
1

Real-Time
Graphics Architecture

Kurt Akeley

Pat Hanrahan

http://www.graphics.stanford.edu/courses/cs448a-01-fall

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Geometry

Outline

� Vertex and primitive operations

� System examples

� emphasis on clipping

� Primitive generation

� OpenGL selection

2

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Readings

Required

� High-Performance Polygon Rendering, Akeley and
Jermoluk, Proceedings of SIGGRAPH ’88.

� RealityEngine Graphics, Akeley, Proceedings of
SIGGRAPH ‘93.

� InfiniteReality: A Real-Time Graphics System,
Montrym, Baum, Dignam, and Migdal, Proceedings
of SIGGRAPH ’97.

Recommended

� Curved PN Triangles, PDF to be on web site soon

� OpenGL Specification

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Modern Graphics Pipeline

Application

Geometry

Rasterization

Texture

Fragment

Display

Already covered

Today’s lecture

Command

3

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Geometry Processing

Two types of operations

� Vertex operations

� Operate on individual vertexes

� Primitive operations

� Operate on all the vertexes of a primitive

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Vertex Operations

Transform coordinates and normal

� Model � world (not rigid)

� World � eye (rigid)

Normalize the length of the normal

Compute vertex lighting

Transform texture coordinates

� Generate if so specified

Transform coordinates to clip coordinates (projection)

Divide coordinates by w

Apply affine viewport transform (x, y, and z)

4

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Coordinate Transformation

4x4 matrix, 4-component coordinate

Single-precision floating point is typical

Matrices can be composed

� By the application

� By the implementation

� Be careful about invariance

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m42 m44

x

y

z

w

x’

y’

z’

w’

=

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Normal Transformation

Approaches to acquiring Mu
-1 include

� Maintain separately, or

� Compute when coordinate matrix is changed, or

� Force specification by application

Why transform normals? (Can lighting be computed in model coords?)

� Model matrix may not be rigid

� But, recall quadrilateral decomp. problem

Why normalize normals to unit length

� Lighting equations require unit length

� Non-rigid model matrix distorts lengths

� Requires reciprocal square root operation

(nx’ ny’ nz’) = (nx ny nz) Mu
-1 Mu = upper-left 3x3 of M

5

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Normal Transformation

Approaches to acquiring Mu
-1 include

� Maintain separately, or

� Compute when coordinate matrix is changed, or

� Force specification by application

Why transform normals? (Can lighting be computed in model coords?)

� Model matrix may not be rigid

� But, recall quadrilateral decomp. problem

Why normalize normals to unit length

� Lighting equations require unit length

� Non-rigid model matrix distorts lengths

� Requires reciprocal square root operation

(nx’ ny’ nz’) = (nx ny nz) Mu
-1 Mu = upper-left 3x3 of M

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Lighting

Simple n dot l evaluation

� Plus ambient and specular

� Multiple lights, …

� Remember, n is not a facet normal

Possibly two-sided

� Compute for n and –n

� Both results may be needed!

� Much arithmetic is shared

View-direction simplification

� Eye vector is [0,0,1]

� Saves arithmetic

There is no such thing as view direction!

n

l

-n

6

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

No Interdependencies

Vertex operations apply to vertexes independently

Transform coordinates and normal

� Model � world

� World � eye

Normalize the length of the normal

Compute vertex lighting

Transform texture coordinates

Transform to clip coordinates

Divide by w

Apply affine viewport transform

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Primitive Operations

Primitive assembly

Clipping

Backface cull

Transform coordinates and normal

� Model � world

� World � eye

Normalize the length of the normal

Compute vertex lighting

Transform texture coordinates

Transform to clip coordinates

Assemble vertexes into primitives

Clip primitives against frustum

Divide by w

Apply affine viewport transform

Eliminate back-facing triangles

7

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Primitive Assembly

Assemble based on application commands

� Independent or strip or mesh or ….

Decompose to triangles

� Prior to clipping to maintain invariance

Algorithm properties

� Fixed execution time (good)

� All vertex operations up to this point have this property

� Vertex interdependencies (bad)

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Clipping

Two types

� Point, line: eliminates geometry

� Polygon: eliminates and introduces edges

Line Segments Polygon

8

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Clipping

Two types

� Point, line: eliminates geometry

� Polygon: eliminates and introduces edges

Invariance requirements

� Pre-decomposition to triangles

� Care with edge arithmetic

Algorithm properties

� Vertex interdependencies (bad)

� Data-dependent execution (worse)

� Variable execution time (substantially different)

� Variable code paths

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Backface Cull

Facet facing toward or away from viewpoint?

