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System Issues

Outline

� Introduce key issues

� A little history

� High-performance application interface

� More history

� Virtualizing the graphics hardware

� Windows and window systems

� Reliability

Required reading

� Display Procedures, Newman, CACM Oct 1971.

� On the Design of Display Processors, Myers and Sutherland, 
CACM 1968 (Wheel of Reincarnation paper.)
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What is a “graphics system”?

GPU?

Graphics board?

Graphics system is

� Graphics hardware (GPU, board, …)

� System software that makes it work

� Microcode

� Driver

� Window system

� OS extensions and tuning

Graphics API (e.g. OpenGL, X) is the boundary of the 
graphics system
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Key Issues

Performance in an application-accessible way

� Satisfy a wide range of application needs

� Not tuned for the “canonical demo”

Virtualization of the graphics system

� Two mechanisms are employed

� Graphics context: GPU state, textures, …

� Window: framebuffer, display resources

� OS and window system together implement 
virtualization
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A Caveat

My experience is with traditional workstations

� Unix

� X Window System, OpenGL

� Vendors were systems companies

I have little experience with PCs

� Microsoft Windows OS

� Direct X, OpenGL

� Vendors typically aren’t system companies

� Apple is a significant exception

� Others moving in this direction

Were workstations over-engineered?

� Do PCs get by with less system engineering?
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SGI = Silicon Graphics Inc.

Early 80’s

� SGI’s development cycle was backward

� Chips, then boards, then API, then applications

� SGI’s “silicon” expertise was limited

� Mead Conway approach was for dilettantes

Clark Geometry Engine

� Could not support preemptive multitasking

� Had low performance by mid-80’s standards
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A Change in Course
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SGI = Systems Graphics Inc.

“Taking the silicon out of Silicon Graphics”

� Emphasize system integration of graphics

� De-emphasize custom IC development

� Utilize commodity ALUs

� Reduce device design schedule (Gate Arrays)

� Re-order tasks � API, then system, then devices

Great strategy for the late 80’s and early 90’s

� Did it set up eventual failure?
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Performance
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Interface Choices

Fine Coarse

Retained

Application

Data Storage

API Granularity

glVertex() glVertexArray()

Display List Scene Graph

Im
m
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Immediate Mode

Advantages

� Good impedance match to application

� Application chooses data format and arrangement

� Application defines data traversal (Proceduralism)

� Minimized transfer of data

� Modal interface

� Small data types

Performance Issues

� Many subroutine calls

� Small data packets

� Complex and unpredictable input sequence
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Retained Mode

Advantages

� Optimized traversal (not application limited)

� Command sequence is regular and/or predictable

� Large arrays, or

� Precompiled display lists

� Large atoms mean

� Few subroutine calls

� Large blocks of data

Issues

� Specific traversal

� Application must conform to graphics API

� Excess data may be transferred (e.g. facet info)
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Trend

Moving from fine grain immediate to coarse grain

� PCs use indexed vertex arrays in AGP memory

Why was fine-grain interface used?

� Read Display Procedures, Newman

� Low geometric complexity emphasized efficiency 
of modal interface

� Interface matched natural quanta at the time

� Objects have much more complexity now
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Interface History

IRIS 1000 terminal

IRIS 2000 workstation

4D-60 MIPS-based workstation

GTX MP workstation

RealityEngine Challenge-MP workstation

InfiniteReality Origin-ccNUMA system

Modern PC
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IRIS 1000

Terminal

� Connected to VAX via Ethernet

� Ran custom OS on modified SUN 68000 CPU board

Iris GL display lists critical

� Pre-convert floating point to custom GE format

� Transfer data over Ethernet only once

Great demos

� We ran applications in immediate mode on 
terminal

� Customers couldn’t do this � big mess!
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IRIS 2000

Direct mapped hardware

� Command-in-address (ala SUN graphics card)

� “Geometry Accelerator” (floating point convert)

� Query-based flow control

No pre-emptive context switching

� Clark GE could not be interrupted

� Unix OS had to query repeatedly ;-)
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4D-60

“Magic FIFO”

� Enabled pre-emptive context switch with Clark GE

� Direct mapped

� Designed as a portable plug-in

Flow-control

� No software queries

� Hardware interrupts process when FIFO near full

� Spin loop waits for FIFO low-water mark

� Typically no wait is needed
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GTX

Introduced “vector” commands

� V4f(float* v);

� Became glVertex4f(glFloat* v); in OpenGL

� Implemented with 3-way transfer (next slide)

Flow control

� MP system routes interrupt to “gfx” CPU

Pinned memory pull model

� Pixel transfers only
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GTX 3-Way Transfer

Use CPU to convert virtual to physical address

Avoid CPU cache, dual data transfer

What about page boundaries?

Memory CPU Gfx

Quad address

Quad data

Command address
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RealityEngine

Challenge multi-processor system

� Packet bus quanta is 128-byte cache line

� 3-way transfer not possible

� Bus interface chips

� Queue graphics commands in special buffers

� Convert address bits to command token data

� Transfer buffers automatically when full

CPU process migration

� Complicates interrupt flow control

� Requires flushing of hardware buffers
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InfiniteReality

ccNUMA distributed memory system

� Cannot support command-in-address

� Command tokens generated under software control

� Cache-line size buffers remain

Display list optimizations

� DMA pull model

� Supports nested display lists

� Requires pinned memory

� On-board display list storage

� Doubled available bandwidth

� Stores only leaf-node display lists
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Modern PC

No direct map

� API calls write to buffers

� Buffers pulled by hardware DMA front-end

Vertex data in indexed arrays

� AGP memory

� Efficient pull of data

� Cache eliminates redundant vertex transfers
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System Programming

Callee-save compiler

� Identify leaf-node routines (e.g. glVertex)

� Do not save or restore registers

� (Broken by n32 compiler!)

