Real-Time
Graphics Architecture

Kurt Akeley

Pat Hanrahan

http://www.graphics.stanford.edu/courses/cs448a-01-fall

Geometry

Outline
m Vertex and primitive operations
m System examples

m emphasis on clipping
m Primitive generation

m OpenGL selection

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Readings

Required

m High-Performance Polygon Rendering, Akeley and
Jermoluk, Proceedings of SIGGRAPH ’88.

m RealityEngine Graphics, Akeley, Proceedings of
SIGGRAPH ‘93.

m InfiniteReality: A Real-Time Graphics System,
Montrym, Baum, Digham, and Migdal, Proceedings
of SIGGRAPH ’97.

Recommended
m Curved PN Triangles, PDF to be on web site soon

m OpenGL Specification

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Modern Graphics Pipeline

Apphcatlon |

} Today'’s lecture
N

> Already covered

111

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Geometry Processing

Two types of operations

m Vertex operations

m Operate on individual vertexes

m Primitive operations

m Operate on all the vertexes of a primitive

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Vertex Operations

Transform coordinates and normal
m Model > world (not rigid)
m World - eye (rigid)
Normalize the length of the normal
Compute vertex lighting
Transform texture coordinates
m Generate if so specified
Transform coordinates to clip coordinates (projection)
Divide coordinates by w

Apply affine viewport transform (x, y, and z)

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Coordinate Transformation

4x4 matrix, 4-component coordinate
Single-precision floating point is typical
Matrices can be composed

m By the application

m By the implementation

m Be careful about invariance

x’ mi1 M2 M3 M4 X
y’ _ mz1 M2z M23 M24 y
z’ - ms1 M3z M33 M34 z
w’ M4t M4z Ma2 Mg w
CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Normal Transformation

(nx’ ny’ nZ’) = (nx ny nz) Mi’! Mu = upper-left 3x3 of M

Approaches to acquiring M, " include
m Maintain separately, or
m Compute when coordinate matrix is changed, or
m Force specification by application
Why transform normals? (Can lighting be computed in model coords?)
m Model matrix may not be rigid
m But, recall quadrilateral decomp. problem
Why normalize normals to unit length
m Lighting equations require unit length
m Non-rigid model matrix distorts lengths
m Requires reciprocal square root operation

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Normal Transformation

(nx’ ny’ nZ’) = (nx ny nz) Mi’! Mu = upper-left 3x3 of M

Approaches to acquiring M, " include
m Maintain separately, or
m Compute when coordinate matrix is changed, or
m Force specification by application
Why transform normals? (Can lighting be computed in model coords?)
m Model matrix may not be rigid
m But, recall quadrilateral decomp. problem
Why normalize normals to unit length
m Lighting equations require unit length
m Non-rigid model matrix distorts lengths
m Requires reciprocal square root operation

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Lighting

Simple n dot [evaluation
m Plus ambient and specular
m Multiple lights, ... n
m Remember, n is not a facet normal
Possibly two-sided l @
m Compute for n and -n
m Both results may be needed!
® Much arithmetic is shared -n
View-direction simplification
m Eye vector is [0,0,1]
m Saves arithmetic
There is no such thing as view direction!

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

No Interdependencies

Vertex operations apply to vertexes independently

Transform coordinates and normal
= Model -> world
m World > eye
Normalize the length of the normal
Compute vertex lighting
Transform texture coordinates
Transform to clip coordinates
Divide by w
Apply affine viewport transform

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Primitive Operations

Primitive assembly Transform coordinates and normal
= Model - world
m World > eye

Normalize the length of the normal

Clipping
Backface cull

Compute vertex lighting
Transform texture coordinates
Transform to clip coordinates
——» Assemble vertexes into primitives
—— Clip primitives against frustum
Divide by w

Apply affine viewport transform

— Eliminate back-facing triangles

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Primitive Assembly

Assemble based on application commands

m Independent or strip or mesh or
Decompose to triangles

m Prior to clipping to maintain invariance
Algorithm properties

m Fixed execution time (good)
m All vertex operations up to this point have this property

m Vertex interdependencies (bad)

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Clipping

Two types
m Point, line: eliminates geometry
m Polygon: eliminates and introduces edges

Line Segments \

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Clipping

Two types

m Point, line: eliminates geometry

m Polygon: eliminates and introduces edges
Invariance requirements

m Pre-decomposition to triangles

m Care with edge arithmetic
Algorithm properties

m Vertex interdependencies (bad)

m Data-dependent execution (worse)
m Variable execution time (substantially different)
m Variable code paths

