
1

Real-Time
Graphics Architecture

Kurt Akeley

Pat Hanrahan

http://www.graphics.stanford.edu/courses/cs448a-01-fall

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Rasterization

Outline

� Fundamentals

� Examples

� Special topics (Depth-buffer, cracks and holes, …)

Required reading

� Triangle Scan Conversion using 2D Homogeneous
Coordinates, Olano and Greer, EWGH 1997.

� Optimal Depth Buffer for Low-Cost Graphics
Hardware, Lapidous and Jiao, EWGH 1999.

2

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Recall that …

Straight lines project to straight lines

� When projection is to a plane (our assumption)

� Only vertexes need to be transformed

� That’s why we’re interested in lines and polygons

Projected distance is warped:

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Recall that …

Ideal screen coordinates are continuous

� Implementations always use discrete math, but
with substantial sub-pixel precision

� A pixel is a big thing

� Addressable resolution equal to pixels on screen

� Lots of data (recall over-square RealityEngine buffer)

Points and lines have no geometric area ….

3

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Terminology

Rasterization: convert primitives to fragments

� Primitive: point, line, polygon, glyph, image, ….

� Fragment: transient data structure, e.g.

Pixels exist in an array (e.g. framebuffer)

� Have implicit <x,y> coordinates

Fragments are routed to appropriate pixels

� First “sort” we’ve seen

� There will be more

short x,y;

long depth;

short r,g,b,a;

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Two fundamental operations

Fragment selection

� Identify pixels for which fragments are to be
generated

� Must be conservative, efficiency matters

� <x,y> parameters are special

Parameter assignment

� Assign parameter values to each fragment

� E.g. color, depth, …

4

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Fragment selection

Generate one fragment for each pixel that is intersected
by the primitive

Intersected could mean primitive’s area intersects:

� The square pixel region, or

� The pixel’s filter function, or

� The pixel’s center point

All three meanings are useful:

� Box sample: tiled rasterization

� Filter function: antialiased rasterization

� Point sample: standard aliased rasterization

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Fragment selection (continued)

What if the primitive doesn’t have an area? (Points and
lines don’t.)

� Rule-based approach (e.g. Bresenham line), or

� Allows desired properties to be maintained, but

� May require additional hardware complexity

� Assign an area (e.g. circle for point, rectangle for
line)

� Can utilize polygon rasterization algorithm, but

� May result in wavy lines, flashing points, etc.

Note: point sample and box sample differ

� Cannot simply scale the primitive

5

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Parameter assignment

Identify a parameter function (height-above-plane)

Sample this function as required

Which function?

� Lots of possibilities (that we will ignore)

� Always defined implicitly by vertex values

� Linear in either screen or object space

Properties of vertex-defined function:

� Zero-order continuity

� Triangles allow the surface to be a plane

� Polygons (4+ edges) are almost never planar

� Variant with screen orientation?

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Linear interpolation

Compute intermediate parameter value

� Along a line: P = aP1 + bP2, a+b=1

� On a plane: P = aP1 + bP2 + cP3, a+b+c=1

Only projected values interpolate linearly in screen space (straight
lines project to straight lines)

� x and y are projected (divided by w)

� Parameter values are not naturally projected

Choice for parameter interpolation in screen space

� Interpolate unprojected values

� Cheap and easy to do, but

� Gives wrong values (sometimes OK for color, though)

� Texture coordinates can’t be interpolated this way

� Do it right (next slides)

6

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Projection to straight lines

P2

P1

P

P2

P1

P

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Projection to straight lines

P2, w2

P1, w1

P, w

P2 / w2

P1 / w1

P / w

Interpolate, then project = project, then interpolate

7

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Perspective-correct linear interpolation

Linearly interpolate P/w and 1/w

� Both are projected, so project to straight lines

� (Interpolate�project = project�interpolate)

At the desired sample point

� Recover P by dividing P/w by 1/w

� Division is expensive, so

� Recover w for the sample point (reciprocate), and

� Multiply each projected parameter value by w

aP1/w1 + bP2/w2 + cP3/w3

a/w1 + b/w2 + c/w3

P = a + b + c = 1

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Example: Gouraud shaded quadrilateral

Fragment selection

� Walk edges

� Change at vertexes

Parameter assignment

� Two-stage

� Interpolate along edges

� Interpolate edge-to-edge

� Three distinct regions

� Loop is complex

� E.g. 2/3 regions

� Function of

� Screen orientation

� Choice of spans

8

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Example: Gouraud shaded quadrilateral

“All” projected quadrilaterals are non-planar

� Due to discrete coordinate precision

What if quadrilateral is concave?

� Concave is complex (split spans -- see
example)

� Non-planar � concave for some view

What if quadrilateral intersects itself?

