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Camera pixel pipeline

processing:

— demosaicing,
analog to c.hgltal fone mapping &
sensor »  conversion - white balancing, > storage
(ADC) denoising & -

B —— sharpening,

compression
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+ every camera uses different algorithms
+ the processing order may vary

+ most of 1t 1s proprietary




Example pipeline

| processing:
—-— demosaicing,
analog to dlgltal fone mapping &
sensor »  conversion - white balancing, > storage
(ADC) denoising &
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Pentaprism
Rotates the image on the
focusing screen 180 degrees to
form an upright image when
viewing through the viewfinder
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Metering Sensor
63-zone metering sensor
optimized for Area AF

Image Sensor
Detects light and converts it
into electrical signals

Focusing Screen —1

Reproduces an image of
the subject to be

tographed N : :
e e —— Shutter

Opens during exposure to
Memory Card ‘ 1| allow light to reach the image

sensor

Main Mirror
Guides light from the lens to
the viewfinder. Light passing
through the half-mirror at the
center of the main mirror is
guided to the submirror. The
main mirror flips up during
exposure to open a path for
light to reach the image
sensor

Submirror
Elliptically shaped mirror that
directs light from the lens to

the AF optical distance meter

Self-Cleaning
Sensor Unit

DIGIC 1l Imaging Pg#dCessor

Processes the signals reag the image sensor
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Outline

+ converting photons to charge

+ getting the charge off the sensor
o CCD versus CMOS
e analog to digital conversion (ADC)

+ supporting technology
e microlenses

o antialiasing filters

+ sensing color




Albert Einstein

(wikipedia)

+ when a photon strikes a material, an electron may be emitted

= depends on the photon’s energy, which depends on 1ts Wavelength

Sl
photon A«

e there 1s no notion of “brighter photons”, only more or fewer of them




Quantum efficiency
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+ not all photons will produce an electron

e depends on quantum efhciency of the device

#electrons
QE — Incidental light
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Color fil
. > Metal wiring
e human vision: ~159%0 ] e ..
o typical digital camera: < 50% s [

e best back-thinned CCD: > 90%
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Pixel S iZ e $ é “Photon Ra‘in” s
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+ the current from one electron is small (10-100 fA)
* so integrate over space and time (pixel area x exposure time)

e larger pixel x longer exposure means more accurate measure
+ typical pixel sizes

BT le s 9P, G B Eamee ey o o b 6}12

e Canon 5D II:  6.4pn x 6.4p = 4112




Full well capacity

Electrons
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+ how many electrons can a pixel hold?

e depends mainly on the size of the pixel

+ too many photons causes vaturation

e larger capacity leads to higher dynamic range between the brightest
scene feature that won't saturate and the darkest that isn’t too noisy
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Blooming

e

— =
e - -

— (ccd-sensor.de)

+ charge spilling over to nearby pixels
e can happen on CCD and CMOS sensors

e don't confuse with glare or other image artifacts

© Marc Levoy
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Image artifacts can be hard to diagnose

(http://farm3.static.flickr.com/2102/2248725961_540be5{9af.jpg?v=0)

Q. Is this blooming?
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Explanation of preceding image
(contents of whiteboard)

+ there may be blooming in the sky, but the
shrinkage of the horse’s leg can be explained
purely as a byproduct of mistocus

¢ in the accompanying plan view diagram, the
horse’s leg 1s shown at top (in cross section)

e the solid bundle of rays, corresponding to one
sensor pixel, crossed before the leg (was
misfocused), then spread out again, but saw
only more leg, so its color would be dark

e the dashed bundle of rays, corresponding to a
nearby pixel, crossed at the same depth but to
the side of the solid bundle, then spread out
again, seeing partly leg and partly sky; its color
would be lighter than the leg

e this lightening would look like the sky was

“blooming” across the leg, but it’s just a natural
effect produced by misfocus
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CMOS versus CCD sensors

Anatomy of the Active Pixel Sensor Photodiode
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+ CMOS = complementary metal-oxide semiconductor
e an amplifier per pixel converts charge to voltage

* low power, but noisy (but getting better)

+ CCD = charge-coupled device
e charge shifted along columns to an output amplifier
e oldest solid-state image sensor technology

 highest image quality, but not as flexible or cheap as CMOS




Gratulitous animation showing a

CCD “bucket brigade” readout
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Gratulitous animation showing a