� No facet normal (other APIs?)

� Use sign of primitive’s window coordinate “area”

� Remember, only triangles are planar

Use facing direction to

� Select lighting result (for n or –n)

� Potentially discard the primitive

Advance in sequence to improve efficiency?

(x0y1 - x1y0) + (x1y2 - x2y1) + (x2y0 - x0y2)

2

Triangle area =

x0,y0 x1,y1

x2,y2

9

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Some Examples

Systems

� Clark Geometry Engine (1983)

� Silicon Graphics GTX (1988)

� Silicon Graphics RealityEngine (1992)

� Silicon Graphics InfiniteReality (1996)

� Modern GPU (2001)

What we’ll look at

� Organization of the geometry system

� Distribution of vertex and primitive operations

� How clipping affects the implementation

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Clark Geometry Engine (1983)

1st generation capability

Simple, fixed-function pipeline

� Twelve identical engines

� Soft-configured at start-up

Clipping allocated ½ of total ‘power’

� Performance invariant (good)

� Typically idle (bad)

Coordinate

Transform

6-plane

Frustum

Clipping

Divide by w

Viewport

10

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

GTX Geometry Engine (1988)

2nd generation capability

Variable functionality pipeline

� 5 identical engines

� Modes alter some functions

� Load balancing is difficult

Clipping allocated 1/5 of ‘power’

� Clip testing is the constant load

� Actual clipping

� Slow pipeline execution (bad)

out of balance

� Typically isn’t invoked (good)

Coord, normal

Transform

Lighting

Clip testing

Clipping state

Divide by w

(clipping)

Viewport

Prim. Assy.

Backface cull

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

RealityEngine Geometry (1992)

3rd generation capability

Variable-functionality MIMD organization

� Eight identical engines

� Round-robin work assignment

� Good ‘static’ load balancing

Command processor

� Splits large strips of primitives

� Shadows per-vertex state

� Broadcasts other state

Primitive assembly

� Complicates work distribution

� Reduces efficiency of strip processing

Command
Processor

Round-robin
Aggregation

11

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

RealityEngine Clipping

Clipping introduces data-dependent
(dynamic) load

� Cannot be predicted by CP

Dynamic load balance accomplished by:

� Round-robin assignment

� Large input and output FIFOs

� For each geometry processor

� Sized greater than (n) long/typical

� Large work load per processor

� Minimize the long/typical ratio

� Unlike pipeline processing

Command
Processor

Round-robin
Aggregation

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

InfiniteReality Geometry (1996)

3rd generation capability

Variable-functionality MIMD organization

� Four identical (SIMD) engines

� Least-busy work assignment

� Good ‘static’ load balancing

Command processor

� Splits large strips of primitives

� Shadows per-vertex state

� Broadcasts other state

Primitive assembly

� Complicates work distribution

� Reduces efficiency of strip processing

Command
Processor

Sequence Token
Aggregation

12

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

InfiniteReality Clipping

Dynamic load balance accomplished by:

� Least-busy assignment

� Even larger FIFOs

� Large work load per processor

Likelihood of clipping reduced by

� Guard-band clipping algorithm

Command
Processor

Sequence Token
Aggregation

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Guard-Band Clipping

Expand clipping frustum beyond desired viewport

� Near and far clipping are unchanged

� Frustum clip only when necessary

Ideal triangle cases:

� Discard if outside viewport, else

� Render without clipping if inside frustum, else

� Rasterizer must scissor well for this to be efficient

� Clip triangles

� That cross both viewport and frustum boundaries

� That cross the near or far clip-planes

Operation is imperfect, but conservative

13

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Guard-Band Clipping Example

Viewport

Guard-band

Rendered

Discarded

Clipped

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Modern Geometry Engine (2001)

Utilizes homogeneous rasterization algorithm

� No clipping required

� Hence no primitive assembly prior to
rasterization

� Push backface cull to rasterization setup

� This is where triangle area is computed anyway

All geometry engine calculations are

� On independent vertexes – easy work distribution

� Not data dependent – minimal code branching

Allows efficient, SIMD geometry engine implementation

Programmability?