� A real mess (no vertex to signal change
–- see example)

� Non-planar � “bowtie” for some view

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

All polygons are triangles (or should be)

Three points define a plane

� Can treat all triangles as planar

� Can treat all parameter surfaces as planar

Triangle is always convex

� Regardless of arithmetic precision

� Simple rasterization, no special cases

Modern GPUs decompose n-gons to triangles

� SGI switched in 1990, VGX product

� Optimal quadrilateral decomposition invented

9

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Normal-based quad decomposition

Compute (A dot C) and (B dot D)

Connect vertex pair with the greater
dot product

� Avoid connecting the stirrups

Must avoid frame-to-frame jitter

� Cannot transform normals, or

� Planar quads will jitter

A

B C

D

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Point sampled triangles

Modern choice for aliased rendering

Fragment selection

� Include if center point is inside

� Handle edge/vertex intersections

Parameter assignment

� Sample function at pixel center

� Mean value for surrounded pixels

� Consistent ray for depth buffer

Never sample outside the triangle

� Avoid color wrap

� But how is antialiased filtering handled?

10

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Point sampled points and lines

Points and lines have no area, so

� Pixel sample locations almost never “in” primitive

� Semantics are confused at best

Must assign “area” parameter functions

� Point: parameter-constant disk

� Line: single-parameter-slope rectangle

Problem: how to outline filled, depth-buffered triangles?

� Depth values are “wrong”, lines disappear

� VGX introduced “hollow polygons”

� OpenGL 1.1 introduced glPolygonOffset()

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Integer DDA arithmetic

Goal: efficient interpolation

Direct evaluation is expensive

� Requires multiplications for each evaluation

Digital Differential Analyzer (DDA)

� Fixed point iiiiii.ffffff representation,
accumulator and slope

� Add slope repeatedly to accumulator to evaluate
adjacent sample locations

� Planar DDA uses separate X and Y slopes

� Can move around the plane arbitrarily

� Require log2(n) fraction bits for n accumulation
steps

11

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Triangle Rasterization Examples

Gouraud shaded (GTX)

Per-pixel evaluation (Pixel Planes 4)

Edge walk, planar parameter (VGX)

Barycentric direct evaluation (InfiniteReality)

Small tiles (Bali – proposed)

Homogeneous recursive descent (NVIDIA)

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Algorithm properties

Setup and execution cost

� Absolute

� Relative

Ability to parallelize

Ability to cull to a rectangular screen region

� To support tiling

� To support “scissoring”

12

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Gouraud shaded (GTX)

Two stage algorithm

� DDA edge walk

� fragment selection

� parameter assignment

� DDA scan-line walk

� parameter assignment only

Requires expensive scan-line setup

� Location of first sample is non-
unit distance from edge

Parallelizes in two stages (e.g. GTX)

Cannot scissor efficiently

Works on quadrilaterals

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Engine-per-pixel (Pixel Planes 4)

Sorry, no diagram �

Individual engine at each pixel

� Solves edge equations to determine inclusion

� Solves parameter equations to determine values

Setup involves computation of plane and edge slopes

Execution is

� Extremely fast (all pixels in parallel)

� Extremely inefficient for small triangles

� Pixel depth complexity = # triangles in scene

� Scissor culling is a non-issue

13

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Edge walk, planar evaluation (VGX)

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Edge walk, planar evaluation (VGX)

Hybrid algorithm

� Edge DDA walk for fragment selection

� Efficient generation of conservative fragment set

� Sample DDA walk for parameter assignment

� Never step off sample grid, so

� Never have to make sub-pixel adjustment

Scissor cull possible

� Adds complexity to edge walk

Sample walk simplifies parallelism

14

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Interpolation outside the triangle

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

DDA can operate out-of-range

MSBs beyond desired range don’t matter

� Carry chain flows up, not down

� Can handle arbitrarily large slopes

� Can iterate outside the triangle’s area

Don’t clamp intermediate results!

Doesn’t work for floating point!

AccumSlope

15

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Guard bits

Problem: overflow or underflow of accumulated value

� Integer arithmetic “wraps”

� Maximum value overflows to zero

� Zero underflows to maximum value

� Minor accumulation error � huge value error

Use guard bit(s) to avoid wrapping

� Maintain one or more extra MSBs throughout

� Split guard range equally above and below

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Guard bits (continued)

if (guard bit is ‘0’)

return value;

else if (MSB of value is ‘1’)

return 0;

else

return maximum value;

0 (00)101-2 (7)

0 (00)111-1 (6)

0 (00)0000

1 (01)0101

2 (10)1002

3 (11)1103

3 (11)0014

3 (11)0115

ClampedInteger partGuard Bit“value”

16

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

DDA bit assignment examples

Edge equation in 4k x 4k rendering space

� 1 guard bit

� 12 integer bits (4k space)

� 10 sub-pixel position bits

� 12 interpolation bits (log2(4096))

� 35 bits total

Depth value in 4k x 4k rendering space

� 2 guard bits (depth wrap is disaster)

� 24 integer bits (reasonable depth precision)

� 13 interpolation bits (longest path in 4k x 4k)

� 39 bits total

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Barycentric (InfiniteReality)

