
1

Real-Time
Graphics Architecture

Kurt Akeley

Pat Hanrahan

http://www.graphics.stanford.edu/courses/cs448a-01-fall

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

Display and Framebuffer

Displays

� Key properties

� Bandwidth

Framebuffers

� Definitions and key properties

� Bandwidth

� Architecture

Required reading

� Frame-Buffer Display Architectures, Sproull,
Annual Review of Computer Science, ‘86

2

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

Terminology

CRT

� Cathode Ray Tube

LCD

� Liquid Crystal Display (flat panel)

DLP

� Digital Light Processing

� Texas Instruments technology

� Clever adaptation of IC / photo lithography

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

Raster vs. Calligraphic

Raster (image order)

� dominant choice

Calligraphic (object order)

� Earliest choice (Sketchpad)

� E&S terminals in the 70s and 80s

� Works with light pens

� Scene complexity affects frame rate

� Monitors are expensive

� Still required for FAA simulation

� Increases absolute brightness of light points

3

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

Display Sequence Issues

Raster video signal takes a full frame to deliver

� Adds almost one frame of latency (worst-case)

Persistence

� Flying dot: CRT, scanning Laser

� Skewed full-frame: LCD panel, DLP ?

� Field sequential: consumer DLP, head-mount CRT

Visual artifacts

� Tearing in tiled displays

� Color separation in field sequential displays

� Motion blur of moving objects?

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

Display Sequence Issues (Cont.)

Interlace (vs. progressive)

� Two interlaced fields per frame

� Makes no sense for MPEG compression

� Included in HDTV spec!

Visual artifacts

� Flicker if image is poorly filtered

� Image doubling if render rate <= frame rate

� Disappearing objects

4

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

Display Resolution History

Rate of increase is low (1.1 compound overall)

LCD display has peak foveal pixel density at 3-feet

1.21.55 GB3840 x 2400 x 56Hz, active LCD2001

1.10.60 GB1920 x 1080 x 72Hz, HD CRT1996

1.10.29 GB1280 x 1024 x 72Hz, CRT1988

0.14 GB1024 x 768 x 60Hz, CRT1980

RateBandwidthFormat and TechnologyDate

All figures are the author’s estimates!

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

IBM’s Bertha LCD Display

3840 x 2400 resolution, 22” diagonal 16:10 screen

5

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

Video Signal Generation

Implemented on GPU

Analog and digital streams

� Analog: complex waveform, critical timing

� Digital: emerging standards and capabilities

Typically supported:

� Gamma correction

� Different resolution displays

Optionally supported:

� Multiple signals / displays

� Genlock synchronization

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

Display Summary

RGB raster displays are prevalent

� Calligraphics as a pedagogical tool

� Ignore 3D displays

Video bandwidth

� Is a steady load on an operating GPU

� Is increasing slowly

6

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

Framebuffer Definitions

What is a framebuffer?

What can we learn by considering different definitions?

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

Framebuffer Definition #1

Storage for commands that are executed to refresh the
display

Allows for raster or calligraphic display (e.g. Megatech)

“Framebuffer” for calligraphic display is a “display list”

� OpenGL “render list”?

Key point: framebuffer contents are interpreted

� Color mapping

� Image scaling, warping

� Window system (overlay, separate windows, …)

� Address Recalculation Pipeline

7

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

Framebuffer Definition #2

Image memory used to decouple the render frame rate
from the display frame rate

Meets common understanding of framebuffer as image

Leads naturally to double buffering

� One render buffer, one display buffer, swap

� n-buffering also possible, can control latency

Key idea: decoupling enables general-purpose GPU

� Visual simulation has high render frame rate

� MCAD has low render frame rate

� Window manager has no frame rate

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

Framebuffer Definition #3

All pixel-assigned memory used to assemble and display the images
being rendered

Key point: framebuffer is active participant in rendering

Leads to non-color buffers: depth, stencil, window control

� OpenGL treats these buffers as part of framebuffer

� Some reserve “framebuffer” for color images

� Should be n-buffered in some cases (sort last)

� RealityEngine framebuffer can be deeper than wide or high

History cycles through this definition

� 2D manipulation

� 3D painters algorithm

� 3D depth, stencil, accumulation, multi-pass

� Programmable shading

8

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

Framebuffer is Optional

Calligraphic display

� If we don’t treat display list as framebuffer

“Follow-the-beam” rendering

� Minimizes latency

� Saves cost if frames are never “dropped”

Talisman-like image assembly (3D sprites)

� Old idea (visual simulation, window systems)

GigaPixel render tile

� Framebuffer stores color images only

� Depth, stencil, etc. in small tile

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

Dominant Architecture is Consistent

SGI architectures look like

ATI architectures look like

NVIDIA architectures

Details are evolving, but big picture remains the same

Why is this?