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Backface Cull

Facet facing toward or away from viewpoint?
m No facet normal (other APIs?)
m Use sign of primitive’s window coordinate “area”
m Remember, only triangles are planar
Use facing direction to x2,y2
m Select lighting result (for n or -n)
m Potentially discard the primitive

Advance in sequence to improve efficiency?
x0,y0 x1,y1

(x0y1 - x1y0) + (x1y2 - x2y1) + (x2y0 - x0y2)

Triangle area =
2

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Some Examples

Systems

m Clark Geometry Engine (1983)
Silicon Graphics GTX (1988)
Silicon Graphics RealityEngine (1992)
Silicon Graphics InfiniteReality (1996)
Modern GPU (2001)
What we’ll look at

m Organization of the geometry system

m Distribution of vertex and primitive operations

m How clipping affects the implementation

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Clark Geometry Engine (1983)

15t generation capability

. Coordinate
Simple, fixed-function pipeline Transform
m Twelve identical engines
m Soft-configured at start-up
Clipping allocated %2 of total ‘power’ 6-plane
m Performance invariant (good) Frustum
. . Clipping
m Typically idle (bad)
Divide by w
Viewport

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

GTX Geometry Engine (1988)

2nd generation capability
Variable functionality pipeline
m 5 identical engines
m Modes alter some functions
m Load balancing is difficult
Clipping allocated 1/5 of ‘power’
m Clip testing is the constant load

m Actual clipping
m Slow pipeline execution (bad)
out of balance

m Typically isn’t invoked (good)
CS448 Lecture 8

v

Coord, normal
Transform

Lighting

Clip testing
Clipping state

Divide by w
(clipping)
Viewport

Prim. Assy.
Backface cull

Kurt Akeley, Pat Hanrahan, Fall 2001

RealityEngine Geometry (1992)

3rd generation capability
Variable-functionality MIMD organization

m Eight identical engines

m Round-robin work assignment

m Good ‘static’ load balancing
Command processor

m Splits large strips of primitives

m Shadows per-vertex state

m Broadcasts other state
Primitive assembly

m Complicates work distribution

m Reduces efficiency of strip processing

CS448 Lecture 8

Command
Processor

QRO

Round-robin
Aggregation

I

Kurt Akeley, Pat Hanrahan, Fall 2001

10

RealityEngine Clipping

Clipping introduces data-dependent
(dynamic) load

m Cannot be predicted by CP

Dynamic load balance accomplished by:

m Round-robin assignment

m Large input and output FIFOs
m For each geometry processor
m Sized greater than (n) long/typical
m Large work load per processor
m Minimize the long/typical ratio
m Unlike pipeline processing

Command
Processor

TIIIIIT

Round-robin
Aggregation

I

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

InfiniteReality Geometry (1996)

3rd generation capability
Variable-functionality MIMD organization

m Four identical (SIMD) engines

m Least-busy work assignment

m Good ‘static’ load balancing
Command processor

m Splits large strips of primitives

m Shadows per-vertex state

m Broadcasts other state
Primitive assembly

m Complicates work distribution

m Reduces efficiency of strip processing

Command
Processor

Lkl

Sequence Token
Aggregation

I

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

11

InfiniteReality Clipping

Dynamic load balance accomplished by:

m Least-busy assignment

Command

m Even larger FIFOs Processor

m Large work load per processor

Likelihood of clipping reduced by @%
m Guard-band clipping algorithm

Sequence Token
Aggregation

I

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Guard-Band Clipping

Expand clipping frustum beyond desired viewport
m Near and far clipping are unchanged
m Frustum clip only when necessary
Ideal triangle cases:
m Discard if outside viewport, else
m Render without clipping if inside frustum, else

m Rasterizer must scissor well for this to be efficient
m Clip triangles
m That cross both viewport and frustum boundaries

m That cross the near or far clip-planes

Operation is imperfect, but conservative

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

12

Guard-Band Clipping Example

[Rendered

[Discarded
[cClipped
Viewport '

Guard-band

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Modern Geometry Engine (2001)

Utilizes homogeneous rasterization algorithm
m No clipping required

m Hence no primitive assembly prior to
rasterization

m Push backface cull to rasterization setup

m This is where triangle area is computed anyway
All geometry engine calculations are
m On independent vertexes - easy work distribution
m Not data dependent - minimal code branching

Allows efficient, SIMD geometry engine implementation

Programmability?
CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

13

Primitive Generation

Why do this?

