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Display and Framebuffer

Displays

� Key properties

� Bandwidth

Framebuffers

� Definitions and key properties

� Bandwidth

� Architecture

Required reading

� Frame-Buffer Display Architectures, Sproull, 
Annual Review of Computer Science, ‘86
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Terminology

CRT

� Cathode Ray Tube

LCD

� Liquid Crystal Display (flat panel)

DLP

� Digital Light Processing

� Texas Instruments technology

� Clever adaptation of IC / photo lithography
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Raster vs. Calligraphic

Raster (image order)

� dominant choice

Calligraphic (object order)

� Earliest choice (Sketchpad)

� E&S terminals in the 70s and 80s

� Works with light pens

� Scene complexity affects frame rate

� Monitors are expensive

� Still required for FAA simulation

� Increases absolute brightness of light points
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Display Sequence Issues

Raster video signal takes a full frame to deliver

� Adds almost one frame of latency (worst-case)

Persistence

� Flying dot: CRT, scanning Laser

� Skewed full-frame: LCD panel, DLP ?

� Field sequential: consumer DLP, head-mount CRT

Visual artifacts

� Tearing in tiled displays

� Color separation in field sequential displays

� Motion blur of moving objects?
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Display Sequence Issues (Cont.)

Interlace (vs. progressive)

� Two interlaced fields per frame

� Makes no sense for MPEG compression

� Included in HDTV spec!

Visual artifacts

� Flicker if image is poorly filtered

� Image doubling if render rate <= frame rate

� Disappearing objects
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Display Resolution History

Rate of increase is low (1.1 compound overall)

LCD display has peak foveal pixel density at 3-feet

1.21.55 GB3840 x 2400 x 56Hz, active LCD2001

1.10.60 GB1920 x 1080 x 72Hz, HD CRT1996

1.10.29 GB1280 x 1024 x 72Hz, CRT1988

0.14 GB1024 x 768 x 60Hz, CRT1980

RateBandwidthFormat and TechnologyDate

All figures are the author’s estimates!
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IBM’s Bertha LCD Display

3840 x 2400 resolution,  22” diagonal 16:10 screen
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Video Signal Generation

Implemented on GPU

Analog and digital streams

� Analog: complex waveform, critical timing

� Digital: emerging standards and capabilities

Typically supported:

� Gamma correction

� Different resolution displays

Optionally supported:

� Multiple signals / displays

� Genlock synchronization
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Display Summary

RGB raster displays are prevalent

� Calligraphics as a pedagogical tool

� Ignore 3D displays

Video bandwidth

� Is a steady load on an operating GPU

� Is increasing slowly
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Framebuffer Definitions

What is a framebuffer?

What can we learn by considering different definitions?
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Framebuffer Definition #1

Storage for commands that are executed to refresh the 
display

Allows for raster or calligraphic display (e.g. Megatech)

“Framebuffer” for calligraphic display is a “display list”

� OpenGL “render list”?

Key point: framebuffer contents are interpreted

� Color mapping

� Image scaling, warping

� Window system (overlay, separate windows, …)

� Address Recalculation Pipeline
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Framebuffer Definition #2

Image memory used to decouple the render frame rate 
from the display frame rate

Meets common understanding of framebuffer as image

Leads naturally to double buffering

� One render buffer, one display buffer, swap

� n-buffering also possible, can control latency

Key idea: decoupling enables general-purpose GPU

� Visual simulation has high render frame rate

� MCAD has low render frame rate

� Window manager has no frame rate
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Framebuffer Definition #3

All pixel-assigned memory used to assemble and display the images 
being rendered

Key point: framebuffer is active participant in rendering

Leads to non-color buffers: depth, stencil, window control

� OpenGL treats these buffers as part of framebuffer

� Some reserve “framebuffer” for color images

� Should be n-buffered in some cases (sort last)

� RealityEngine framebuffer can be deeper than wide or high

History cycles through this definition

� 2D manipulation

� 3D painters algorithm

� 3D depth, stencil, accumulation, multi-pass

� Programmable shading
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Framebuffer is Optional

Calligraphic display

� If we don’t treat display list as framebuffer

“Follow-the-beam” rendering

� Minimizes latency

� Saves cost if frames are never “dropped”

Talisman-like image assembly (3D sprites)

� Old idea (visual simulation, window systems)

GigaPixel render tile

� Framebuffer stores color images only

� Depth, stencil, etc. in small tile
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Dominant Architecture is Consistent

SGI architectures look like

ATI architectures look like

NVIDIA architectures

Details are evolving, but big picture remains the same

Why is this?