14

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Primitive Generation

Why do this?

Some important reasons:

� Match application semantics

� Move computation from CPU to GPU

� Reduce storage requirements

� Perverse desire to complicate the GPU design ;-)

Highest-priority reason:

� Reduce CPU to GPU data rate!

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Basic Idea

Introduce new pipeline stage

� We’ll treat as part of geometry

Two-step application

� Specify generation function

� Modes

� Data values (potentially large)

� Execute generation function

� Block-mode commands, and/or

� Vertex-like commands

Generated geometry

� Is treated as if app-specified

Prim. Generate

Command

Geometry

Rasterization

Texture

Fragment

Display

Application

15

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Problems with Primitive Generation

Specification may be complex

� E.g. 4th order 2D OpenGL Evaluation mesh

� May be more data than generated triangles!

� Specification/execution may be sequential

� Require double buffer, separate execution engines

Cracks and T-vertexes

� Different surfaces must abut

� But arithmetic is of finite precision

� Generally requires “stitching”

� OpenGL accommodates this with mixed evaluation and
vertex specification

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Stitching Patches Together

4x4 Patch 5x5 Patch

16

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Stitching Patches Together

4x4 Patch 5x5 Patch

Stitching vertexes introduced

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Problems with Primitive Generation

Implementation may be complex

� E.g. Trimmed NURBS

� Limit tesselation to curve-specified region of 2D domain

� Algorithm doesn’t “fit” GPU architecture

� Don’t redesign a general-purpose MP system

Semantics may not match application’s

� E.g. Trimmed NURBS

� Getting this right is extremely difficult

� Don’t trespass on application’s “secret sauce”

Where should primitive generation be done? ….

17

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Where is Primitive Generation Done?

On geometry engines

� Reduces maximum vertex rate

� Generation consumes GE cycles

� May serialize setup/execution

� GEs not designed to double buffer

� Complicates load balancing

� Command Processor distribution

� Complicates state handling

� Command Processor managed this

OpenGL designed to accommodate this

� Awkward state semantics

Command
Processor

Sequence Token
Aggregation

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Where is Primitive Generation Done?

On an additional processor

� Requires fixed-function resources

� Idle during normal operation

� May serialize setup/execution

� If not designed to double buffer

� Simplifies

� Geometry Engine load balancing

� State management

Feels like a new pipeline stage

� Command processor functions split

Command
Processor2

Sequence Token
Aggregation

Primitive
Generation

?

Command
Processor

18

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Other Data Rate Reductions

Display lists

� Work well for client-server

� Allow bandwidth to be reassigned

Geometric decompression

� Strips and meshes

� Indexed triangle sets

� Geometry Compression (Deering ’95)

� Hypothetical backend for advanced compression
format

ATI PN Triangle technology …

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

ATI’s TRUFORM Technology

Requires minimal setup

� Single mode (triangle edge subdivision count)

� No geometric data

Operates on triangles as normally submitted

Edge Subdivison Count Normal-based surface extraction

19

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

ATI’s TRUFORM Technology

Improves silhouettes

Improves lighting over per-vertex (per fragment?)

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

ATI’s TRUFORM Technology

Limitations

� Constant subdivision per object

� Generally limited capability (e.g. continuity)

Strengths

� Actually reduces CPU to GPU data rate

� Requires minimal application recoding

� Easily avoids cracks and T-vertexes

� Is simple to understand, to implement, and to use

Leads toward a Reyes rendering approach

� Lots of small triangles

� Shading done in pre-projected coordinates

� Hardware trails software ….

20

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

OpenGL Selection

Light pen replacement mechanism

Light pen is a calligraphic device

� Focuses on screen

� Signals when stroke is drawn in focus region

Raster equivalent

� Point with a mouse

� Set “selection mode”

� Re-render entire scene

� Clip frustum reduced to small region around pointer

� Each object tagged (integer name)

� Return “hit” information

Real-Time
Graphics Architecture

Kurt Akeley

Pat Hanrahan

http://www.graphics.stanford.edu/courses/cs448a-01-fall