Hybrid algorithm

� Approximate edge walk for fragment selection

� Pineda edge functions used to generate AA masks

� Direct barycentric evaluation for parameter
assignment

� Barycentric coordinates are DDA walked on grid

� Minimizes setup cost

� Additional computational complexity accepted

� Handles small triangles well

Scissor cull implemented

� Supports “guard band clipping”

17

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Small tiles (Bali – proposed)

Framebuffer tiled into nxn (16x16) regions

� Each tile is owned by a separate engine

Two separate rasterizations

� Tile selection (avoid broadcast, conservative)

� Fragment selection and parameter assignment

Parallelizes well

Handles small triangles well

Scissors well

� At tile selection stage

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Homogeneous recursive descent

Rasterizes unprojected, unclipped geometry

� Huge improvement for geometry processing!

� Interpolates clip-plane distances

Modern choice for GPUs

� But is not well documented

� Read Olano and Greer

� Parameter assignment precision has many pitfalls

� Watch out for infinities!

Recursive descent

� Scissors well

� Drives nxn (2x2) parallel fragment generation

Cannot generate perspective-incorrect parameter values

18

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Ideal depth buffer

Topic is fractal

� What is good metric for accuracy?

“Ideal” depth buffer (true object-Z buffer)

� Interpolate Z/w and 1/w

� Divide at each fragment to recover object Z value

� Expensive division arithmetic (Z has lots of bits)

� Precision is distributed evenly in Z buffer

� Seems desirable, but actually is not

� More precision nearer the viewpoint is good

� SGI “Odyssey” product is only example I know

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

1/w depth buffer (aka W-buffer)

Observe that w is just object Z to begin with

Recall that 1/w interpolates linearly

Store and compare 1/w values in depth buffer

No expensive division is required

No additional interpolation, 1/w was needed anyway

W-buffer precision is packed toward the view point

� Derivative of 1/w is -1/w2

� Some warp is desired, but this is extreme

� Precision between view point and near-clip is lost

� 1/w value is scaled to match far-clip, but not biased

Becoming commonly used

19

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Z/w depth buffer (aka Z-buffer)

Z/w interpolates linearly too

Store and compare Z/w values in depth value

No expensive division required

Depth buffer precision is packed toward the near
clipping plane (not view point)

� Similar warp to W-buffer

� Lose farclip/nearclip bits in far field

� All precision available near-clip to far-clip

OpenGL/SGI standard approach

� See OpenGL spec for details

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Depth buffer warp compensation

Use floating point representation for depth values

May convert to float after interpolation if desired

To compensate for warp in W-buffer or Z-buffer

� Set far to 0.0, near to maximum value

� InfiniteReality product does this (Z-buffer)

To compensate for warp in object-Z buffer

� Set far to maximum value, near to 0.0

� Odyssey product does this

20

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Depth buffer x,y precision

Depth parameter “surface” is constructed from vertex
values, not from first principles

� Discretized x,y move this surface substantially

� Could compute depth plane with high-precision
x,y, but

� This path leads to sampling outside the triangle

A 32-bit depth buffer in a system with 2-bit subpixel
precision makes no sense!

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Holes and cracks

Assume point sampled triangles

Goal for adjacent triangles:

� No missed pixels (holes)

� No pixels rasterized twice

Problem: sample point intersects the edge

� Use canonical edge arithmetic (identical for both
triangles)

� Swap only the sense of the decision

Problem: sample point intersects shared vertex

� Construct elaborate rasterization rules, or

� Use separate grids for vertexes and samples

21

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Holes and cracks (continued)

T-vertex

� A vertex intended to be “on” an
edge

� Results in cracks (see example)

Cannot eliminate problem

� Would require infinite precision

� Antialiasing helps, though

See Pat Hanrahan’s cs248 slides

� graphics.stanford.edu/courses/cs
248-98-fall/Lectures/lecture9/

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Final observations

To get consistent precision using floating point

� Add a bias equal to maximum value

� Forces all exponents to be the same

� Can subtract or lose in float-to-fixed conversion

Round-to-zero is evil for signed rasterization algorithms

� Especially important for floor() and ceiling()

� Or avoid with bias technique

Some horrible problems go away in the limit

� Huge parameter slope � little triangle area

22

CS448 Lecture 6 Kurt Akeley, Pat Hanrahan, Fall 2001

Final observations (continued)

Highly-acute triangles

� Result from high-precision screen coordinates

� Can rasterize incorrectly due to minor slope errors

� Develop very large parameter slopes

Sometimes excess precision is damaging

� Screen coordinates � acute triangles

� Olano and Greer describe this

� But, screen coordinates � depth buffer accuracy

Line stipple is a mess

� For one segment, complicates raster parallelism

� For connected segments, complicates geometry parallelism

Real-Time
Graphics Architecture

Kurt Akeley

Pat Hanrahan

http://www.graphics.stanford.edu/courses/cs448a-01-fall