� Simplicity of design

� Simplicity of algorithms

� Simplicity of immediate-mode approach
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Simplicity of Design

Framebuffer fragment operations

� Blending: merge fragment and pixel color

� Depth Buffering: save nearest fragment

� Stencil Buffering: simple pixel state machine

� Accumulation Buffering: high-resolution color arithmetic

� Antialiasing: (to be covered later)

� ….

Key points:

� All utilize pixel data (not just fragment data)

� All are pixel independent (no neighbor data dependencies)

Why aren’t fragment operations programmable?
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Simplicity of Algorithms

Framebuffer employs brute-force simplicity

� Hidden surface elimination: Depth-buffer vs. sort/painter

� Capping: Stencil-based vs. object calculations

� Image-space algorithm is efficient

� Just samples, never “object” information, locality

� Just-in-time calculation, steady cost function

Accumulation Buffer (high-resolution color arithmetic)

� The Accumulation Buffer, Haeberli and Akeley, 
Proceedings of SIGGRAPH ‘90

� Volume rendering using 3D textures

Multi-pass rendering

� Interactive Multi-pass Programmable Shading, Peercy, 
Olano, Airey, and Ungar, Proceedings of SIGGRAPH ‘00
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Simplicity of Immediate-mode

Framebuffer is “context”

Matches 2D/window rendering model

Rendering

System

Most graphics 
state is in 
framebuffer

Little graphics 
state is in 
rendering hdwr
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Decreasing Display Bandwidth

Historically display bandwidth was a limiting factor

� Hence “Sproull’s Rule”: fill rate >= display rate

Now display bandwidth is almost inconsequential

1/5(1/20)**1.55GB8.0GB2001

1/200.60GB12.8GB1996

1/6 *0.29GB1.8GB1988

1/20.14GB0.3GB1984

Disp / FBDisp BwthFB BwthYear

*  VRAM provided separate video bandwidth

** Display requires four separate video signals
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Maximize Effective Bandwidth

Display bandwidth is inconsequential, but

Framebuffer bandwidth is still critical, so

� Optimize access locality

� Utilize special purpose memory parts

� Maximize real bandwidth

� Embed framebuffer memory

� Minimize bandwidth needs

� Utilize parallelism

� Pool framebuffer memory

Consider these in more detail ….
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Optimize Access Locality

DRAMs run faster when “local” accesses are back-to-
back

Imagine that you have a “locality budget”

Allocate it carefully to

� Optimize for display refresh cycles, and/or

� Scan line locality

� Optimize for triangle fill cycles, and/or

� Square “tile” of locality

� Optimize for overlay display cycles, and/or

� Pixel component locality

� ….
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Utilize Special Purpose DRAM

Video DRAM (VRAM) in ‘80s

� Popular for a short period.  E.g. SGI GTX.

Sun 3DRAM in the ’90s

� Constrains the architecture

� Pixel format, fragment operations, etc.

� Expensive

Standard DRAMs have evolved for framebuffer use

� Time-to-fill limits utility of narrow-deep DRAMs

� Wide-shallow parts result (current 32-bit 
DDRRAM)

� Will DRAMs fall behind?  Have they already?
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FBRAM

FBRAM is DRAM with video 
output buffers (as in VRAM) and 
a cached ALU to perform 
fragment operations.

This was not a successful 
product.

FBRAM: A New Form of Memory 
Optimized for 3D Graphics,
Deering, Schlapp, and Lavelle, 
SIGGRAPH ’94 Proceedings
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Maximize Framebuffer Bandwidth

Use the fastest, widest DRAMs possible

Operate them at the highest possible clock rate

� Separate “pixel” clock and “memory” clock

� Bin memory (and GPU) parts

� Provide elasticity (FIFO) and synchronization

Make all wiring point-to-point

� Optimize signal paths

� Separate memory controller for each DRAM
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GTX Block Diagram

Each of the 20 Image Engines 
was conceived as little more 
than a stand-alone memory 
controller with attached VRAM.