� Simplicity of design

� Simplicity of algorithms

� Simplicity of immediate-mode approach

9

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

Simplicity of Design

Framebuffer fragment operations

� Blending: merge fragment and pixel color

� Depth Buffering: save nearest fragment

� Stencil Buffering: simple pixel state machine

� Accumulation Buffering: high-resolution color arithmetic

� Antialiasing: (to be covered later)

� ….

Key points:

� All utilize pixel data (not just fragment data)

� All are pixel independent (no neighbor data dependencies)

Why aren’t fragment operations programmable?

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

Simplicity of Algorithms

Framebuffer employs brute-force simplicity

� Hidden surface elimination: Depth-buffer vs. sort/painter

� Capping: Stencil-based vs. object calculations

� Image-space algorithm is efficient

� Just samples, never “object” information, locality

� Just-in-time calculation, steady cost function

Accumulation Buffer (high-resolution color arithmetic)

� The Accumulation Buffer, Haeberli and Akeley,
Proceedings of SIGGRAPH ‘90

� Volume rendering using 3D textures

Multi-pass rendering

� Interactive Multi-pass Programmable Shading, Peercy,
Olano, Airey, and Ungar, Proceedings of SIGGRAPH ‘00

10

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

Simplicity of Immediate-mode

Framebuffer is “context”

Matches 2D/window rendering model

Rendering

System

Most graphics
state is in
framebuffer

Little graphics
state is in
rendering hdwr

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

Decreasing Display Bandwidth

Historically display bandwidth was a limiting factor

� Hence “Sproull’s Rule”: fill rate >= display rate

Now display bandwidth is almost inconsequential

1/5(1/20)**1.55GB8.0GB2001

1/200.60GB12.8GB1996

1/6 *0.29GB1.8GB1988

1/20.14GB0.3GB1984

Disp / FBDisp BwthFB BwthYear

* VRAM provided separate video bandwidth

** Display requires four separate video signals

11

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

Maximize Effective Bandwidth

Display bandwidth is inconsequential, but

Framebuffer bandwidth is still critical, so

� Optimize access locality

� Utilize special purpose memory parts

� Maximize real bandwidth

� Embed framebuffer memory

� Minimize bandwidth needs

� Utilize parallelism

� Pool framebuffer memory

Consider these in more detail ….

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

Optimize Access Locality

DRAMs run faster when “local” accesses are back-to-
back

Imagine that you have a “locality budget”

Allocate it carefully to

� Optimize for display refresh cycles, and/or

� Scan line locality

� Optimize for triangle fill cycles, and/or

� Square “tile” of locality

� Optimize for overlay display cycles, and/or

� Pixel component locality

� ….

12

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

Utilize Special Purpose DRAM

Video DRAM (VRAM) in ‘80s

� Popular for a short period. E.g. SGI GTX.

Sun 3DRAM in the ’90s

� Constrains the architecture

� Pixel format, fragment operations, etc.

� Expensive

Standard DRAMs have evolved for framebuffer use

� Time-to-fill limits utility of narrow-deep DRAMs

� Wide-shallow parts result (current 32-bit
DDRRAM)

� Will DRAMs fall behind? Have they already?

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

FBRAM

FBRAM is DRAM with video
output buffers (as in VRAM) and
a cached ALU to perform
fragment operations.

This was not a successful
product.

FBRAM: A New Form of Memory
Optimized for 3D Graphics,
Deering, Schlapp, and Lavelle,
SIGGRAPH ’94 Proceedings

13

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

Maximize Framebuffer Bandwidth

Use the fastest, widest DRAMs possible

Operate them at the highest possible clock rate

� Separate “pixel” clock and “memory” clock

� Bin memory (and GPU) parts

� Provide elasticity (FIFO) and synchronization

Make all wiring point-to-point

� Optimize signal paths

� Separate memory controller for each DRAM

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

GTX Block Diagram

Each of the 20 Image Engines
was conceived as little more
than a stand-alone memory
controller with attached VRAM.

