dataset

o =

Model courtesy GPC committee (now SPEC) Dataset courtesy Herman Towles and Sun Microsystems

Lastra, Oct. 2001
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! Rasterizer I
Processor I I
Geometry Rasterizer
Processor I I
Geometry Rasternzer

Processor

Crossbar
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Image Composition

» Each node renders subset

of primitives.
% || Rend 3 .
: enderer » Depth determines which
" sample proceeds.

* 256 wires (@, 200 MHz, bi-directional (> 100 Gb/s) board to board

stra, Oct. 200

1

A Lastra 2810w 29

Sort Last (Image Composition)

Scalable in # of primitives

Requires high-bandwidth
network (next slide)

Anti-aliasing expensive
Transparency difficult.
Not scalable in display size.

5011 last

% 1deo
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A Composition Bandwidth

* Need enough bandwidth for:
display size x frame rate x subsamples

* For 1280 x 1024 at 72 Hz, with 5 sample
antialising,

—need 10 Gigabits/sec of bandwidth

PixelFlow Goals

LY
* Investigate image composition

» Add high-level shading language

—Turned into programmability
everywhere in pipeline

* Immediate mode from a parallel machine

2
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PixelFlow Node

Geometry Processors
Network (128 x 64)

Interface * ,f

|
* $ Composition
L LAC O Geometry  Network

Lastra, Oct. 2001

Shading Functions

— Crown, label, scuffs, dirt, Phong
+ Alley

— Wood, reflection map
+ Ball

— Phong
+ Light

— Shadow map

Lastra, Oct. 2001
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Bump Maps

Images by Brad Ritter, Hewlett-Packard.

Oct. 2001

}@ Enabling Programmable Shading

» Shading Language
—pfman

—Similar to RenderMan with extensions
mainly for speed on PixelFlow

» Extensions to OpenGL to allow access
from geometry code.
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#define BRICK_WIDTH 0.25
#define BRICK_HEIGHT 0.08
#define MORTAR 0.01

surface brick (
output unsigned varyding fixed<8,8> gl rc co[3]

unsigned texture varying fixed<16,16>

gl material texcoord[2]) ({

fixed<8,0> row;

tt = gl material texcoord[l] % (BRICK HEIGHT + MORTAR) ;
row = gl material texcoord[1] / (BRICK _HEIGHT + MORTAR) ;

gl rc co[0] = 0.5;
if (tt > brick height)

gl rc co[l] =0

gl rc co[2]

// both brick & mortar same red
// Is it a row of brick or mortar?

// within mortar row

within brick row

Deferred Shading

Shading Node

Rasterization Nodes

Geometry Geometry
Processor Processor

Rasterizer Rasterizer

* User selects the
number of rasterization
and shading nodes to
suit the workload.

Oct. 2001

Shading
of visible

Rasterizer i
pixels

normals, etc.)
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W Advantages and Disadvantages

* You only shade pixels that are visible
* Increased coherence
o] U]

* Must save and transmit many
parameters — high bandwidth demand

2

Transparency

L\
* A problem with image composition

» \We implemented
—Screen door when antialising

—Mammen’s algorithm with transparent
polygons on shading nodes

« Still, sort-last is not good when many
polygons are transparent

20



Immediate vs. Retained Mode
AN (direct vs. indirect rendering)
* Immediate-mode limited by host

to graphics bandwidth. Host

Workstation
* Display lists stored on nodes

_ 240 MB/s
* Our intent was to attach peak

PixelFlow to a parallel machine

PixelFlow

node
Parallel Machine

Geometry & & 4

Network

PxFl node| |PxFlnode| |PxFIlnode

Composition
Network

Performance

* PixelFlow was built with industrial
partners, first Division, then HP

» Demonstrated running at about 43 million
triangles per second on 36 nodes

21
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Graphics Performance

One-pixel polygons (~10M polygons @ 30Hz)

Slope ~2.4x/year UNC/HP PixelFlow
(Moore's Law ~ 1.7x/year)

GeForce 3
& Radeon

SGI
R-Monster
SGI

R
Division

UNC Pxpl5

Flat

. Division VPX
shading

(1 E&S
Stellar GS1000 F300 Textures
Gouraud Antialiasing

shading

94 96 98 00
Year

Graph courtesy of Professor John Poulton

Lastra, Oct. 2001
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Why Use Polygons At All?

* Pros
—Convenient for modeling (by hand)

—Good representation when large on
screen

—Useful for man made objects

» Cons
—Huge number to model natural scenes
—Fairly complex to render

WarpEngine
» Hardware architecture for rendering from
depth images
* Voicu Popescu
—Also John Eyles, i’f”;* _
—Josh Steinhurst s

Kamoyv Video

23



Rendering Algorithm

« WarpEngine algorithm
—Interpolate between reference image samples
—Warp (transform) them forward to image space
—Z-composite into sub-pixel (2x2) warp buffer

* No interpolation

across “skins”

Forward vs. Backward Map

» Conventional scan conversion
—For each pixel, compute color
—Basically backward map

» \WarpEngine
—Warp sample forward

24



o 2-bit offset

* More precise

sample

location

 2-pixel wide

filter kernel

* Similar to

sparse buffer

Inexpensive Antialiasing

2 x 2 Offset No Offset

’ ’
- - Zoomed
=
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Why Forward Map?

» Low setup cost!
—No edge-expression computation
» Exploits coherence

—IBR tile (16x16 image) tends to need
same interpolation factor

—Can use efficient SIMD warper

Architecture

from host
Tile Tile
Cache Cache

v ;r f
Network Interface Network Interface

| Warp Array | | Warp Array |

v v

| Region Accumulator | | Region Accumulator |

' v

| Reconstruction Buffer | Reconstruction Buffer

y

Frame Buffer

v

()




LEE

Coeffici

WarpArray

ALU Local
Micro- Memory
Instructions  Address

5

ents

* Nearest
neighbor

Y

Linear
Expression
Evaluator

&

4

128 bytes |

‘ »

'

PE
Main
Memory

16 PEALU's <
A

«——16 PEs

Input/Output
Buffer

16 Panels

of 16 PEs each

connectivity
* In/Out/\Warp
pipelined

e Similar to
PixelFlow
design

Region Accumulator

From Warp Array

t

| boby dyud W

Multiplexer

¥

I
v

Sample
Processor

z-buffer

<>
(€—»| RGBI/Offset/Present (Buffer 0)
N e !

RGB/Offset/Present (Buffer 1)

<4—16641 Words———»

<4—128 bits——»

R

to

| Shift Register ‘_> Reconstruction
|

Buffer

* Pixel interleaved
128 x 128
o Soft z?

* Reconstruction
pipelined with
next region
rendering
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Sort First for Parallelism

L\
* How to distribute work across chips?

» Sort by screen space regions
—128x128 pixel region

» Sort First [Mueller] refers to sorting
primitives as soon as possible

* Tile coherence lowers overlap factor

Sort First

* At first glance, like sort middle.

» Advantage: only primitives that
move to other screen regions
need to be transferred

* May scale better in display size

* Difficulties in memory access and
editing

video
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Expected Chip Specs

AN

* ASIC 12x16 mm
0.18 micron

« > 300 MHz

* 4-node VGA

* 32-node HDTV

» Each chip Simulation on video
—100M Samples/sec B> BN P
—4.8G Bytes/sec bandwidth

astra, Oct. 2001
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Future

__d

* Programmable shading (finally happening!)
— More memory
— Floating point
— Regular architecture?

» Take advantage of small primitives

» Support for image-based primitives?

* Big displays with lots of pixels!

Lastra, Oct. 2001 Slide 59
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