Overload branch tables

� Must have for shared library / DSL

� Utilize branch table to implement

� Display list mode

� Diagnostic mode

� Feedback mode

� …

� Creates leaf-node routines!
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System Programming (cont.)

Assembly language

� Jump-table tricks

� Local optimization

� Utilize sparingly

Base register pointer

� Allocate a CPU register permanently
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Virtualization

CS448 Lecture 14 Kurt Akeley, Pat Hanrahan, Fall 2001

Virtualization

One graphics system appears to be many

Clients

� Application processes

� Viewers
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Virtualization domains

Application

Geometry

Rasterization

Texture

Fragment

Display

Graphics Context

Command

Window

OS Context

Framebuffer

Display List Memory

Texture Memory

Vertex Prg Memory

Frag’t Prg Memory
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Why Separate Domains?

Rendering hardware can be time shared

� Like CPU hardware

� But separate management to allow multiple graphics 
contexts per CPU context

Display hardware is “real time”

� Cannot be time shared

� Must be managed differently

Framebuffer

� Is display related by definition (pixel allocated)

� Same physical memory treated differently

� Framebuffer

� Texture memory, display lists, …
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Graphics Context Switch

Hardware requirements

� Can take interrupt at any time

� All state can be queried and restored

Architecture limitations

� Avoid huge state build-up

� E.g. Tile bins, scan line rendering, …

� Avoid long uninterruptible operations

� E.g. Patch rendering

Speed of switch is important

� For the window system rendering

� For other applications
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Graphics Context Switch (cont.)

Decouple from application context switch

� Some applications don’t do graphics

� Others may utilize multiple graphics contexts

� Demand swap is best

� Direct map – use CPU page table to set trap

� Buffered – incorporate into driver logic

Memory optimization

� Avoid transfer if possible

� Share until full

� Overlay to minimize data transfer
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Graphics Context Switch (cont.)

Hardware expense is minimal

Primary issues are

� Architectural limitations

� Implementation complexity

� Testing complexity

� Lots of cases

� Especially if both light (GPU storage) and heavy (CPU 
storage) switches are supported
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OS Tuning

Manage physical memory for graphics contexts

Implement graphics context swap on demand

Tune application context swap to

� Avoid thrashing the graphics hardware

� Smoothly support multiple active graphics 
applications
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What is a Window?

Allocation of visible pixels on a display

� Whole pixels only

� Leads to OpenGL’s 1x1 notion of a pixel

� Pixel is area, not sample (frustum, AA, etc.)

� Format

� Color (RGB, RGBA, index; single/double buffer; …)

� Depth, stencil

� Multisample

� Necessary display hardware

� Lookup table for color indexes (In X, all formats)

� Gamma correction
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Window Overlap

Architectural choice

� Provide “backing store” for obscured pixels

� Do not, and issue expose events as needed

Backing store options

� All except color buffers

� Typically front buffer only (copy swap)

� Context switch non-visible buffers (depth, stencil, …)

� Convenient to disallow front-buffer rendering ☺

� All buffers

� Requires scatter-gather display hardware

� This gets re-invented repeatedly
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Window Overlap (cont.)

Backing store issues

� Can require lots of memory

� E.g. 100x or 1000x

� Consumes rendering time for invisible pixels

� Expensive way to speed window dragging

� Better to put the resources into faster rendering!

� Scatter-gather display is difficult to implement

� Imaging 1024 1-pixel-wide window slivers

� Window managers not tolerant of arbitrary constraints

No backing store is typical workstation choice.

� PCs?
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Window IDs

Small integer field in each pixel

Controls display fetch

� Color format (RGB, RGBA, index, …)

� Buffer selection (front, back, stereo, …)

� Overlay and underlay

Window clipping

� Test Window ID, or (better)

� Test rectangle list or separate Clip ID (1-bit)

Cadillac algorithm

� Test rectangle list or Clip ID

� Update Window ID during render only
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Color Table Virtualization

All used mapping must be present – can’t time share

Assign table entries

� In contiguous blocks (OpenGL requirement)

� One at a time (Windows 2D rendering)

� Can’t interpolate easily!

X Window System gotcha:

� Rendering and table change commands are ordered!

� Allows table-driven double buffering

� Greatly complicates implementations

Do as rendering operation

� Virtualizes nicely

� Works like multisample resolve

CS448 Lecture 14 Kurt Akeley, Pat Hanrahan, Fall 2001

Reliability
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Application

An application must not be able to

� Crash the hardware

� By issuing undefined or illegal commands

� By providing invalid data:

IEEE Nan, Denormalized, negative zero, etc.

� Modify or access

� State owned by another graphics context

� Pixel or display data owned by another window

These high standards are strived for, but not often met!
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Memory

Graphics memory should be reliable and secure

� Errors corrected

� Or at least detected

Fact

� No SGI graphics system implements framebuffer 
error detection or correction.

� Not even O2, which shared a single memory for 
CPU and framebuffer

� Each page was allocated as CPU or graphics memory

� Graphics memory supported byte writes, no ECC

Current GPUs?
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Notes

Virtual graphics process = context

Physical graphics process = GPU

Virtual framebuffer = Window

Physical framebuffer = memory