CCD “bucket brigade” readout
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Gratulitous animation showing a

CCD “bucket brigade” readout
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Gratulitous animation showing a

CCD “bucket brigade” readout
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Gratulitous animation showing a

CCD “bucket brigade” readout
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Gratulitous animation showing a

CCD “bucket brigade” readout
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Smearing

(dvxuser.com)

Silicon Photodiode Anatomy
Incoming
Phot

Drain
Voltage P:""'"
Control  ‘Gate . ¢ Gate OCates_

"% Transfer CC0 —g

e only happens if pixels saturate

e doesn't happen on CMOS sensors

20
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Analog to digital conversion (ADC)
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e 3-bit ADC — 3-bit DAC — compute residual — 4x — repeat
 longer latency, but high throughput
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use an ADC per column
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Fill factor

Micro Lens /
CFA ]

olog Fllter
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Phote Diodo Photo Diode

on a CMOS sensor on a CCD sensor

+ fraction of sensor surface available to collect photons

e can be improved using per-pixel microlenses
P g per-p

Q. An image sensor performs 2D sampling.
What 1s the prehlter, with and without microlenses?

22




What per-pixel microlenses do

+ integrating light over an area at each pixel site instead
of point sampling serves two functions

e capturing more photons, to improve dynamic range

e convolving the image with a prefilter, to avoid aliasing

+ 1if the pixel is a rectangle, then this prefilter 1s a 2D rect

-

5 1 ' ' ]

0 lf X >§ : .

= = Ll =77 : i :
rect(x) = 1l1(x) = 1 5 if|x|=5 i |
; | e S
\ 1 if |x|<5 Ea

e if only a portion of each pixel site 1s photo-sensitive, this rect
doesn’t span the spacing between pixels, so the prefilter 1s poor

+ microlenses both gather more light and improve the prehilter

= e with microlenses, prefilter width roughly equals pixel spacing




Antiahasing hilters

X
AN
A\

birefringence 1n a calcite crystal
antiahasing filter

+ 1mproves on non-ideal prefilter, even with microlenses

+ typically two layers of birefringent material
e splits 1 ray into 4 rays

e operates like a 4-tap discrete convolution filter kernel!

24 © Marc Levoy




Removing the antialiasing filter

+ “hot rodding” your digital camera
e $450 + shipping

(maxmax.com)

anti-aliasing filter removed normal

25




Removing the antialiasing fhlter

+ “hot rodding” your digital camera
e $450 + shipping

(maxmax.com)

anti-aliasing filter removed normal

26
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Recap

+ photons strike a sensor and are converted to electrons

e performance factors include guantum efficiency and prxel size

+ sensors are typically CCD or CMOS

e both can sutter 6looming; only CCDs can sutter svmearing

+ Integrating light over an area serves two functions

e capturing more photons, to improve dynamic range

e convolving the image with a prefilter, to avoid aliasing

e to ensure that the area spans pixel spacing, use microlenses

Questions?
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Color

+ silicon detects all visible frequencies well

+ can't ditfferentiate wavelengths
after photon knocks an electron loose

e all electrons look alike

+ must select desired frequencies
before light reaches photodetector

e block using a filter, or separate using a prism or grating

+ 3 spectral responses 1s enough

=& few consumer cameras record 4

+ silicon 1s also sensitive to near infrared (NIR)
e most sensors have an IR filter to block 1t

e to make a NIR camera, remove this filter




Color sensing technologies

+ held-sequential
+ S-sensor
+ vertically stacked

+ spatial mosaic

29
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Historical interlude

+ James Clerk Maxwell, 1861

e of Maxwell's equations

e 3 images, shot through filters, then simultaneously projected

§ (wikipedia)
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Historical interlude

Q. Who made the first color print?

.' T , (wikipedia)
+ Louis Arthur Ducos du Hauron, 1877

e 3 1mages, shot through filters, printed with color inks
 he experimented with RGB and CMY




Sergey Prokudin-Gorsky

OGuln nsors kasep o kaccern Ji-pa Mire

e shot sequentially through R, G, B filters

e simultaneous projection provided good saturation,
but available printing technology did not

e digital restoration lets us see them 1in full glory...
32
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Sergey Prokudin-Gorsky,
Pinkhus Karlinskii, Supervisor of the Chernigov Floodgate (1919)
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First color movie technology?