High-Performance Polygon
Rendering, Akeley and
Jermoluk, Proceedings of
SIGGRAPH ’88.

14

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

Embed Framebuffer Memory

Examples

� Pixel Planes (earlier versions)

� Play Station 2

May be the ultimate answer

� When framebuffer memory is inconsequential

But

� It’s expensive compared with commodity DRAM

� NVIDIA and ATI have done well without it

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

Minimize Bandwidth Requirements

Add transistors to make better use of bandwidth

Be frugal, make each memory cycle count

� Aggregate memory transactions

� Cache to get efficient use of memory bandwidth

Compress framebuffer data

� Utilize area redundancy

Optimize occlusion culling

� Backface, early depth test, hierarchical depth

Minimize need for multi-pass rendering

� Programmable shading

15

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

SGI Historicals – FB Bandwidth

1.42.2

1.212.8GB?1.31000MInfiniteReality1996

1.46.4GB1.8380MRealityEngine1992

1.61.8GB4.540MGTX1988

-0.3GB-100KIris 20001984

Yr rateFB BwthYr rateZbuf rateProductYear

DRAM*

Bandwidth increases at 1.4, pixel fill rate at 2.2

VRAM**

DRAM

SDRAM

* Physically separate front and back color buffers

** Not counting shift output bandwidth

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

NVIDIA Historicals – FB Bandwidth

Bandwidth increases at 1.5, pixel fill rate at 2.5

1.52.5

1.08.0GB4.0500MNV201H01

1.38.0GB1.6250MNV162H00

2.66.4GB2.6200MGeForce21H00

1.94.0GB2.6120MGeForce2H99

2.12.9GB2.375MTNT21H99

1.62.0GB2.650MRiva TNT2H98

1.01.6GB2.431MRiva ZX1H98

-1.6GB-20MRiva 1282H97

Yr rateFB bwthYr rateFill rateProductSeason

16

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

Rent’s Rule

Rent’s rule:

Bandwidth = KR Capability
0.7

NV series exponent is 0.5 (against 0.46 expected)

NV20 does:

� Transaction aggregation

� Clever depth buffer fragment elimination

� Lossless data compression

� ….

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

Utilize Parallelism

Single-Instruction, Multiple-Data Parallelism (SIMD)

� Usually tiled rendering stamp (e.g. Stellar)

� Efficiency poor due to “pixel depth complexity”

Multiple-Instruction, Multiple-Data Parallelism (MIMD)

� Fragment operations are independent

� Individual memory controllers are more efficient

� SGI approach, merge them into Image Engines

� Became massively parallel (hundreds of engines)

� NVIDIA approach also?

� Parallelism limited to 4 or so, more pipelining

17

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

InfiniteReality Block Diagram

Fully-configured InfiniteReality
system includes 320 Image
Engines. Each combines a
fragment processor with a
memory controller.

Image Engines are packaged in
groups of four.

InfiniteReality: A Real-Time
Graphics System, Montrym,
Baum, Dignam, and Migdal,
Proceedings of SIGGRAPH ’97.

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

Pool Framebuffer Memory

Single shared memory for all GPU needs

� Framebuffer, texture, “display list”

� Standard GPU solution (including SGI desktop)

Can share CPU memory too

� “System company” solution

� Lots of issues (latency, error correction, locality)

� SGI O2

Automatically balances bandwidth needs

Addresses time-to-fill issue nicely

Requires crossbar for multiple memory controllers

18

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

Other Issues

Coordinate system

� Pixel is a region, not a point sample

� Pixels have integer coordinates, but

� Screen/window coordinates are continuous

Error detection/correction

� No SGI framebuffer has this (even O2)

� Do others?

Why not map framebuffer into CPU address space?

� Lots of reasons

� DrawPixels/ReadPixels is the right interface

CS448 Lecture 5 Kurt Akeley, Pat Hanrahan, Fall 2001

Conclusion

Elegant brute-force is working

� Complexity is localized

� Architecture remains unchanged

More transistors buy lower bandwidth needs

� CPU designers add cache memory

� GPU designers have lots of tools

19

Real-Time
Graphics Architecture

Kurt Akeley

Pat Hanrahan

http://www.graphics.stanford.edu/courses/cs448a-01-fall

