What will be on the midterm?

CS 178, Spring 2009

Revised 4/30/09

Marc Levoy
Computer Science Department
Stanford University

Image formation

- → the laws of perspective
 - especially natural perspective versus linear perspective
- pinhole imaging
 - tradeoffs between sensor distance, FOV, and light intensity
- imaging uses lenses
 - Gauss's ray tracing construction (be able to draw it)
 - tradeoffs between focal length, sensor size, and FOV
 - changing the focal length vrs changing the viewpoint
- → exposure
 - tradeoffs between aperture, shutter speed, motion blur, and depth of field (study Eddy's diagrams!)
 - tradeoffs that include ISO and noise covered later

Lenses and apertures

*optional material is fair game for extra-credit Q's

- qualitative understanding of the approximations we make
 - geometrical optics instead of physical optics
 - spherical lenses instead of hyperbolic lenses
 - thin lens representation of thick optical systems
 - paraxial approximation of ray angles
- ◆ the Gaussian lens formula (know it and be able to use it)
 - · don't worry about Lensmaker's or Newton's formulae
 - understand transverse magnification (longitudinal is optional)
- → center of perspective (ignore the other thick lens terms),
 convex vrs concave lenses, real vrs virtual images optional*
- depth of field formula
 - know its parts, how they vary, and the tradeoffs they imply
 - hyperfocal distance and how to use it

Practical photographic lenses

- ◆ aberrations (without the algebra)
 - be able to recognize them by a name or sketch
 - how is each one fixed? which are correctable in software?
- ♦ other lens artifacts
 - be able to recognize them by a name or sketch
 - understand the geometry of vignetting, including cos⁴ falloff
- → diffraction, sharpness, and MTF (qualitatively)
 - what are they, and what factors do they depend on?
- → special-purpose lenses
 - principles (not detailed derivations) of telephoto, zoom
 - view camera: removing vanishing points, tilting the focal plane

Sampling and pixels

- human field of view and spatial acuity
 - be able to manipulate FOV, dpi, retinal arc, cycles / degree
 - what is vernier acuity, and how does it affect acuity?
- sampling and reconstruction
 - what is aliasing? when does it happen? how can it be avoided?
 - what is reconstruction error? how does it differ from aliasing?
 - raising the sampling rate vrs prefiltering vrs postfiltering
- → definition and uses of spatial convolution
 - understand the integral and summation forms of this equation
 - be able to work out a simple convolution, like two rects
 - no calculus manipulations will be required on the exam

Photons and sensors

- basic concepts (qualitatively)
 - photons, quantum efficiency, blooming, smearing
 - sampling vrs quantization, analog to digital conversion
 - don't worry about circuits, depletion regions, bandgaps, etc.
- ♦ how does spatial convolution map to a digital camera?
 - fill factor, per-pixel microlenses, antialiasing filters
 - be able to explain how exposure time is a temporal prefilter
- → color sensing technologies
 - be able to recognize them from a name or sketch
 - tradeoffs between the technologies (qualitatively)

Autofocus (AF)

- → active autofocus techniques
 - tradeoffs between time of flight and triangulation
 - be able to manipulate the geometry of triangulation, at least for right-angle triangles
- → passive autofocus techniques
 - understand the principle of phase detection
 - understand the principle of contrast detection
 - when are they used? what are the tradeoffs?
 - don't worry about the details of lenslets, ray geometry, etc.

Image stabilization (IS)

- ♦ what are the causes of camera shake?
 - and how can you avoid it (without having an IS system)?
- ◆ treating camera shake as a 2D convolution of the image
 - understand the geometry of this approximation
- → image stabilization systems
 - be able to define mechnical, optical, electronic IS
 - understand the principles of lens-shift vrs sensor-shift IS
 - understanding the ray geometry in detail is not required
 - how much does stabilization help?

Noise and ISO

- what are the sources of noise in digital cameras?
 - be able to recognize them by a name or description
 - which ones grow with exposure time, or with temperature?
 - which ones can be fixed in software?
- → signal-to-noise ratio and dynamic range
 - be able to apply the formulas correctly (we'll give you a list)
- + ISO
 - what is it, and how is it implemented in digital cameras?
 - tradeoffs between ISO and noise (study Eddy's diagram!)
- what is denoising and what are some ways to do it?
 - benefit of downsizing an image or averaging multiple shots

Automatic exposure metering (AE)

- what makes metering hard?
 - understand (qualitatively) the dynamic range problem
- → gamma, gamma correction, and quantization
 - are gammas of cameras, displays, humans < 1.0 or > 1.0?
 - visual effect of performing (or not) gamma correction
 - relationship of gamma transforms to # of bits required
- metering technologies
 - what problems are caused by having few metering zones?
 - tradeoffs between typical shooting modes (A,P,Av,Tv,M)
 - why is handheld metering independent of object distance?
- ◆ high dynamic range (HDR) imaging
 - how do artists solve the tone mapping problem?