Some important reasons:

Match application semantics

Move computation from CPU to GPU

Reduce storage requirements

Perverse desire to complicate the GPU design ;-)
Highest-priority reason:
m Reduce CPU to GPU data rate!

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Basic Idea

Introduce new pipeline stage

m We’ll treat as part of geometry I App":ation |
Two-step application | Com?a"d |
m Specify generation function _
m Modes Geometry
m Data values (potentially large) I Raster+ization I
m Execute generation function v
m Block-mode commands, and/or I Tex:ure I
m Vertex-like commands [Fragment |
Generated geometry y
| Display |
m Is treated as if app-specified v

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Problems with Primitive Generation

Specification may be complex
m E.g. 4th order 2D OpenGL Evaluation mesh
m May be more data than generated triangles!

m Specification/execution may be sequential
m Require double buffer, separate execution engines
Cracks and T-vertexes
m Different surfaces must abut
m But arithmetic is of finite precision
m Generally requires “stitching”

m OpenGL accommodates this with mixed evaluation and
vertex specification

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Stitching Patches Together

4x4 Patch 5x5 Patch

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

15

Stitching Patches Together

4x4 Patch 5x5 Patch

T

Stitching vertexes introduced

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Problems with Primitive Generation

Implementation may be complex
m E.g. Trimmed NURBS

m Limit tesselation to curve-specified region of 2D domain

m Algorithm doesn’t “fit” GPU architecture

m Don’t redesign a general-purpose MP system
Semantics may not match application’s
m E.g. Trimmed NURBS
m Getting this right is extremely difficult

m Don’t trespass on application’s “secret sauce”

Where should primitive generation be done? ...

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

16

Where is Primitive Generation Done?

On geometry engines
m Reduces maximum vertex rate

m Generation consumes GE cycles

m May serialize setup/execution
m GEs not designed to double buffer S?SJ;L";';?

m Complicates load balancing

m Command Processor distribution @@

m Complicates state handling

m Command Processor managed this Sequence Token
Aggregation
OpenGL designed to accommodate this l

m Awkward state semantics
CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Where is Primitive Generation Done?

On an additional processor Command

Processor

m Requires fixed-function resources l

m |dle during normal operation Primitive -«
Generation

m May serialize setup/execution |

m If not designed to double buffer 533222‘32 ?

m Simplifies

m Geometry Engine load balancing @% .

m State management

Feels like a new pipeline stage Sequence Token
Aggregation
m Command processor functions split l
CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

17

Other Data Rate Reductions

Display lists
m Work well for client-server
m Allow bandwidth to be reassigned

Geometric decompression

Strips and meshes

Indexed triangle sets

Geometry Compression (Deering ’95)

Hypothetical backend for advanced compression
format

ATI PN Triangle technology ...

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

ATI’s TRUFORM Technology

Requires minimal setup
m Single mode (triangle edge subdivision count)
m No geometric data

Operates on triangles as normally submitted

L1

o Ay
b i
\ P o
Wl : ’ My !
%

a
Edge Subdivison Count Normal-based surface extraction
CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

18

ATI’s TRUFORM Technology

Improves silhouettes

Improves lighting over per-vertex (per fragment?)

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

ATI’s TRUFORM Technology

Limitations

m Constant subdivision per object

m Generally limited capability (e.g. continuity)
Strengths
Actually reduces CPU to GPU data rate

m Requires minimal application recoding

m Easily avoids cracks and T-vertexes

m Is simple to understand, to implement, and to use
Leads toward a Reyes rendering approach

m Lots of small triangles

m Shading done in pre-projected coordinates

m Hardware trails software

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

19

OpenGL Selection

Light pen replacement mechanism
Light pen is a calligraphic device

m Focuses on screen

m Signals when stroke is drawn in focus region
Raster equivalent

m Point with a mouse

m Set “selection mode”

m Re-render entire scene
m Clip frustum reduced to small region around pointer
m Each object tagged (integer name)

m Return “hit” information

CS448 Lecture 8 Kurt Akeley, Pat Hanrahan, Fall 2001

Real-Time
Graphics Architecture

Kurt Akeley

Pat Hanrahan

http://www.graphics.stanford.edu/courses/cs448a-01-fall

20