(wikipedia)

A Visit to te SeasideS)

+ George Albert Smith’s Kinemacolor, 1906

. alternating red and green filters, total of 32 fps
e projected through alternating red and green filters
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Technicolor

Toll f the ea (1922) Phanto of the Opera (1925)
+ beam splitter leading through 2 filters to two cameras

+ 2 strips of film, cemented together for projection




Technicolor
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-

Disney's Flowers and Trees (1932) Wizard of Oz (1939)

+ 3 hlters, 3 cameras, 3 strips of film

+ better preserved than single-strip color movies of 1960s!
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First consumer color film?

(wikipedia)

T st
=X GUUJFUKE H

CIGARETTES

+ Kodachrome, 1935
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Picadilly Circus, 1949

* no longer available

NATIONAL
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First color television broadcast?

The —

'? Ed Sullivan-:'\

‘ Show

NBC PRESENTATION
IN RCA COLOR

1961
+ competing standards
B EECE NTSC 525-line, 30fps, interlaced
e Europe PAL 625-line, 25tps, interlaced

e France @ SECAM  625-line, 25fps, interlaced
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First color television broadcast?

NBC PRESENTATION
IN RCA COLOR

+ competing standards
e U.S. NTSC
e e
e France @ SECAM

"By Golly ! The =,
TSZ"SF'FFIE':‘Q '? Ed Sullivan "%\
‘ o '

1961

Never Twice the Same Color
Pale and Lurid

Systéme Electronique Contre les Americains




Color sensing technologies

+ held-sequential - just covered
+ 3-chip
+ vertically stacked

+ color filter arrays

41




3-chip cameras

Driver

CCD(B)
1 [1 [H Prism
|

\
coom__ =

Y

Signal Processor

(Theuwissen)

+ high-quality video cameras

+ prism & dichroic mirrors split the image into 3 colors,

each routed to a separate sensor (typically CCD)
4+ NO light loss, as compared to filters

+ expensive, and complicates lens design
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+ longer wavelengths penetrate deeper into sﬂlcon,
so arrange a set of vertically stacked detectors

* top gets mostly blue, middle gets green, bottom gets red

* no control over spectral responses, so requires processing

fewer color artifacts than color filter arrays

* but possibly worse noise performance, especially in red




Color filter arrays

Bayer pattern Sony RGB+E Kodak RGB+C

better color less noise

+ Why more green pixels than red or blue?

1

e because humans are most
sensitive in the middle of
the visible spectrum

Luminous Efficiency

e sensitivity given by the human
luminous efﬁciency curve (Stone) | M0 Wavsengn 700

o
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Example of Bayer mosaic image

Small fan at
Stanford women’s

Soccer game

(Canon 1D III)




Example of Bayer mosaic image




Before demosaicing (dcraw -d)




Example of Bayer mosaic image

After our discussion in class, | added this image with zoowms and plots. It
confirms that red predominates in areas of skin, explaining why the
previous, undemosaiced image, looked like white dots on a gray background.
Note that her pupils, in which blue and green levels are higher than red,
don’t look like this on the undemosaiced image.

Do you like this zoowming and plotting tool? You can download it from
http:/araphics.stanford.edu/software/ (third link on that page).

(0460,0768) - (75, 91, 94)

0779.0883) - (172,143,151
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Demosaicing

+ linear interpolation

e average of the 4 nearest neighbors of the same color

+ cameras typically use more complicated scheme
e try to avoid interpolating across feature boundaries

e demosaicing 1s often combined with denoising, sharpening...

+ due to demosaicing, 2/3 of your data 1s “made up”!

&R
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Recap

+ color can only be measured by selecting certain light
frequencies to reach certain sensor sites or layers

e selection can employ filters or gratings or penetration depth

+ measuring color requires making a tradeoftt
e field dequm[ial cameras trade off capture duration
e 5-chip cameras trade off weight and expense
e vertically stacked sensors (Foveon) trade off noise (in red)

e color ﬁlter array (e.g. Bayer) trades off spatial resolution

Questions?
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Not yet covered

4 Sensors

e dynamic range

e noise and ISO

+ color
e spectral characteristics of color filters

e practical demosaicing methods
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