High-Performance Polygon 
Rendering, Akeley and 
Jermoluk, Proceedings of 
SIGGRAPH ’88.



14

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

Embed Framebuffer Memory

Examples

� Pixel Planes (earlier versions)

� Play Station 2

May be the ultimate answer

� When framebuffer memory is inconsequential

But

� It’s expensive compared with commodity DRAM

� NVIDIA and ATI have done well without it
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Minimize Bandwidth Requirements

Add transistors to make better use of bandwidth

Be frugal, make each memory cycle count

� Aggregate memory transactions

� Cache to get efficient use of memory bandwidth

Compress framebuffer data

� Utilize area redundancy

Optimize occlusion culling

� Backface, early depth test, hierarchical depth

Minimize need for multi-pass rendering

� Programmable shading
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SGI Historicals – FB Bandwidth

1.42.2

1.212.8GB?1.31000MInfiniteReality1996

1.46.4GB1.8380MRealityEngine1992

1.61.8GB4.540MGTX1988

-0.3GB-100KIris 20001984

Yr rateFB BwthYr rateZbuf rateProductYear

DRAM*

Bandwidth increases at 1.4, pixel fill rate at 2.2

VRAM**

DRAM

SDRAM

*  Physically separate front and back color buffers

** Not counting shift output bandwidth
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NVIDIA Historicals – FB Bandwidth

Bandwidth increases at 1.5, pixel fill rate at 2.5

1.52.5

1.08.0GB4.0500MNV201H01

1.38.0GB1.6250MNV162H00

2.66.4GB2.6200MGeForce21H00

1.94.0GB2.6120MGeForce2H99

2.12.9GB2.375MTNT21H99

1.62.0GB2.650MRiva TNT2H98

1.01.6GB2.431MRiva ZX1H98

-1.6GB-20MRiva 1282H97

Yr rateFB bwthYr rateFill rateProductSeason



16

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

Rent’s Rule 

Rent’s rule:

Bandwidth = KR Capability 
0.7

NV series exponent is 0.5 (against 0.46 expected)

NV20 does:

� Transaction aggregation

� Clever depth buffer fragment elimination

� Lossless data compression

� ….
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Utilize Parallelism

Single-Instruction, Multiple-Data Parallelism (SIMD)

� Usually tiled rendering stamp (e.g. Stellar)

� Efficiency poor due to “pixel depth complexity”

Multiple-Instruction, Multiple-Data Parallelism (MIMD)

� Fragment operations are independent

� Individual memory controllers are more efficient

� SGI approach, merge them into Image Engines

� Became massively parallel (hundreds of engines)

� NVIDIA approach also?

� Parallelism limited to 4 or so, more pipelining
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InfiniteReality Block Diagram

Fully-configured InfiniteReality 
system includes 320 Image 
Engines.  Each combines a 
fragment processor with a 
memory controller.

Image Engines are packaged in 
groups of four.

InfiniteReality: A Real-Time 
Graphics System, Montrym, 
Baum, Dignam, and Migdal, 
Proceedings of SIGGRAPH ’97.
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Pool Framebuffer Memory

Single shared memory for all GPU needs

� Framebuffer, texture, “display list”

� Standard GPU solution (including SGI desktop)

Can share CPU memory too

� “System company” solution

� Lots of issues (latency, error correction, locality)

� SGI O2

Automatically balances bandwidth needs

Addresses time-to-fill issue nicely

Requires crossbar for multiple memory controllers
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Other Issues

Coordinate system

� Pixel is a region, not a point sample

� Pixels have integer coordinates, but

� Screen/window coordinates are continuous

Error detection/correction

� No SGI framebuffer has this (even O2)

� Do others?

Why not map framebuffer into CPU address space?

� Lots of reasons

� DrawPixels/ReadPixels is the right interface
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Conclusion

Elegant brute-force is working

� Complexity is localized

� Architecture remains unchanged

More transistors buy lower bandwidth needs

� CPU designers add cache memory

� GPU designers have lots of tools
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